Markov Chain Monte Carlo, contingency tables and Gröbner bases

Storlek: px
Starta visningen från sidan:

Download "Markov Chain Monte Carlo, contingency tables and Gröbner bases"

Transkript

1 Markov Chain Monte Carlo, contingency tables and Gröbner bases Diaconis, P., Sturmfels, B. (998. Algebraic algorithms for sampling from conditional distributions. Gunnar Englund Annals of Statistics Vol MCMC: Ett sätt att simulera från komplicerade fördelningar. Fördelningarna behöver inte vara normerade Stora tillämpningar inom Bayesiansk statistik P (Θ = θ X = x = P (X = x Θ = θp (Θ = θ P (X = x P (X = x Θ = θp (Θ = θ = P (X = x; Θ = θ dvs a-posteriori-fördelningen Lite om MCMC: Vi vill simulera fördelning π(x, x E För enkelhets skull: E ändlig (men gigantisk P (X = x = π(x z E π(z Normeringen besvärlig men behövs inte! likelihoodfunktionen apriori-fördelningen Hett område!! 3 4

2 Metropolis-Hastings algoritm: Ger Markov-kedja med p X (x, x E (eller likvärdigt π(x, x E som stationär fördelning. Kedjan är reversibel dvs π(xp (x, y = π(yp (y, x, Trivialt för x = y. För x y för alla x, y Om X n = x: Förslag y till X n+ enligt förslagsfördelning q(x, y. Stor frihet i val av q(x, y. 2 Acceptera förslaget y givet från x med sannolikhet ( π(yq(y, x α(x, y = min, π(xq(x, y annars X n+ = x Om x y är övergångssannolikheten P (x, y = q(x, yα(x, y P (x, x = y E; y x P (x, y 5 VL = π(xq(x, yα(x, y = = min(π(xq(x, y, π(yq(y, x = π(yp (y, x. Reversibiliteten ger (summation över x π(xp (x, y = π(yp (y, x = x E x E = π(y P (y, x = π(y x E dvs π är stationär fördelning. (Jämför p ( = p (0 P OBS! π finns både i täljare nämnare i α(x, y! Behöver inte vara normerad! 6 Om kedjan är ergodisk: B B g(x i E π (g(x = i= x E g(xπ(x = då B x E π(x för godtyckliga g. Allt kan beräknas! Ergodisk om irreducibel, aperiodisk (behövs inte om man inte tar delsekvenser! Ofta lätt att visa i konkret situation! Lägger krav på förslagsfördelningen q(x, y. Gröbner-baser kan användas för att verifiera irreducibilitet. Dock: q(x, y bör väljas listigt så B ej behöver vara så stor. 7 Exempel: Låt χ = I J-gitter med 0:or :or. E = {x χ två grannar inte båda }. π fördelning på χ fast 0 utanför E, t ex π(x=konstant för x E 0 för övrigt (likformig fördelning på E. Förslagsfördelning (dvs q(x, y: Välj nod (i, j på måfå med sannolikhet /IJ. Välj värde i noden som 0 eller med sannolikhet /2 vardera. Eventuellt y / E, men då är π(y = 0 alltså α(x, y = 0. Om y E accepteras förslaget ty ( π(yq(y, x α(x, y = min, = π(xq(x, y eftersom q(x, y = q(y, x π(x = π(y. 8

3 Kedjan uppenbarligen irreducibel aperiodisk, dvs ergodisk! T ex g(x =antal :or i x får vi medelantal :or! Med I = J = 0 erhålls (B = 0000 E(antal :or 23.40, E(max antal :or i raderna Dessas korrelation Nästan lika lätt med allmänt π men då blir acceptanssannolikheten ( α(x, y = min, π(y π(x 9 Exempel: Kontingenstabell. I J-tabell av antal med radsummor r = (r, r 2,, r I kolonnsummor c = (c, c 2,, c J. A(r, c = {I J-tabeller med r c} Vi vill studera X = (x ij, (i, j I J med given fördelning på A(r, c. Speciellt intressant fördelning är hypergeometriska fördelningen på A(r, c dvs med N = i,j x ij J c j! j= x j!x 2j! x Ij! P (X = x = N! r!r 2! r I! 0 Jämför 2 2-tabell med celler x, x 2, x 2, x 22 där ( ( c c2 x P (X = x = x ( 2 N r Med MCMC: Om X n = x A(r, c låter vi förslagsfördelningen vara Om H 0 : rader kolonner oberoende är sann har X hypergeometrisk fördelning. Teststorheten Q = i,j (x ij Np ij 2 Np ij är approximativt χ 2 ((I (J -fördelad där p ij = r i/n c j /N. q(x, y: Välj två rader två kolonner på måfå. Välj mönstren ( + + ( + + med sannolikhet /2 vardera. Om y / A(r, c (negativa entries låter vi X n+ = x. Bra approximation? 2

4 Irreducibel? Kan visas med Gröbner-baser! Vi vill generera Hypergeometriska fördelningen dvs π(x i,j(x ij! dvs acceptanssannolikheten blir eftersom q(x, y = q(y, x ( i,j(x ij! α(x, y = min, i,j(y ij! α(x, y = 0 om y / A(r, c. Aperiodisk? Ja, för om någon entry=0 ligger vi kvar där med positiv sannolikhet. Alltså ergodisk vi kan simulera teststorheten Q:s fördelning godtyckligt bra! Funkar även med andra fördelningar än hypergeometriska. 3 4 Mer generella tabeller (med I J som illustration H=ändlig mängd För I J är H = {(i, j : i I, j J} dvs H = I J. Ett x H svarar mot en cell. Generera ett data X H enligt den exponentiella familjen P (X = x = Z(θe θ T (x, x H där θ R d är d-dimensionell parameter T : H N d 0 d, (ofta T : H {0, } d 0 d T är en d-dimensionell vektor av tillräckliga statistikor. 5 För oberoende (X, X 2,, X N = X enligt ovanstående fördelning fås P (X = x = (Z(θ N N exp(θ T (x i i= som beror av data bara genom värdet på N T (x i (alltså d tillräckliga statistikor. Med H = I J T ((i, j N I+J där T ((i, j = (0,, 0,, 0,, 0 0, 0,, 0,, 0 med :orna i position i respektive I + j. θ = (θ, θ 2,, θ I, θ, θ 2,, θ J P (X = (i, j e θ ie θ j dvs oberoende mellan rad kolonn. De d = I + J tillräckliga statistikorna N T (X i = t svarar för H = I J mot t = (r, c dvs marginalerna. 6

5 Med Y t = {(x, x 2,, x N H N N : T (x i = t} har vi likformig fördelning på Y t med exponentiella modellen. Omformas lämpligen genom N t = T (x i = g(xt (x i= där g(x = (antal x i = x Vi låter F t = {g : H N där där g(x =antal i cell x. g(xt (x = t} Om g F t är anger g(x, x H en möjlig tabell med rätt tillräckliga statistikor t. 7 Vi är intresserade av hypergeometrisk fördelning på F t dvs N! π(g = H t (g = (g(x!. Y t som är fördelningen på F t om vi har likformig fördelning på Y t. Detta har vi t ex med modellen med exponentiell familj. Observera att π(g (g(x! Vi vill simulera π(g, g F t med Metropolis- Hastings. Lämpligt välja förslagsfördelning q(g, g så att q(g, g = q(g, g med så enkla förflyttningar att π(g /π(g är enkel att beräkna så att acceptanssannolikheten ( α(g, g = min, π(g q(g (, g π(gq(g, g = min, π(g π(g blir enkel att beräkna. 8 Vill konstruera enkla kandidater till förflyttningar f där vi från g H går till g ± f som ger en irreducibel, aperiodisk Markovkedja. Obs! Dessa (säg L enkla förflyttningar f, f 2,, f L skall bevara de d tillräckliga statistikorna t dvs f i (xt (x = 0, i =, 2,,, L eftersom då (g(x + f i (xt (x = t, i =, 2,,, L alltså g + f i F t (om g(x + f i (x 0 för alla x H. Vi väljer f i, i =, 2,, L med sannolikhet /L vardera sen (oberoende ε som + eller med sannolikhet /2 vardera går sen från g till g = g + εf i med sannolikheten α(g, g. Man har då q(g, g = q(g, g! Eventuellt gäller att g / F t (negativ entry men då ligger vi kvar i g. Även förflyttning från g till g f i bevarar t. 9 20

6 Markov-bas: Förflyttningarna f, f 2,, f L kallas en Markov-bas om de uppfyller f i (xt (x = 0 2 Om g g F t skall vi kunna gå från g till g med en sekvens enkla förflyttningar ε i f ij där vi ligger i F t efter varje steg (irreducibel kedja. Alltså: Det finns ett A så att med lämpliga val av i, i 2,, i A ε j, j =, 2,, A (som är + eller gäller att g A = g + f ij ε j j= Förslagsfördelningen q(g, g innebär alltså: Välj ett f ur f, f 2,, f L med lika sannolikheter sen oberoende ε som + eller med sannolikhet /2 vardera låt g = g + εf Ett förslag g + εf accepteras med sannolikhet α(g, g + εf i = min(, H t(g + εf H t (g där H t är målfördelningen på F t. Om g + εf F t står vi kvar i g. Kan modifieras så man gör längre steg. a g + f ij ε j 0, a A j= Hur hitta dessa enkla förflyttningar? de ges av en Gröbner-bas. Jo, 2 22 Exempel: tabell dvs H = {(i, j, k : i 3, j 3, k 3} Vi låter p ijk = P (hamna i cell (i, j, k. Som modell har vi inget tre-faktor-samspel dvs ln p ijk = µ+α i +β j +γ k +(αβ ij +(αγ ik +(βγ jk dvs vi har inga (αβγ ijk -termer. Innebär en modell av typen exponentiell familj! Med N ijk =antal i cell (i, j, k gäller under modellen att N ij, N i k N jk är tillräckliga statistikorna där N ij = 3 N ijk, k= 3 N i k = N ijk, j= 3 N jk = N ijk. i= Hur ser enkla förflyttningar ut? 23 24

7 27 st av typen st av typen st av typen samt av typen Exempel: Logistisk regression. Svar ja ( eller nej (0 på fråga. Vi har kovariater z j Z d till individ j dvs z j = (z j, z 2j,, z dj. Logistisk regression : eβ z j P (Y j = z j = + e β z j P (Y j = 0 z j = + e β z j β R d är en d-dimensionell parameter. Total 0 enkla förflyttningar! Likelihood för Y, Y 2,, Y N blir T ex enkel linjär regression med β = (α, β som parameter kovariaterna z j = (, z j där t ex z j =antal skolår för person j, j =, 2,, N. Vi har då P (Y j = z j = eα+βz j + e α+βz j P (Y j = 0 z j = + e α+βz j. N e Y jβ z z j j= + e β z z j Låt n(z =(antal med z j = z n (z=(antal med z j = z Y j =. Om de möjliga z-värdena är a, a 2,, a M blir likelihooden dvs e β M i= n (a i a i Mi= ( + e a i β n(a i n(a, n(a 2,, n(a M M i= n (a i a i är tillräckliga statistikor som vi vill betinga m a p hålla konstanta vid alla förflyttningar

8 Svarar mot T (0, a i = (0; 0, 0,,, 0,, 0 T (, a i = (a i ; 0, 0,,, 0,, 0 där :an är i i:te positionen. Vi har H = {(0, a i, (, a i, i =, 2,, M} med g(x =(antal observationer = x N t = T (x i = g(xt (x = i= M = ( n (a i a i, n(a, n(a 2,, n(a M i= 29 Enkla förflyttningar? Antalen med kovariat= a i skall bevaras dessutom M i= n (a i a i. För enkel linjär regression med a i = (, i, i =, 2, 2 är H = {(0,, i, (,, i, i =, 2, 2} skall alltså n(i, i =, 2,, 2 2 n (i i= 2 n (ii i= bevaras. Med M = 2 finns 6968 st enkla förflyttningar för konkreta numeriska exemplet. 30 Gröbner-baser: För x H definierar vi en formell variabel u x låter g : H N representeras av monomet u g(x x som betecknas H g. Vi byter också u x mot x dvs H g = x g(x För 2 2-tabellen med H = {(,, (, 2, (2,, (2, 2} får vi monomet Vi studerar ändliga polynom i dessa monom med koefficienter i en kropp k betecknade k[h]. Ett T : H N d där T (x = (T (x, T (x 2,, T (x d representeras av där φ T : k[h] k[t, t 2,, t d ] x t T (x t T (x 2 2 t T (x d d φ T utvidgas genom φ T (xy = φ T (xφ T (y φ T (x + y = φ T (x + φ T (y u 3 (, u2 (,2 u7 (2, u4 (2,2 3 32

9 Det ger för g : H N φ T (H g = φ T ( x g(x = (φ T (x g(x = = (t T (x t T (x 2 2 t T (x d d g(x = = t T (x g(x t T (x 2g(x 2 t T (x dg(x d = = t x T (x g(x t x T (x 2g(x 2 t x T (x dg(x d. Om variabellistan Y = (t, t 2,, t d kan detta skrivas φ T (H g = Y g(xt (x Intressant med idealet J T = {p k[h] : φ T (p = 0} = ker φ T som är ett ideal genererat av binom (egentligen monom-skillnader. En förflyttning f i : H Z delas upp i positiva negativa ändringar dvs f i = f i + fi där f i ± : H N. Svarar mot binomet H f + i H f i. Man har f(xt (x = 0 omm H f + i H f i ligger i J T, dvs φ T (H f + i H f i = Sats: f, f 2,, f L är en Markov-bas omm H f + i H f i för i =, 2,, L genererar idealet J T = {p k[h] : φ T (p = 0}. Hilberts bas-sats: Varje ideal i en polynomring genereras av en ändlig mängd polynom. Gröbner-baser är ett speciellt val av baser som genererar idealet. Beror av ordningsrelation som valts på monom. Om idealet genereras av binom består Gröbnerbasen av binom. För I J ger detta att de enkla förflyttningarna av typen ( ( ger en irreducibel kedja på A(r, c Detta ger en algoritm (finns i Maple! som ger Gröbner-baserna som svarar mot Markovbasen, dvs de enkla förflyttningarna som gör kedjan ergodisk!! Dock: Markov-basen kan bli onödigt stor

Om Markov Chain Monte Carlo

Om Markov Chain Monte Carlo Om Markov Chain Monte Carlo Gunnar Englund Matematisk statistik KTH Ht 2001 1 Inledning Markov Chain Monte Carlo MCMC är en modern teknik att simulera komplicerade fördelningar som har fått stora tillämpningar

Läs mer

Lycka till!

Lycka till! VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B1555 DATORINTENSIVA METODER ONSDAGEN DEN 24 MAJ 2006 KL 14.00 19.00. Examinator: Gunnar Englund, tel. 7907416. Email: gunnare@math.kth.se

Läs mer

Exempel på tentamensuppgifter

Exempel på tentamensuppgifter STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs

Matematisk statistik KTH. Formel- och tabellsamling i Matematisk statistik, grundkurs Matematisk statistik KTH Formel- och tabellsamling i Matematisk statistik, grundkurs Varterminen 2005 . Kombinatorik ( ) n = k n! k!(n k)!. Tolkning: ( n k mängd med n element. 2. Stokastiska variabler

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Andragradspolynom Några vektorrum P 2

Andragradspolynom Några vektorrum P 2 Låt beteckna mängden av polynom av grad högst 2. Det betyder att p tillhör om p(x) = ax 2 + bx + c där a, b och c är reella tal. Några exempel: x 2 + 3x 7, 2x 2 3, 5x + π, 0 Man kan addera två polynom

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och

Läs mer

Övningsuppgift 2: Markov Chain Monte Carlo methods

Övningsuppgift 2: Markov Chain Monte Carlo methods Övningsuppgift 2: Markov Chain Monte Carlo methods Getting Started If you work on the NADA computer system: Before entering Matlab, copy the file efronmain.m to your own working directory: cp /info/fysikkurser/matstat/efronmain.m

Läs mer

Kapitel 10 Hypotesprövning

Kapitel 10 Hypotesprövning Sannolikhetslära och inferens II Kapitel 10 Hypotesprövning 1 Vad innebär hypotesprövning? Statistisk inferens kan utföras genom att ställa upp hypoteser angående en eller flera av populationens parametrar.

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration

Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

Markovkedjor. Patrik Zetterberg. 8 januari 2013

Markovkedjor. Patrik Zetterberg. 8 januari 2013 Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 14 13 december 2016 1 / 20 Idag χ 2 -metoden Test av given fördelning Homogenitetstest 2 / 20 Idag χ 2 -metoden Test av given fördelning

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 16 April 2015 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 3 Markovprocesser 13 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 3 Föreläsningsplan 1 Förra Föreläsningen 2 Markovprocesser

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

Lufttorkat trä Ugnstorkat trä

Lufttorkat trä Ugnstorkat trä Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 9 Johan Lindström 16 oktober 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F9 1/26 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

e x/1000 för x 0 0 annars

e x/1000 för x 0 0 annars VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN

Läs mer

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p) Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 4 April 2016 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption

Läs mer

Bayes i praktiken. exempel och reflektioner från en forskarutbildningskurs. Ralf Rittner, Arbets och Miljömedicin

Bayes i praktiken. exempel och reflektioner från en forskarutbildningskurs. Ralf Rittner, Arbets och Miljömedicin Bayes i praktiken exempel och reflektioner från en forskarutbildningskurs Ralf Rittner, Arbets och Miljömedicin 2012 11 07 Bayesian Data Analysis Practical Data Analysis with BUGS using R Bendix Carstensen

Läs mer

Markovprocesser SF1904

Markovprocesser SF1904 Markovprocesser SF1904 Johan Westerborn johawes@kth.se Föreläsning 2 Markovprocesser 30 Mars 2015 Johan Westerborn Markovprocesser (1) Föreläsning 2 Föreläsningsplan 1 Förra Föreläsningen 2 Absorption

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL

TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se

Läs mer

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013.

TAMS79 / TAMS65 - vt TAMS79 / TAMS65 - vt Formel- och tabellsamling i matematisk statistik. TAMS79 / TAMS65 - vt 2013. Formel- och tabellsamling i matematisk statistik c Martin Singull 2 Innehåll 3.3 Tukey s metod för parvisa jämförelser.................... 14 1 Sannolikhetslära 5 1.1 Några diskreta fördelningar.........................

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005 Teoretisk statistik Gunnar Englund Matematisk statistik KTH Vt 2005 Inledning Vi skall kortfattat behandla aspekter av teoretisk statistik där framför allt begreppet uttömmande (ibland kallad tillräcklig

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Bayesiansk statistik utan tårar

Bayesiansk statistik utan tårar Bayesiansk statistik utan tårar Lennart Robertson, SMHI Lånad titel A.F.M Smith A.E Gelfand American Statistician 1992 2 Innehåll Ett litet exempel Några enkla statistiska betraktelser Bayes teorem Bayesiansk

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

Bayesianska numeriska metoder II

Bayesianska numeriska metoder II Bayesianska numeriska metoder II T. Olofsson Gibb's sampling Vi har sett att en viktig teknik vid Bayesiansk inferens är s.k marginalisering vilket, för kontinuerliga variabler, innebär att vi integrerar

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13 Kasper K. S. Andersen 11 oktober 2018 s. 10, b, l. 8: 1 4 17.62 1 5 17.62 s. 25, Tabell 1.13, linje 1, kolonn 7: 11 111 s. 26, Figur 1.19 b, l.

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Föreläsning 15: Faktorförsök

Föreläsning 15: Faktorförsök Föreläsning 15: Faktorförsök Matematisk statistik Chalmers University of Technology Oktober 17, 2016 Ensidig variansanalys Vi vill studera om en faktor A påverkar en responsvariabel. Vi gör totalt N =

Läs mer

Oändligtdimensionella vektorrum

Oändligtdimensionella vektorrum Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 2 & 9 oktober 217 Johan Lindström - johanl@maths.lth.se FMSF7/MSB2 F11 1/32 Repetition Multipel linjär regression

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

Abstract Vi betraktar ringen R = Z 2 [x 1,...,x n ]/(x 2 1 x 1,...,x 2 n x n ). Vi visar att det finns en naturlig 1-1-motsvarighet mellan elementen

Abstract Vi betraktar ringen R = Z 2 [x 1,...,x n ]/(x 2 1 x 1,...,x 2 n x n ). Vi visar att det finns en naturlig 1-1-motsvarighet mellan elementen ËÂ ÄÎËÌ Æ Á Ê Ì Æ Á Å Ì Å ÌÁÃ Å Ì Å ÌÁËÃ ÁÆËÌÁÌÍÌÁÇÆ Æ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì Ú Ø ÓÒ Ý Ø Ñ Z 2 [x 1,...,x n ] Ú ÌÓ Ò Ö Ò ¾¼½ ¹ ÆÓ ½ Å Ì Å ÌÁËÃ ÁÆËÌÁÌÍÌÁÇÆ Æ ËÌÇ ÃÀÇÄÅË ÍÆÁÎ ÊËÁÌ Ì ½¼ ½ ËÌÇ ÃÀÇÄÅ Ú Ø ÓÒ

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1

P(X nk 1 = j k 1,..., X n0 = j 0 ) = j 1, X n0 = j 0 ) P(X n0 = j 0 ) = etc... P(X n0 = j 0 ) ... P(X n 1 Kaitel 1 Mer Markovkedjor Med att secificera en Markovkedja menar vi att man bestämmer övergångsmatrisen P. Detta säger ju allt om dynamiken för rocessen. Om vi dessutom vet hur kedjan startar, dvs startfördelningen

Läs mer

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13.

Tentamen i Sannolikhetslära och statistik, TNK069, , kl 8 13. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Tentamen i Sannolikhetslära och statistik, TNK69, 26--7, kl 8 3. Hjälpmedel är räknare med tömda minnen samt formelsamling utgiven

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna

Läs mer

Introduktion till Komplexa tal

Introduktion till Komplexa tal October 8, 2014 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5

Läs mer

Matematisk statistik TMS064/TMS063 Tentamen

Matematisk statistik TMS064/TMS063 Tentamen Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof

Läs mer

Euklides algoritm för polynom

Euklides algoritm för polynom Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 22. Euklides algoritm för polynom Ibland kan det vara intressant att bestämma den största gemensamma

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Bayesiansk statistik, 732g43, 7.5 hp

Bayesiansk statistik, 732g43, 7.5 hp Bayesiansk statistik, 732g43, 7.5 hp Moment 3 - Överanpassade modeller, regularisering, informationskriterium, modelljämförelse, Markov chain Monte Carlo (MCMC) Bertil Wegmann STIMA, IDA, Linköpings universitet

Läs mer

Föreläsning 7: Stokastiska vektorer

Föreläsning 7: Stokastiska vektorer Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

, för 0 < x < θ; Uppgift 2

, för 0 < x < θ; Uppgift 2 TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN FREDAG 1/4 2016 KL 08.00-12.00. Examinator och jourhavande lärare: Torkel Erhardsson, tel. 28 14 78. Tillåtna hjälpmedel: Formelsamling i matematisk statistik utgiven

Läs mer

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +

Läs mer

Thomas Önskog 28/

Thomas Önskog 28/ Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2 Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

3 Maximum Likelihoodestimering

3 Maximum Likelihoodestimering Lund Universitet med Lund Tekniska Högskola Finansiell Statistik Matematikcentrum, Matematisk Statistik VT 2006 Parameterestimation och linjär tidsserieanalys Denna laborationen ger en introduktion till

Läs mer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z

Läs mer