Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta
|
|
- Alexandra Johansson
- för 9 år sedan
- Visningar:
Transkript
1 Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta
2 Bakgrund Populations-baserad cancerpatientöverlevnad skattas med hjälp av data från det svenska cancer registret Registret är näst intill komplett för de flesta cancertyper Får ofta frågan, varför används konfidensintervall vid beskrivningen av historiska data
3 Överlevnad KML
4 Ett hett ämne. Läkartidningen publicerade år 2004 et inlägg av Henrik Dahl och Mikael Andersson där detta ämne diskuterades Cancerforskare, sluta redovisa konfidensintervall när det inte behövs!
5 Citat H.D M.A Med förvåning kan man i vetenskapliga tidskrifter läsa svenska artiklar som redovisar osäkerhet i form av konfidensintervall eller p-värden trots att det av metodbeskrivningen framgår att undersökningen är en populationsbaserad totalundersökning Det finns ingen statistisk osäkerhet till följd av urval och därmed inget behov av konfidensintervall Grundläggande för en undersökning är att veta vilka personer man vill uttala sig om, dvs att det finns en väldefinierad population
6 Huvudsakliga resonemang Konfidensintervall kan inte bidra till att möjliggöra slutsatser till t.ex. världspopulation (då behövs ett gruppurval alternativt ett slumpmässigt individurval) Konfidensintervall kan inte hjälpa oss att göra prognoser för framtiden (för detta behövs flera antaganden)
7 Slutsats Givet att man har alla relevanta fakta om de personer som ska beskrivas så kan man naturligtvis exakt beskriva hur något har varit Det finns ingen statistisk osäkerhet till följd av urval och därmed inget behov av konfidensintervall
8 Reaktioner från cancerforskare/ biostatistiker Paul Dickman, Juni Palmgren, Yudi Pawitan D/A beskriver en värld där det slumpmässiga urvalet är den enda källan till variation, och därmed skulle ett»urval«som omfattar samtliga individer inte innehålla slumpmässighet Vi hävdar att ett komplett urval kan ses som ett uttryck för en slumpmässig process inneboende slumpmässighet i den underliggande process som genererar t.ex bröstcancerfall
9 Om vi till exempel vill jämföra förekomsten av cancer mellan olika köns- och åldersgrupper finns det goda skäl att göra jämförelserna i termer av de underliggande genomsnitten i stället för de observerade antalen
10 Slutsats Det vi observerar innehåller både systematik och slump, och det är den underliggande systematiken som förmedlar det vetenskapliga budskapet, t ex skillnader i underliggande cancerfrekvens Konfidensintervallen hjälper oss att bedöma om det verkligen finns underliggande systematisk variation eller om den variation vi observerar kan avfärdas som innehållslöst»brus«
11 Det finns olika skäl till att mäta osäkerhet Tänk dig att du äger en kedja glasskiosker! Du vill veta det totala antalet glassar som såldes i de olika kioskerna förra säsongen Det vi vill uttrycka oss om är fixt och direkt mätbart Skattas genom att räkna antalet sålda glassar i varje kiosk några slumpmässigt valda dagar
12 Det finns olika skäl till att mäta osäkerhet Osäkerhet eftersom vi inte räknar alla glassar som sålts Om du kan räkna det totala antalet glassar som såldes i de olika kioskerna behövs ingen osäkerhet T.ex glassar i kiosk A och 9714 i kiosk B
13 Var glassförsäljningen mer framgångsrik i vissa kiosker än andra? Genom att bara titta på det exakta antalet sålda glassar för varje kiosk, kan vi se vilken kiosk som sålde mest Men, för att kunna dra slutsatser om en kiosk verkar ha ett mer fördelaktigt läge/ha bättre försäljare o.d. måste vi kunna bestämma om skillnaderna är större än den naturliga variationen av glassförsäljning
14 Vad menar vi med naturlig variation av glassförsäljning? Tänk er att vi kunde vrida tillbaka klockan till förra säsongens första dag Genom att upprepa försöket ännu en gång så skulle våra försäljningssiffror knappast sammanfalla exakt med det senaste försökets siffror Det finns således en underliggande process vilken leder till en naturlig variation i hur många glassar som säljs
15 Sammanfattningsivs Beroende vad vi är intresserade av för fråga så kan det av olika anledningar vara relevant att mäta osäkerhet i utfallet (även om vi har alla data tillgängliga) Slumpvariabel X ~ fördelning(θ), vi är intresserade av θ inte X
16 Glass = cancer Låt oss återgå till exemplet med cancer År 2002 inträffade 95 fall av tungcancer bland svenska män, medan det bland kvinnor bara förekom 70 fall. En jämförelse av de observerade värdena 95 och 70 har inget vetenskapligt innehåll. Däremot är det meningsfullt att fråga sig om den underliggande frekvensen av tungcancer är olika för män och kvinnor. Även om värdena 95 och 70 kommer från ett komplett urval är de intressanta först då de behandlas som ett utfall från en process som innehåller slump.
17 En mer komplicerad situation Så hur ska vi mäta osäkerhet i den process som leder till att personer drabbas av cancer om vi inte längre har tillgång till populationspaserade data? Ex SEER data i USA Borde vi korrigera våra konfidensintervall ytterligare eftersom vi nu dessutom endast har ett urval av totalbefolkningen?
18 Nej, det behövs inte Osäkerheten i processen beror självklart på storleken på det data material vi har (framför allt antalet fall som driver processen) För att skatta slumpprocessen spelar det dock ingen roll om du har en hel population eller endast ett slumpmässigt urval ur en population ¼ av USAs befolkning kan gissningsvis ge en bättre skattning av en väldefinerad process än vad hela sveriges befolkning skulle kunna göra
19 TACK!
Borde vi mäta statistisk osäkerhet vid totalundersökningar?
Borde vi mäta statistisk osäkerhet vid totalundersökningar? Paul Dickman Sandra Eloranta Therese Andersson Institutionen för Medicinsk Epidemiologi och Biostatistik (MEB) Karolinska, Stockholm Det korta
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Tidigare exempel. Några beteckningar. Stratifierat urval
Tidigare exempel F4 Urvalsmetoder: (kap 9.5) Ursprung: Linda Wänström Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler
Urvalsmetoder: Stratifierat urval (kap 9.5)
F4 Urvalsmetoder: Stratifierat urval (kap 9.5) Tidigare exempel Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
Introduktion till statistik för statsvetare
och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14
STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
F1 Introduktion. Statistisk undersökning. Vad är statistik? Vad är en statistisk undersökning? Klassificering efter mål eller syfte med undersökningen
F1 Introduktion. Statistisk undersökning. Leif Ruckman och Christina Andersson Avdelningen för Nationalekonomi och Statistik Karlstads universitet Vad är statistik? 1. Statistiska uppgifter. T ex som underlag
Antalet personer som skriver högskoleprovet minskar
STATISTISK ANALYS Nils Olsson Utredningsavdelningen 8-563 88 4 nils.olsson@hsv.se Mer information hittar du på www.hsv.se Nummer: 26/12 Antalet personer som skriver högskoleprovet minskar Antalet personer
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Hur man tolkar statistiska resultat
Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?
Statistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet
Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval
Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta
Novus Opinion för TV4 Kalla Fakta. Allmänheten om september David Ahlin Lina Lidell
Novus Opinion för TV4 Kalla Fakta Allmänheten om 9 11 29 september 2009 David Ahlin Lina Lidell Allmänheten om 9 11 Undersökningen har genomförts av Novus Opinion på uppdrag av TV4 Kalla Fakta Intervjuerna
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Analytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens
Analytisk statistik Tony Pansell, Leg optiker Docent, Universitetslektor Analytisk statistik Att dra slutsatser från den insamlade datan. Två metoder:. att generalisera från en mindre grupp mot en större
Kap 2: Några grundläggande begrepp
Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de
Analytisk statistik. Tony Pansell, optiker Universitetslektor
Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
BIOSTATISTIK att hantera slumpmässiga variationer BIO STATISTIK. data handlar om levande saker
BIOSTATISTIK att hantera slumpmässiga variationer BIO data handlar om levande saker STATISTIK beskriva slumpmässiga variationer modellera slumpmässiga variationer dra slutsatser från observerade data förutsäga
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00
Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,
Kvantitativa metoder en introduktion. Mikael Nygård, Åbo Akademi, vt 2018
Kvantitativa metoder en introduktion Mikael Nygård, Åbo Akademi, vt 2018 Vad är kvantitativ metod? Kvantitativa (siffermässiga) analyser av verkligheten: beskrivning och förklaringar av fenomen i fokus!
Folkhälsokalkylator. Bakgrund
Folkhälsokalkylator Bakgrund Befolkningens levnadsvanor är viktiga påverkbara faktorer för många folksjukdomar och har en särskild betydelse för den framtida ohälsan. För folksjukdomar som cancer, hjärtkärlsjukdomar,
Föreläsning 1: Introduktion. Vad är statistik?
Föreläsning 1: Introduktion Vad är statistik? 1 Statistiska undersökningar Ett gemensamt syfte för alla undersökningar är att få ökad kunskap om ett visst problemområde Det kanske viktigaste sättet att
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Allmänhetens attityder till studieförbunden 2013
Allmänhetens attityder till studieförbunden 2013 2013-03-26 Johan Orbe Caroline Theorell Om undersökningen Bakgrund och syfte: Sifo har på uppdrag av Folkbildningsförbundet (FBF) för fjärde gången genomfört
Fjärrvärme 2011 E.ON. Jon Andersson, Projektnummer:
Fjärrvärme 2011 E.ON Jon Andersson, 2011-05-20 Projektnummer: 1522498 1 Om undersökningen Ämne: Fjärrvärme Projektnummer: 1522498 Uppdragsgivare: E.ON Tid för fältarbete: 16-19 maj 2011 Antal genomförda
Three Monkeys Trading. Tärningar och risk-reward
Three Monkeys Trading Tärningar och risk-reward I en bok vid namn A random walk down Wall Street tar Burton Malkiel upp det omtalade exemplet på hur en apa som kastar pil på en tavla genererar lika bra
Om bloggar. InternetExplorers Delrapport 3. Håkan Selg Nationellt IT-användarcentrum NITA. Redovisning av enkätsvar Juni 2008
Delrapport 3 Om bloggar Håkan Selg Redovisning av enkätsvar Juni 2008 Internetanvändare i svenska universitet och högskolor 2007 En framsyn av morgondagens Internetanvändning Ett projekt finansierat av
Något om sannolikheter, slumpvariabler och slumpmässiga urval
LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Föreläsning 5: Att generalisera
Föreläsning 5: Att generalisera Pär Nyman par.nyman@statsvet.uu.se 4 september 2015-1 - Generaliseringar Generalisering innebär att vi drar slutsatser om någonting annat än det vi har studerat. Vi använder
Föreläsning 5: Att generalisera
Föreläsning 5: Att generalisera Pär Nyman par.nyman@statsvet.uu.se 25 januari 2016-1 - Generaliseringar Generalisering innebär att vi drar slutsatser om någonting annat än det vi har studerat. Vi använder
Föreläsning G60 Statistiska metoder
Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar
Christer Nordh/ Förvaltningstjänster för premiepensionen Undersökning bland allmänheten 15 och äldre februari 2013
Christer Nordh/2013-02-22 Förvaltningstjänster för premiepensionen Undersökning bland allmänheten 15 och äldre 11-14 februari 2013 Undersökning om förvaltningstjänster Om undersökningen Syfte: Målgrupp:
Handisam. Beräkningsunderlag för undersökningspanel
Beräkningsunderlag för undersökningspanel Kund Mottagare Ann Dahlberg Författare Johan Bring Granskare Gösta Forsman STATISTICON AB Östra Ågatan 31 753 22 UPPSALA Wallingatan 38 111 24 STOCKHOLM vxl: 08-402
EXAMINATION KVANTITATIV METOD
ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-09 (090209) Examinationen består av 8 frågor, några med tillhörande följdfrågor. Frågorna 4-7 är knutna till
Statistikens betydelse och nytta för samhället
Statistikens betydelse och nytta för samhället SCB i Varför är SCB i Almedalen? Utveckla, framställa och sprida statlig statistik Förse våra användare med statistik som underlag för beslutsfattande, debatt
Börja med resultatet om du vill designa en lyckad klinisk studie
PI 15 Design klinisk studie Sidan 1 av 5 Pharma Industry 1/2015 Börja med resultatet om du vill designa en lyckad klinisk studie Design av kliniska studier är en tvärvetenskaplig disciplin där det behövs
1(6) Datum 2011-10-03. Anna Björkesjö Klara Jakobsson. Nedskräpning i stadens centrala gatumiljö. - Nyköping 2011. Metod- och kvalitetsrapport
Datum 2011-10-03 1(6) Anna Björkesjö Klara Jakobsson Nedskräpning i stadens centrala gatumiljö - Nyköping 2011 Metod- och kvalitetsrapport 2(6) Metoddokumentation Målpopulation Målpopulationen för en skräpmätning
Attityder kring SBU:s arbete. Beskrivning av undersökningens upplägg och genomförande samt resultatredovisning
Attityder kring SBU:s arbete Beskrivning av undersökningens upplägg och genomförande samt resultatredovisning Hösten 2010 Innehållsförteckning INNEHÅLLSFÖRTECKNING ANALYSRAPPORT Sammanfattning... 1 Inledning...
Modellprognos för konjunkturlönestatistikens definitiva utfall för oktober 2017 september 2018
Modellprognos för konjunkturlönestatistikens definitiva utfall för oktober 2017 september 2018 Utfall helåret 2017 Helåret 2017 var löneökningstakten i ekonomin som helhet 2,3 procent, enligt preliminära
Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap )
F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Urval Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta inte möjlig För dyrt Tar
Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering.
Uppgift 1 (14p) I en hockeymatch mellan lag A och lag B leder lag A med 4-3 när det är en kvart kvar av ordinarie matchtid. En oddssättare på ett spelbolag behöver bestämma sannolikheten för de tre matchutfallen
Provmoment: Ladokkod: Tentamen ges för: Tentamen VVT012 SSK05 VHB. TentamensKod: Tentamensdatum: Tid:
Vetenskaplig teori och metod Provmoment: Ladokkod: Tentamen ges för: Tentamen VVT012 SSK05 VHB 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2012-02-17 Tid: 09-11 09.00-11.00 Hjälpmedel: Inga hjälpmedel
Kvantitativa metoder del 2. Kandidatprogrammet i folkhälsovetenskap, HT -11
Kvantitativa metoder del 2 Kandidatprogrammet i folkhälsovetenskap, HT -11 Disposition Kvantitativa metoder, enkätmetodik, epidemiologi, biostatistik Syfte/målformulering Undersökningsplan Urvalsram/urval
LINKÖPINGS UNIVERSITET TENTA 92MA31, 92MA37, 93MA31, 93MA37 / STN 2 9GMA05 / STN 1
LINKÖPINGS UNIVERSITET Matematiska institutionen TENTA 9MA31, 9MA37, 93MA31, 93MA37 / STN 9GMA5 / STN 1 1 juni 16, klockan 8.-1. Jour: Jörg-Uwe Löbus Tel: 79-687) Tillåtna hjälpmedel är en räknare, formelsamling
Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik
Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten
LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
TENTAMEN MÅNDAGEN DEN 22 OKTOBER 2012 KL a) Bestäm P(ingen av händelserna inträffar). b) Bestäm P(exakt två av händelserna inträffar).
Tekniska högskolan i Linköping Matematiska institutionen Matematisk statistik,jan Olheim MATEMATIK:Statistik 9MA31 STN, 9MA37 STN TENTAMEN MÅNDAGEN DEN OKTOBER 01 KL 14.00-18.00. Hjälpmedel:Formler och
Naturskyddsföreningen Attityder till flygskatt
Naturskyddsföreningen Attityder till flygskatt Sifos Telefonbuss vecka 5, 2016 Alice Danielsson Johan Orbe 15587 2016-11-1 Kommentarer angående inställning till att låta flyget betala sin klimatpåverkan
Hypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):
EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer
b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)
Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna
Är icke-sannolikhetsurval aldrig representativa?
Surveyföreningens webbpanelseminarium 2011-02-03 Är icke-sannolikhetsurval aldrig representativa? Jan Wretman Webbpanelkommittén 1 Det kommer att handla om: Begreppet representativitet. Bedömning av skattningars
Modellprognos för konjunkturlönestatistikens definitiva utfall december 2016-november 2017
Modellprognos för konjunkturlönestatistikens definitiva utfall december 2016-november 2017 Utfall helåret 2016 Helåret 2016 var den definitiva löneökningstakten i ekonomin totalt sett 2,4 procent, enligt
West Pride. Författare: Frida Tipple [SOM-rapport nr 2019:36]
West Pride Författare: Frida Tipple [SOM-rapport nr 2019:36] Innehållsförteckning Introduktion... 1 Tabell 2 Har du under de senaste månaderna 12 månaderna besökt Euro Pride/ West Pride, 2018... 3 Tabell
Säsongrensning i tidsserier.
Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 14:E AUGUSTI 2017 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:
Modellprognos för konjunkturlönestatistikens definitiva utfall januari 2018 december 2018
Modellprognos för konjunkturlönestatistikens definitiva utfall januari 2018 december 2018 Utfall helåret 2017 Helåret 2017 var löneökningstakten i ekonomin som helhet 2,3 procent, enligt definitiva siffror
Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland
Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera
F5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab
Repetition: Gnuer i (o)skyddade områden χ 2 -metoder, med koppling till binomialfördelning och genetik. Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 Endast 2 av de 13 observationerna
Modellprognos för konjunkturlönestatistikens definitiva utfall april 2017-mars 2018
Modellprognos för konjunkturlönestatistikens definitiva utfall april 2017-mars 2018 Utfall helåret 2017 Helåret 2017 var den löneökningstakten i ekonomin totalt sett 2,4 procent, enligt preliminära siffror.
Diskussionsproblem för Statistik för ingenjörer
Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Lärare 4. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
1 Lärare 4 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)
1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna
LMA201/LMA521: Faktorförsök
Föreläsning 1 Innehåll Försöksplanering Faktorförsök med två nivåer Skattning av eekterna. Diagram för huvudeekter Diagram för samspelseekter Paretodiagram Den här veckan kommer tillägnas faktorförsök.
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Studiedesign och effektmått
Studiedesign och effektmått Kohortstudier och randomiserade studier Disposition Mått på association Studiedesign Randomiserade kliniska/kontrollerade prövningar Kohortstudier Mått på sjukdomsförekomst
Undersökningsplanering Datakällor: officiell statistik, olika databaser, registerstatistik
F2 Undersökningsplanering Datakällor: officiell statistik, olika databaser, registerstatistik Planeringen av en statistisk undersökning Tre huvudfrågor: Vem ska undersökas? Vad ska undersökas? Hur ska
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp
UMEÅ UNIVERSITET Tentamen 2016-08-24 Sid 1 TENTAMEN I MATEMATISK STATISTIK Statistik för lärare 7,5 hp Skrivtid: 16-22 Tillåtna hjälpmedel: Miniräknare. Formelblad och tabeller bifogas till tentamen. Studenterna
EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell)
EPIDEMIOLOGI Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) Läran om utbredningen av och orsakerna till hälsorelaterade tillstånd eller förhållanden i specifika populationer och tillämpningen
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
BEFOLKNINGSPROGNOS. 2015 2024 för Sollentuna kommun och dess kommundelar. www.sollentuna.se
BEFOLKNINGSPROGNOS 2015 2024 för Sollentuna kommun och dess kommundelar www.sollentuna.se Förord På uppdrag av Sollentuna kommun har Sweco Strategy beräknat en befolkningsprognos för perioden 2015-2024.
Lärare 2. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 2 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Befolkningsprognos
Rapport Befolkningsprognos 2016-2025 2016-06-21 Ulricehamns kommun Kanslifunktion Moa Fredriksson Utredare Befolkningsprognos 2016-2025 2 Innehållsförteckning Inledning... 4 Metod och antaganden... 5 Inflyttning
Erica Schytt. Barnmorska Föreståndare för Centrum för klinisk forskning Dalarna Docent Karolinska Institutet Professor Høgskulen på Vestlandet
Erica Schytt Barnmorska Föreståndare för Centrum för klinisk forskning Dalarna Docent Karolinska Institutet Professor Høgskulen på Vestlandet Tänk er en enkätstudie I den bästa av världar. Alla i hela
Höftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Version Ett ord på vägen, det sunda förnuftet är jätteviktigt, glöm inte det. Det är ingen magi, det är inget trolleri.
Novus Policyråd till redaktioner Policyråd för redaktioner kring nyhetsvärdering av undersökningar Denna guide är fritt fram att använda. Fritt fram att utgå från som egen stomme. Men ta inte bort dessa
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10
Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten
Modellprognos för konjunkturlönestatistikens definitiva utfall för mars 2016-februari 2017
Modellprognos för konjunkturlönestatistikens definitiva utfall för mars 2016-februari 2017 Medlingsinstitutets modell för den definitiva löneökningstakten i ekonomin som helhet visar på en ökning på mellan
Analys av proportioner
Analys av proportioner Innehåll Proportion konfidensintervall Jämförelse av två proportioner Två oberoende stickprov Relativ risk Parvisa observationer Jämförelse av tre eller flera proportioner x² (chi-två)
Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Föreläsning G60 Statistiska metoder
Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel