Matematik och kaffe i Bengtsfors den januari 2011
|
|
- Olof Svensson
- för 9 år sedan
- Visningar:
Transkript
1 Matematik och kaffe i Bengtsfors den januari 2011 I Bengtsfors har Sten och Elisabeth förstått vad ett trevligt, vänligt och vackert bemötande betyder för inlärning. Mattesmedjan har verkligen insett grunderna för en god pedagogik. Vi var sju välmotiverade utomhuspedagoger som anlände till den ombyggda metodistkyrkan för att få nya insikter om matematikens inspirerande värld. Bosse mådde inte riktigt bra och var tvungen att stanna hemma den här omgången. Efter den nybakade sockerkakan hade Claes förberett en matematisk startövning. Vi fick blunda och ta upp en liten sten ur en tygpåse. Stenen skulle vi tilldela en siffra mellan 0 och nio. Efter att vi tittat på den fick vi ändra på siffran om vi ville. Indelade i två lag skulle vi sedan bilda ett så stort tal som möjligt med siffrorna. Efter det, ett så litet tal som möjligt. Ett och samma lag vann båda gångerna. Stenarna kom från olika platser runtomkring i världen och vi fick dem av Claes som ett minne! Därefter var det dags för Sten att ta över scenen. Han började med att presentera vilka länder som dominerat den matematiska scenen under årtusendena. Tre tusen år f.kr. var Babylon centrum, ungefär det nuvarande Irak. Femhundra år senare var Egypten dominerande för att på 700-talet f.kr. lämna över stafettpinnen till Grekland. Pythagoras, Euklides och Archimedes är tre välbekanta matematiker därifrån. Efter Mohammed och islams intåg blev araberna herre på täppan tills Italien under renässansen på talen med Leonardo da Vinci i spetsen blev matematikens centrum. Under de två kommande århundradena klev Descartes Frankrike fram. På 1700-talet dök Newton upp i England och Gauss och Leibniz i Tyskland. Därefter klev den stora jätten USA in på banan för att på senare tid få konkurrens av Kina, Japan och Indien. En av dagens största matematiker är den engelskfödde Andrew Wiles (f -53) som 1995 kunde bevisa Fermats stora sats. En utomordentlig prestation. Efter den historiska genomgången ägnades tiden åt cirkeln och dess omkrets. Sten konstaterade att omkretsen oftast är längre än man tror (liksom midjan). Han hade en i plywood tillverkad cirkel med ett band som satt på plats med hjälp av små kardborrebitar. Se bild:
2 Andra försök gjordes med den gamla barnvagnen. Om det lilla hjulet snurrade fem varv, hur långt kom vagnen då? Salens längd räckte precis till! Därpå berättade Sten om en möjlig förklaring på varför Japan ligger så bra till i jämförelser med Sverige och våra elevers mattekunskaper. En metod man använder är att man går på djupet med problemlösningen. Ett tal/problem får ta en hel lektion att lösa och resonera omkring. Problemet presenteras och eleverna får fråga om talet så att det inte skall vara några oklarheter. Därefter får eleverna i smågrupper komma på en lösning. De olika lösningarna som eleverna sedan kommit fram till presenteras mot slutet av lektionen på en lång tavla och man diskuterar de olika förslagens för- och nackdelar. De japanska lärarna auskulterar mycket hos varandra och diskuterar hela tiden hur den optimala lektionen skall utföras. När geometri skall introduceras för eleverna rekommenderar Sten att man börjar i 3d. Det finns en hel rad med grundformer: Cylinder, kub, klot, kon, pyramid, rätblock, prisma, parallellepiped. Tar man av toppen på en kon heter den delen som är kvar stympad kon. En pyramid, cylinder och pyramid kan också vara stympade. Ett villkor för att en figur skall kallas prisma är att botten och lock är lika.
3 De olika formerna förhåller sig till varandra enligt följande: Därpå gav vi oss på ytor. Till dessa räknas: kvadrat, rektangel, triangel, cirkel, parallellogram, romb, parallelltrapets trapets(fyrhörning), ellips, hexagon och pentagon. För att få en korrekt förklaring till ett matematiskt uttryck tyckte Sten att vi skulle införskaffa det här lexikonet: Wahlström & Widstrands matematiklexikon En del av eftermiddagen ägna vi oss åt att rita kurvor över hur vi förflyttade oss i rum-tiden. Det är svårt att berätta om det med ord men det var en mycket intressant uppgift. På kvällen bjöd vår ledare Anders på en god måltid bestående av ugnsstekt lax. kokt potatis, sallad och en underbar sås. Efter laxen diskuterade vi ledarskap utifrån boken. Konsten att leda en fråga om timing, rytm och kommunikation. Det blev ett mycket bra samtal, där alla var aktiva och bidrog med olika infallsvinklar. En hel del rent konkreta problemlösningar kom upp. Ljudet i många skolmatsalar kan bli alldeles för högt. Några av oss hade provat att ha fem tysta minuter under början av
4 måltiden. Det hade slagit väl ut och ljudnivån dämpades oftast under hela måltiden. På Annikas skola började man matrasten med att promenera 700 meter. Det hade medfört betydligt lugnare måltider. Under tiden eleverna tar mat droppar de in några i taget och det blir aldrig stökigt då. Skol-Comet; Beröm det du vill ha fram. Med anda ord: Beröm de som sköter sig. Sättet är oslagbart enlig Annika. Som avslutning på kvällen visade Claes makalöst fina bilder från sin resa till Peru i höstas. Dag 2 Efter den sedvanliga havregrynsfrukosten och städningen var det dags för Claes att starta dagen med en kort ringdans som följdaktningen slutade med att vi stod i ring. Därefter skulle vi göra vågen ett par gånger genom att hålla upp våra, med vår granne hopknäppta, händer. Vi skulle också ta ner händerna i tur och ordning. Till slut i riktigt hög hastighet. Här gäller det dock att se upp så att man inte sliter av armen på grannen. När vi var uppvärmda fick vi stå stilla, med slutna ögon och hålla en kamrat i varje hand. Efter det skickade Claes en signal genom att trycka till lite i sin ena hand. Därefter skulle vi så snabbt som möjligt skicka signalen vidare till grannen. När trycket gått hela varvet runt och kommit tillbaka till Claes ropade han till. Sedan provade vi lite olika signaler bl.a. att skicka åt båda hållen samtidigt. Det var en rolig övning. Vår ledare Anders tipsade om att man kan prova att ha armarna i kors och skicka signaler på det sättet. Det gick förvånansvärt bra och man kom varandra riktig nära. Flickan har röda kinder Och på huvudet en cylinder. Sten började dagen med att visa oss en pärm med bilder på olika mer eller mindre surrealistiska bilder med en vers till, på olika matematiska begrepp. Det här är ett trix för att inlärningen skall gå bra och begreppen skall kommas ihåg. Det finns ett förhållande mellan volymerna på våra vanliga figurer som i varje fall inte jag kände till tidigare; Om en kon har volymen 1(bas och höjd lika) har ett klot med samma mått volymen 2, en cylinder 3 och slutligen en kub 4. Den sista, kubens volym, är inte exakt 4.
5 De sista timmarna innan lunchen fick vi en gedigen uppgift. Vi skulle i grupper om två eller tre rita in 14 byggnader i Bengtsfors centrum på ett A4-papper. Det gick dock över förväntan. Men när vi sedan jämförde den riktiga kartan med våra försök såg vi att vi hade haft lite svårt med hur de krökta gatorna uppförde sig. Hade vi bara fått en vecka till på oss hade det blivit i stort sätt perfekt trodde Sten. Sista delen av dagen ägna vi oss åt att titta närmare på några olika matematiska hjälpmedel. Tangram. Sju bitar vars yta tillsammans bildar en kvadrat. Det går att bygga en oändlig massa figurer med hjälp av dessa bitar. Beroende av hur uppgiften ges kan tangramet användas i alla åldrar. Det är bland det bästa som finns för att träna geometri, formsinne och logik. Geobräda. En platta med vanligen fem gånger fem spikar islagna. Det finns att köpa fabrikstillverkade. Med gummisnoddar kan man göra olika geometriska figurer. Även här kan problemen omformas till att passa alla åldrar. Fritt bygge på anslagstavla:
6 Här kan man ha en fast omkrets(snöre) och forma ett oändligt antal figurer. Pentomino: En figur som består av fem hopsatta kvadrater. Dessa kan sättas ihop till tolv olika figurer. Med hjälp av dessa tolv figurer kan man i likhet med tangramet göra ett oändligt antal nya figurer. En av Stens elever blev matematiker mycket på grund av dennes övningar med pentomino. Den sista tiden ägnades åt tallinjen. Det är ett mycket bra för att inte säga oumbärligt redskap för att reda ut talen och dess ordning. Här visar Sten exempel på tal som kan finnas på linjen: Under tallinjen på Whitboarden syns pentominens tolv figurer. För varje gång vi varit i Mattesmedjan i Bengtsfors blir vägen dit kortare. Undrar vilken matematisk formel som kan bevisa det. Vid pennan: Anders Martinsson Nästa!
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
Vad är geometri? För dig? I förskolan?
Vad är geometri? För dig? I förskolan? Vad är geometri? Betyder jordmätning En del i matematiken som handlar om rum i olika dimensioner, storlek, figurer och kroppar och deras egenskaper. Viktiga didaktiska
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Lathund, geometri, åk 9
Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar
Storvretaskolans Kursplan för Matematik F-klass- år 5
2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart
PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 3 Algebra oc mönster Kapitel : 4 Geometri Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Förståelse för rum, tid och form, och grundläggande egenskaper hos mängder, mönster, antal, ordning, tal, mätning och förändring - Matematik, Äldre
Geometriska former Förståelse för rum, tid och form, och grundläggande egenskaper hos mängder, mönster, antal, ordning, tal, mätning och förändring - Matematik, Äldre Syfte Varför? Upptäcka och undersöka
Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell
Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna
I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Geometri Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Geometri åk 3 MA 1. Rita färdigt bilden så att mönstret blir symmetriskt. 2.
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal
TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,
Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Även kvadraten är en rektangel
Åsa Brorsson Även kvadraten är en rektangel Vad innebär det att arbeta med geometriska objekt och deras egenskaper i årskurs 1 3? Hur kan vi använda det centrala innehållet i geometri för att utveckla
REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
A. Kunna arbeta med de varierade arbetssätt som förekommer. B. Eleven ska kunna redovisa lösningar så att de kan följas av läraren.
Vifolkaskolan Utdrag ur Bedömning och betygssättning : Det som sker på lektionerna och vid lektionsförberedelser hemma, liksom närvaro och god ordning är naturligtvis i de flesta fall förutsättningar och
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
Matematik Uppnående mål för år 6
Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och
Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
Geometri med fokus på nyanlända
Geometri med fokus på nyanlända Borås 17 januari 2017 Madeleine Löwing Tala matematik Bygga och Begripa Begrepp i Geometri Använda förklaringsmodeller som hjälper eleven att bygga upp långsiktigt hållbara
Planering Geometri a r 9
Planering Geometri a r 9 Mål När du har arbetat med det här kapitlet ska du kunna: förstå vad volym är för något ge namn och känna igen olika rymdgeometriska kroppar, till exempel rätblock, kub, cylinder,
Matematikvandring på Millesgården
Matematikvandring på Millesgården Kort beskrivning Detta är en matematikvandring på Millesgården där läraren går runt tillsammans med klassen och gör gemensamma stopp där eleverna löser olika matematikuppgifter
FORMER, MÖNSTER OCH TESSELERINGAR
FORMER, MÖNSTER OCH TESSELERINGAR Text: Marie Andersson, Learncode AB Illustrationer: Li Rosén Foton: Shutterstock Golv, mattor och byggnader är fulla av geometriska former. Människan har upptäckt att
4-7 Pythagoras sats. Inledning. Namn:..
Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman
150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
Att tala och skriva matematik
maria asplund Att tala och skriva matematik Redskap för bedömning Folkparksskolan i Norrköping arbetar sedan åtta år med Tankeverkstad i åk F 5. Arbetssättet utvecklas ständigt och det senaste är att arbeta
Dagbok från Bengtsfors och mattesmedjan 29-30 mars 2011
Dagbok från Bengtsfors och mattesmedjan 29-30 mars 2011 Vi började tisdagen med att samlas runt det härliga frukostbordet. Vilken lyx att sätta sig vid dukat bord, när man är lite seg på morgonen. Så underbart
LPP för årskurs 2, Matte V.46-51 HT12
LPP för årskurs 2, Matte V.46-51 HT12 Värdegrund och uppdrag Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden
Extramaterial till Matematik X
LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven
Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK. Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö
INTRESSEVÄCKANDE UNDERVISNING I MATEMATIK Izet Omanovic, förstelärare i matematik Söderkullaskolan i Malmö MIN AMBITION Inspirera lärare att arbeta med eget undervisningsmaterial som är anpassat efter
Du är klok som en bok, Lina!
Du är klok som en bok, Lina! Den här boken handlar om hur det är när man har svårt att vara uppmärksam och har svårt att koncentrera sig. Man kan ha svårt med uppmärksamheten och koncentrationen, men på
4-8 Cirklar. Inledning
Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Bedömning för lärande i matematik
HANDLEDNING TILL Bedömning för lärande i matematik FÖR ÅRSKURS 1 9 1 Handledning I denna handledning ges förslag på hur du kan komma igång med materialet Bedömning för lärande i matematik åk 1 9. Du börjar
Explorativ övning 11 GEOMETRI
Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk
8-6 Andragradsekvationer. Namn:..
8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,
PLANGEOMETRI I provläxa med facit ht18
PLANGEOMETRI I provläxa med facit ht18 På det här avsnittet kommer du i första hand att utveckla din begrepps metod och kommunikations förmåga. Det är nödvändigt att ha en linjal för att klara avsnittet.
Under en forskningscirkel, som vi matematikutvecklare i Göteborg har
Britt Holmberg Analysera mera i geometri Inom undervisningen i geometri behöver vi utmana elevernas nyfikenhet med frågeställningar och ge dem tid att undersöka geometriska objekt. Praktiskt arbete där
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Planering - Geometri i vardagen v.3-7
Planering - Geometri i vardagen v.3-7 Syfte Undervisningen i ämnet matematik ska syfta till att eleverna utvecklar kunskaper om matematik och matematikens användning i vardagen och inom olika ämnesområden.
geometri och statistik
Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Facit Tummen upp! Matte åk 4. Facit till Tummen upp! Matte åk Liber AB Får kopieras 1
Facit Tummen upp! Matte åk Facit till Tummen upp! Matte åk -06-6 Liber AB Får kopieras Taluppfattning och tals användning a) och 0 000 och 00 c) 600, 60 och 60 a) Tvåtusen niohundraett Femtusen sju c)
32 Skriv med siffror. 33 Vilket tal ska stå istället för rutan? 34 Skriv talen i storleksordning. Börja med det minsta.
Målgången I det här kapitlet får du möjlighet att repetera och träna mer på det du hittills lärt dig om > taluppfattning > räknesätten > bråk > procent > sannolikhetslära > algebra > geometri > statistik
Ordlista 5A:1. term. faktor. täljare. nämnare. Dessa ord ska du träna. Öva orden
Ordlista 5A:1 Öva orden Dessa ord ska du träna term Talen som du räknar med i en addition eller subtraktion kallas termer. faktor Talen som du räknar med i en multiplikation kallas faktorer. täljare Talet
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Delprov A Muntligt delprov
Delprov A Muntligt delprov Äp6Ma15 Delprov A 15 Beskrivning av delprov A, muntligt delprov Det muntliga delprovet kan genomföras fr.o.m. vecka 11 och resten av vårterminen. Det muntliga delprovet handlar
Form tangrampussel. Låt eleven rita runt lagda former, benämna dem och/eller skriva formernas namn.
strävorna 2C 6C Form tangrampussel samband begrepp kreativ och estetisk verksamhet geometri Avsikt och matematikinnehåll När vi ser oss omkring är form en framträdande egenskap. För att kunna känna igen,
Fira Pi-dagen med Liber!
Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Du är klok som en bok, Lina! Janssen-Cilag AB
Du är klok som en bok, Lina! Janssen-Cilag AB Den här boken handlar om hur det är när man har svårt att vara uppmärksam och har svårt att koncentrera sig. Man kan ha svårt med uppmärksamheten och koncentrationen,
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Planering Geometri år 7
Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
Matematikplanering 3 geometri HT-12 VT-13 7 a KON
Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några
ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.
1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.
Kängurutävlingen Matematikens hopp 2009 Ecolier för elever i åk 3 och 4
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Ecolier för elever i åk 3 och 4 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas, däremot
P O O L B Y G G E. Bilden tagen utav - Andrej Trnkoczy, ifrån flickr. tisdag 8 april 14
P O O L B Y G G E Bilden tagen utav - Andrej Trnkoczy, ifrån flickr Det du behöver veta i denna keynote är.. Vad skala är/ hur man räknar med skala Vad omkrets är/ hur man räknar med omkrets Vad area är/
Vad jag ska kunna! Åk 2
Matematik Taluppfattning HT Taluppfattning Jag kan skriva talens grannar upp till 50. Jag kan läsa av tal som visas på olika sätt upp till 50, t.ex. pengar. Jag kan markera ut rätt tal på tallinjen upp
Facit åk 6 Prima Formula
1 Facit åk 6 Prima Formula Kapitel 2 - Volym och skala Sidan 51 1 a C, F och G b D och H 2 A: sexsidigt prisma B: rätblock C: kon D: tetraeder (tresidig pyramid), E: tresidigt prisma F: klot G: cylinder
Uppgifter till Första-hjälpen-lådan
Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.
4-4 Parallellogrammer Namn:..
4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas
Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3
Exempel på uppgifter från 2010 2014 års ämnesprov i matematik för årskurs 3 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning... 8 Udda tal och positionssystemet... 11 Likheter, tallinjen
Geometri. Mål. 50 Geometri
Geometri Mål När eleverna har arbetat med det här kapitlet ska de kunna mäta och räkna ut omkretsen på olika geometriska figurer räkna ut arean av rektanglar, kvadrater och trianglar använda de vanligaste
Vi människor föds in i en tredimensionell värld som vi accepterar och
Güner Ahmet & Thomas Lingefjärd Symbolen π och tredimensionellt arbete med Geogebra I grundskolans geometriundervisning möter elever oftast tvådimensionella former trots att de har störst vardagserfarenhet
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Lokal pedagogisk planering i matematik för åk 8
Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. C: 1,101 D:!!!
PYTHAGORAS QUEST Matematiktävling för högstadieelever Kvalificeringstest Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. 1 Vilket av talen nedan är närmast talet 1? A: " B: "" C: 1,101 D: """
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Bedömning. Formativ bedömning - en väg till bättre lärande. Formativ bedömning. Formativ bedömning. Visible teaching - visible learning
Formativ bedömning - en väg till bättre lärande Inger Ridderlind Stina Hallén www.prim-gruppen.se Bedömning Bedömning av kunskap - summativ Bedömning för kunskap - formativ Från att mäta kunskap till pedagogisk
Undersökande arbetssätt i matematik 1 och 2
Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt
Övningsblad 3.1 A. Omkrets och area. 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2.
Övningsblad 3.1 A Omkrets och area 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2. a) b) O = A = O = A = 2 Skugga rektangelns area och markera triangelns omkrets. (m) (m) 25 80 80 70
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
parallellogram pentagon hexagon parallelltrapets
geometriska former och figurer Vad heter figurerna? Välj bland orden nedan. hexagon parallellogram parallelltrapets pentagon figur namn parallellogram pentagon hexagon parallelltrapets Hur många hörn och
GRUPP 1 JETLINE. Åk, känn efter och undersök: a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)
GRUPP 1 JETLINE a) Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) b) Var under turen känner du dig tyngst? Lättast? Spelar det någon roll var i tåget
Föreläsning 5: Geometri
Föreläsning 5: Geometri Geometri i skolan Grundläggande begrepp Former i omvärlden Plangeometriska figurer Symmetri och tessellering Tredimensionell geometri och geometriska kroppar Omkrets, area, volym
Frågor - Högstadiet. Grupp 1. Jetline. Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet)
Grupp 1 Jetline Mät och räkna: Före eller efter: Hur låter det när tåget dras uppför första backen? Vad beror det på? (Tips finns vid teknikbordet) Var under turen känner du dig tyngst? Lättast? Spelar
Extramaterial till Matematik Y
LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik Y NIVÅ ETT Geometri ELEV Desmos Geometry är ett matematikverktyg som bland annat kan hjälpa dig att avbilda geometriska figurer och
Arbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är.
Arbetsblad :1 Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är a) rät b) spetsig c) trubbig A C D F E G 2 Uppskatta (gör en bra gissning) hur stora vinklarna är. A C D E F G Mät vinklarna och
Trepoängsproblem. Kängurutävlingen 2019 Cadet. 1 Vilket moln innehåller endast jämna tal? A B C D E
Trepoängsproblem Vilket moln innehåller endast jämna tal? 5 0 4 0 58 En kub med kantlängden är byggd av enhetskuber. Några kuber tas bort rakt igenom, från vänster till höger, uppifrån och ner samt från
Lektion isoperimetrisk optimering
Lektion isoperimetrisk optimering Lektionens namn: Isoperimetrisk optimering Kurs: Ma2a, Ma2b, Ma2c Längd: 85 min Inledning Lektionen behandlar ett klassiskt maximeringsproblem (Euklides och Zenodorus):
LEKTION PÅ GRÖNA LUND, GRUPP 1
LEKTION PÅ GRÖNA LUND, GRUPP 1 JETLINE Tåget är 9,2 m långt. Hur lång tid tar det för tåget att passera en stolpe? Hur fort går tåget? Var under turen tror du att känner man sig tyngst? Lättast? Två gånger
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer