Tidigare exempel. Några beteckningar. Stratifierat urval
|
|
- Cecilia Lindberg
- för 8 år sedan
- Visningar:
Transkript
1 Tidigare exempel F4 Urvalsmetoder: (kap 9.5) Ursprung: Linda Wänström Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler till lön är kön, ålder, anställningsform, antal år i anställning osv. OSU kan pga slumpen ge ett urval med för många män exempelvis medellönen kan då överskattas Några beteckningar Populationen delas in i L st. strata men N i element, i = 1,, L Från varje stratum drar man ett slumpmässigt urval av n i element Alla strata blir representerade i stickprovet Inklusionssannolikhet: n i /N i 1
2 Skattning av medelvärdet i med OSU i varje stratum: Skattning av totalvärdet i med OSU i varje stratum: Exemplet forts. Vi vet att kvinnor och män har olika lön Det finns ett samband mellan kön och lön Dela in i två grupper, kvinnor och män, och dra ett OSU av personer från varje grupp (=från varje stratum) Kön är då en stratifieringsvariabel Stratum Kvinnor Män Totalt N i N=500 Exempel n i?? n=35 Vi har en population med 200 kvinnor och 300 män och vill dra ett urval av n = 35 personer Hur ska vi fördela n=35 mellan grupperna, dvs hur många kvinnor ska väljas och hur många män? Hur ska urvalet allokeras? Vi kan exempelvis göra ett proportionellt stratifierat urval (PSU) 2
3 Proportionellt stratifierat urval (PSU) Fördela urvalet i samma proportioner som strata förhåller sig till hela 200 n = 35 = 35 0, = n2 = 35 = 35 0,6 = Vi kan välja 14 kvinnor och 21 män genom OSU från varje stratum Generellt väljer vi ni element från stratum i enligt följande: Ni ni = n N Stratum Skatta medellön, µ N i n i x i s i Kvinnor Män Väg ihop skattningarna från respektive stratum Variansen för skattningen blir: Skattning av andel (proportion) i med OSU utan återläggning från varje stratum Vi kan få högre precision (lägre varians) i skattningen vid stratifierat urval jämfört med OSU-urval När får vi det? När vi delar in i strata (grupper) som är homogena med avseende på undersökningsvariabeln Om grupperna är lika (homogena) inom sig, så får vi lägre varians inom varje grupp (stratum) Målet när vi delar in i strata är att de ska bli så lika inom strata som möjligt och så olika mellan strata (heterogena) som möjligt med avseende på undersökningsvariabeln 3
4 Att välja antal strata och stratumgränser Hur ska vi välja antal strata samt stratumgränser så strata blir så homogena som möjligt? Ju fler strata desto mindre precisionsvinst Stratumgränser? Om undersökningsvariabeln är lön och vi vet att det finns relativt tydliga grupperingar med höga, mellan och låga löner kan vi försöka bilda strata utifrån dessa grupper. Problem? Problem? Vi vill ha homogena strata med avseende på undersökningsvariabeln ex lön och vill dela in så att vi får ett strata med låg lön och ett med hög lön alternativt ett med låg, ett med mellan och ett med hög lön. Vi har inte tillgång till värden på undersökningsvariabeln lön! Vi måste ta hjälp av någon stratifieringsvariabel (hjälpvariabel) som vi tror har ett SAMBAND med undersökningsvariabeln Vi måste ha en ram sorterad efter stratifieringsvariabeln Om vi tror att kön har ett samband med lön kan vi dela in i två strata: män och kvinnor. Om vi tror att ålder har ett samband med lön kan vi försöka hitta homogena strata med avseende på ålder (stratifieringsvariabeln) och om det finns ett samband mellan ålder och lön så hoppas vi att strata även blir homogena med avseende på lön (undersökningsvariabeln) Planering av ett stratifierat urval Vilken stratifieringsvariabel ska väljas? Hur många strata? Var ska stratumgränserna dras? Hur ska allokeringen göras? Hur ska stickprovet fördelas? Allokering Vi drar ett OSU utan återläggning ur varje stratum hur ska vi välja hur många element som ska dras från varje stratum? Proportionell allokering Proportionellt stratifierat urval (PSU) Välj proportionellt sett lika många element ur varje stratum som stratumet utgör av Ex om stratum 1 utgör 30% av välj 30% av stickprovsstorleken från stratum 1 Se till att alltid dra minst 2 element från varje stratum! Om ett stratum är litet kan man istället för ett PSU välja att göra en totalundersökning i detta stratum 4
5 Allokering Vi kan istället för PSU välja att dra lika många element från varje stratum Exempelvis då vi är intresserade av att göra gruppjämförelser såsom att jämföra mäns och kvinnors medellöner Optimal allokering (Neyman allokering) Variansen för skattningen minimeras Dra fler element från stratum med större varians och färre från stratum med mindre varians n i fås från följande: Ram Slumptal 1. Fredrik Johan Ann-Britt Gunnar Mona Peter Daniel 8. Per Katarina Säg att vi vill dra ett OSU av n 10. Carl 1 = 9 kvinnor från N 1 = 20 kvinnor och n 2 = 21 män av N 2 = 50 män. 70. Anders Uppgift Antag att vi har en ram med N=20 anställda på statistiska institutionen. Vi vill ha ett urval med n=4 anställda. Dra ett stratifierat urval (efter kön) från följande ram med hjälp av följande slumptal. Skatta medellängden i samt beräkna ett 95%igt k.i. runt skattningen. Ram Längd 1. Karin Håkan Daniel Pär Hans Gösta Raul Johan Anita Linda Jessica Gebre Ellinor Nicklas Lars Mikael Peter Mattias Birgitta Elisabet 158 Slumptal
Urvalsmetoder: Stratifierat urval (kap 9.5)
F4 Urvalsmetoder: Stratifierat urval (kap 9.5) Tidigare exempel Vi undersökte tidigare medellönen i ett företag med N = 500 anställda. Vi fick ett konfidensintervall: Vi vet att några förklaringsvariabler
Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval
Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta
F10. Ytterligare urvalsmetoder och skattningsmetoder (kap 9.8, 9.9) Flerstegsurval
F10 Ytterligare urvalsmetoder och skattningsmetoder (kap 9.8, 9.9) Flerstegsurval Anta att man vill göra ett urval som täcker ett stort geografiskt område vill använda besöksintervju som insamlingsmetod
Ytterligare urvalsmetoder och skattningsmetoder
F6 Ytterligare urvalsmetoder och skattningsmetoder Flerstegsurval Anta att man vill göra ett urval som täcker ett stort geografiskt område vill använda besöksintervju som insamlingsmetod Praktiskt omöjligt
Systematiskt urval, gruppurval, val mellan metoderna (kap , 9.10)
F5 Systematiskt urval, gruppurval, val mellan metoderna (kap 9.6-9.7, 9.10) Systematiskt urval Antag att vi vill undersöka medellönen i ett företag på N=1000 anställda och vill dra ett urval på n=100.
Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap )
F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Urval Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta inte möjlig För dyrt Tar
Urval. Varje element i populationen skall ha en känd sannolikhet (chans) som är större än 0 att bli utvald
F11 Repetition Undersökningar Olika slag av undersökningar Syftet Beskrivande Förklarande/utredande Framåtblickande Undersökningsplanering Vem ska undersökas? Målpopulation Rampopulation Vad ska undersökas?
Tillämpad statistik (A5), HT15 Föreläsning 5: Stratifierat urval
Tillämpad statistik (A5), HT15 Föreläsning 5: Stratifierat Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-06 En stratifierad sundersökning: NTU2014 Från NTU2014 Från NTU2014 Dellens
Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin
Föreläsning 4 732G19 Utredningskunskap I Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Dagens föreläsning Systematiskt urval Väntevärdesriktiga skattningar Jämförelse med OSU Stratifierat
Introduktion till statistik för statsvetare
och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag
Börja med att ladda ner Kommuner2007.xls från kursens hemsida.
STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Obligatorisk examinationsuppgift SDA II, 3 högskolepoäng. Olika urvalsmetoder punkt- och intervallskattningar Börja med att
Extra övningssamling i undersökningsmetodik. till kursen Regressionsanalys och undersökningsmetodik, 15 hp
Extra övningssamling i undersökningsmetodik HT10 till kursen Regressionsanalys och undersökningsmetodik, 15 hp Författad av Karin Dahmström 1. Utgå från en population bestående av 5 personer med följande
Föreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder
Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga smetoder Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-11 Några övriga smetoder OSU-UÅ (med eller utan stratifiering) förutsätter
Exempel i stickprovsteori
Exempel i stickprovsteori p. 1/26 Exempel i stickprovsteori Göran Arnoldsson Umeå universitet Exempel i stickprovsteori p. 2/26 1. Audit sampling En bank vill göra en snabb uppskattning av den totala behållningen
Vi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Laboration 3: Urval och skattningar
S0004M Statistik 1 Undersökningsmetodik. Laboration 3: Urval och skattningar Denna laboration handlar om slumpmässiga urval. Dessa urval ska användas för att uppskatta egenskaper hos en population. Statistiska
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden
Laboration 3: Urval och skattningar
S0004M Statistik 1 Undersökningsmetodik. Laboration 3: Urval och skattningar Denna laboration handlar om slumpmässiga urval. Dessa urval ska användas för att uppskatta egenskaper hos en population. Statistiska
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Tentamen i Tillämpad statistisk analys, GN, 7.5 hp. 23 maj 2013 kl. 9 14
STOCKHOLMS UNIVERSITET MT4003 MATEMATISKA INSTITUTIONEN LÖSNINGAR Avd. Matematisk statistik 3 maj 013 Lösningar Tentamen i Tillämpad statistisk analys, GN, 7.5 hp 3 maj 013 kl. 9 14 Uppgift 1 a Eftersom
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Ekonomisk statistik Economic statistics. Masterkurs Daniel Thorburn Höstterminen 2010 Stockholms Universitet
Ekonomisk statistik Economic statistics Masterkurs Daniel Thorburn Höstterminen 2010 Stockholms Universitet 1 Sampling 1.1 Allmänt om urval Daniel Thorburn Ekonomisk statistik Höstterminen 2010 Sampling
Föreläsning 1: Introduktion. Vad är statistik?
Föreläsning 1: Introduktion Vad är statistik? 1 Statistiska undersökningar Ett gemensamt syfte för alla undersökningar är att få ökad kunskap om ett visst problemområde Det kanske viktigaste sättet att
Kvantitativa metoder en introduktion. Mikael Nygård, Åbo Akademi, vt 2018
Kvantitativa metoder en introduktion Mikael Nygård, Åbo Akademi, vt 2018 Vad är kvantitativ metod? Kvantitativa (siffermässiga) analyser av verkligheten: beskrivning och förklaringar av fenomen i fokus!
Föreläsning G60 Statistiska metoder
Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
När gör hjälpinformation mest nytta - vid urval eller estimering?
När gör hjälpinformation mest nytta - vid urval eller estimering? Henrik Brunström Kim Eriksson Student Vt 2011 Kandidatuppsats, 15 hp Statistik C, 30 hp Handledare: Anton Grafström Sammanfattning Hjälpinformation
Lager av barrsågtimmer 2010 JO0305
Enheten för Skogspolicy och Analys 2011-01-26 1(7) Lager av barrsågtimmer 2010 JO0305 I denna beskrivning redovisas först allmänna och legala uppgifter om undersökningen samt dess syfte och historik. Därefter
Slumpmässiga urval med Minitab LWn /
Statistiska institutionen Slumpmässiga urval med Minitab LWn / 2006-03-01 1 OSU, obundet slumpmässigt urval I Minitab har vi lagt upp ett register med våra tjugo bästa kompisar. Nu ska vi göra ett OSU
TMS136. Föreläsning 10
TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis
1989, Statistiska centralbyrån ISSN Printed in Sweden Garnisonstryckeriet, Stockholm 1989
Från trycket April 1989 Producent Statistiska centralbyrån, Utvecklingsavdelningen Ansvarig utgivare Staffan Wahlström Förfrågningar Lennart Nordberg, tel. 019-17 60 12 1989, Statistiska centralbyrån ISSN
STATISTIKENS FRAMSTÄLLNING
Statistikens framställning version 1 1 (12) STATISTIKENS FRAMSTÄLLNING Energianvändning inom fiskesektorn Ämnesområde Energi Statistikområde Tillförsel och användning av energi Produktkod EN0115 Referenstid
Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov
Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och
Hushållens icke-vinstdrivande organisationer 2005
STATISTISKA CENTRALBYRÅN 1(8) Hushållens icke-vinstdrivande organisationer 2005 1 Inledning Emma-projektet, eller paraplyprojektet för förbättring av den ekonomiska statistiken, omfattar i huvudsak förbättringsförslagen
Lager av barrsågtimmer 2001
Lager av barrsågtimmer 2001 JO0305 A. Allmänna uppgifter A.1 Ämnesområde Jord- och skogsbruk, fiske A.2 Statistikområde Produktion i skogsbruket A.3 Statistikprodukten ingår i Sveriges officiella statistik
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
Population. Antal tänder. Urval
Population ID Antal tänder 1 12 2 14 3 15 4 28 5 16 6 11 7 24 8 19 9 23 10 21 Urval ID Antal tänder 2 14 4 28 8 19 10 21 Urvalsmetoder Population Urval Urval Urvalsmetoder Definitioner: Populationen består
STATISTISK POWER OCH STICKPROVSDIMENSIONERING
STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd
F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Inlämningsuppgift 1: Beslutsunderlag, 1,5hp
Del A Inlämningsuppgift 1: Beslutsunderlag, 1,5hp Företagsledningen undrar om annonsering, extraerbjudande, etc. påverkar försäljningen hos deras återförsäljare, och har bett er ta fram beskrivande statistik
Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta
Konfidensintervall i populationsbaserade studier varför behövs de? Therese Andersson Sandra Eloranta Bakgrund Populations-baserad cancerpatientöverlevnad skattas med hjälp av data från det svenska cancer
Bortfall i longitudinella undersökningar
Bortfall i longitudinella Silke Burestam, doktorand Statistiska institutionen Stockholms Universitet Projekt: Moderna statistiska undersökningsmetoder ett nätverkn Finansieras av Hemsida: Riksbankens http://www.statistics.su.se/
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL
TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-
Teknisk beskrivning av undersökning av deltagare i Jobb- och utvecklingsgarantins Fas3. Maj-juni 2011.
1 (18) Statistikenheten 20110808 Teknisk beskrivning av undersökning av deltagare i Jobb- och utvecklingsgarantins Fas3. Maj-juni 2011. Inledning Under våren/försommaren 2011 har Arbetsförmedlingens Statistikenhet,
Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.
UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB
Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Konsekvenser av Bortfall Introduktion Illustration av hur bortfall påverkar resultaten i en statistisk
3.1 Urval ramar, företagsregister. Daniel Thorburn Ekonomisk statistik Höstterminen 2009
3.1 Urval ramar, företagsregister Daniel Thorburn Ekonomisk statistik Höstterminen 2009 Företagsregister - Centrala Företagsregistret 2007 fanns det 945801 företag med 1021083 arbetsställen. 538 101 var
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
¼ = 1 k = n N. = n. ¼ = 1 k. N n (n 1) = N n ^p^q. n (n 1) = N n n^p (1 ^p)
I 1 i: Sannolikheten att ett visst element i kommer med i stickprovet. ii: iii: ¼ n, där - populationsstorlek, n - stickprovsstorlek iv: ¼ 1 k n ¼ n, där - populationsstorlek i stratum l, n - stickprovsstorlek
Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Föreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Tabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer. Thommy Perlinger
Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Thommy erlinger Innehåll 1 Beskrivande statistik 3 1.1 Medelvärdeochstandardavvikelse... 3 1.2 Chebyshevsregel... 3 1.3 Empiriskaregeln(normalfördelningsregeln)...
Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ
Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll
Metodeffekter i urvalsundersökningar där deltagarna får välja mellan pappers- och webbenkät
Metodeffekter i urvalsundersökningar där deltagarna får välja mellan pappers- och webbenkät Martina Aksberg Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Föreläsning G70 Statistik A
Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
F22, Icke-parametriska metoder.
Icke-parametriska metoder F22, Icke-parametriska metoder. Christian Tallberg Statistiska institutionen Stockholms universitet Tidigare när vi utfört inferens, dvs utifrån stickprov gjort konfidensintervall
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
Repetitionsföreläsning
Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson
Biostatistik: Begrepp & verktyg. Kvantitativa Metoder II: teori och tillämpning.
Biostatistik: Begrepp & verktyg Kvantitativa Metoder II: teori och tillämpning Lovisa.Syden@ki.se BIOSTATISTIK att hantera slumpmässiga variationer! BIO datat handlar om levande saker STATISTIK beskriva
Monte Carlo-simulering. EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin
Monte Carlo-simulering EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin 1 Kursmål Tillämpa Monte Carlo-simulering för att beräkna förväntad driftkostnad och risk för effektbrist på en elmarknad,
Modellprognos för konjunkturlönestatistikens definitiva utfall för mars 2016-februari 2017
Modellprognos för konjunkturlönestatistikens definitiva utfall för mars 2016-februari 2017 Medlingsinstitutets modell för den definitiva löneökningstakten i ekonomin som helhet visar på en ökning på mellan
Urvalsökningar. Precisionen i en skattning är normalt proportionell mot 1/ n där n är urvalsstorleken
Urvalsökningar Precisionen i en skattning är normalt proportionell mot 1/ n där n är urvalsstorleken En urvalsökning från 21000 till 29500 individer borde då resultera i förbättring med ca 15% Eller? 1
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Modellprognos för konjunkturlönestatistikens definitiva utfall december 2016-november 2017
Modellprognos för konjunkturlönestatistikens definitiva utfall december 2016-november 2017 Utfall helåret 2016 Helåret 2016 var den definitiva löneökningstakten i ekonomin totalt sett 2,4 procent, enligt
TMS136. Föreläsning 13
TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra
TENTAMEN I STATISTIKENS GRUNDER
STOCKHOLMS UNIVERSITET Statistiska institutionen Ellinor Fackle-Fornius TENTAMEN I STATISTIKENS GRUNDER 2 2009-10-29 Skrivtid: 15.00-20.00 Godkända hjälpmedel: Miniräknare, språklexikon Tentamen består
Kommun och landsting 2016
SVENSKT KVALITETSINDEX Kommun och landsting 2016 SKL 1 Vid frågor eller för ytterligare information: Johan Parmler 0731-51 75 98 Johan.Parmler@kvalitetsindex.se SVENSKT KVALITETSINDEX 2 Förord Svenskt
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
FACIT (korrekta svar i röd fetstil)
v. 2013-01-14 Statistik, 3hp PROTOKOLL FACIT (korrekta svar i röd fetstil) Datorlaboration 2 Konfidensintervall & hypotesprövning Syftet med denna laboration är att ni med hjälp av MS Excel ska fortsätta
F1 Introduktion. Statistisk undersökning. Vad är statistik? Vad är en statistisk undersökning? Klassificering efter mål eller syfte med undersökningen
F1 Introduktion. Statistisk undersökning. Leif Ruckman och Christina Andersson Avdelningen för Nationalekonomi och Statistik Karlstads universitet Vad är statistik? 1. Statistiska uppgifter. T ex som underlag
Statistikens grunder. Mattias Nilsson Benfatto, Ph.D
Statistikens grunder Mattias Nilsson Benfatto, Ph.D Vad är statistik? Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information.
Kalibreringsrapport. Utländska doktorander
Kalibreringsrapport Utlänska oktoraner Inlening I en urvalsunersökning är allti skattningarna beäftae me urvalsfel beroene på att enast en elmäng (urval) av populationen stueras. Ett annat fel uppkommer
Modellprognos för konjunkturlönestatistikens definitiva utfall januari 2018 december 2018
Modellprognos för konjunkturlönestatistikens definitiva utfall januari 2018 december 2018 Utfall helåret 2017 Helåret 2017 var löneökningstakten i ekonomin som helhet 2,3 procent, enligt definitiva siffror
Modellprognos för konjunkturlönestatistikens definitiva utfall för oktober 2017 september 2018
Modellprognos för konjunkturlönestatistikens definitiva utfall för oktober 2017 september 2018 Utfall helåret 2017 Helåret 2017 var löneökningstakten i ekonomin som helhet 2,3 procent, enligt preliminära
Modellprognos för konjunkturlönestatistikens definitiva utfall april 2017-mars 2018
Modellprognos för konjunkturlönestatistikens definitiva utfall april 2017-mars 2018 Utfall helåret 2017 Helåret 2017 var den löneökningstakten i ekonomin totalt sett 2,4 procent, enligt preliminära siffror.
KVANTITATIV FORSKNING
KVANTITATIV FORSKNING Teorier innehåller begrepp som byggstenar. Ofta är kvantitativa forskare intresserade av att mäta företeelser i verkligheten och att koppla denna kvantitativa information till begrepp
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
FÖRELÄSNING 7:
FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
STATISTIKENS FRAMSTÄLLNING
Statistikens framställning version 1 1 (8) STATISTIKENS FRAMSTÄLLNING Konjunkturstatistik över sjuklöner (KSju) Ämnesområde Arbetsmarknad Statistikområde Sjuklöner Produktkod AM0209 Referenstid 2019 kvartal
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys
Drivmedel. STATISTISKA CENTRALBYRÅN Pm 1(5) MP/PR P. Nilsson M.Ribe
STATISTISKA CENTRALBYRÅN Pm 1(5) Drivmedel Följande delar av drivmedelsundersökningen kommer att ändras fr.o.m. 2007: Urval av bensinstationer Antal representanvaror Nuläge Drivmedelsundersökningen i KPI
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour: