Stabilisering av prefabbetong enligt Eurokod - En jämförande studie

Storlek: px
Starta visningen från sidan:

Download "Stabilisering av prefabbetong enligt Eurokod - En jämförande studie"

Transkript

1 Högskolan i Halmstad Sektionen för Ekonomi och Teknik Byggingenjörsprogrammet Examensarbete 15 hp Stabilisering av prefabbetong enligt Eurokod - En jämförande studie Elin Claesson Erika Eliasson Handledare: Göran Nilsson, Göran Östergaard och Stefan Havner Halmstad

2

3 Förord Detta examensarbete har vi skrivit under vårterminen 2011 på Högskolan i Halmstad. Det är den avslutande delen på byggingenjörsprogrammet. Vi skulle vilja tacka vår handledare Göran Nilsson, lärare på Högskolan i Halmstad, som alltid gett oss tid för hjälp och synpunkter på det vi skrivit. Vi vill också tacka Göran Östergaard, teknisk chef på Abetong i Falkenberg, för hans stora kunnande och hjälp för att få oss på rätt spår. Vidare vill vi även tacka Stefan Havner, civilingenjör på Abetong i Falkenberg, för handledning och kloka kommentarer. Om inte de hade hjälpt och stöttat oss hade det inte varit möjligt att skriva denna rapport. Vi vill även tacka Strusoft för deras support i Ramanalys. Halmstad, maj 2011 Elin Claesson och Erika Eliasson

4

5 Abstract Modern concrete halls are usually designed as portal frames with fixed column bases, i.e. cantilever columns. Another way to ensure horizontal stability would be to use purlins in the walls combined with diaphragm action in the roof, it means that the columns are hinged at both ends. This is a common way to design steel- and glulam structures; it leads to shorter buckling lengths of the columns which mean that weaker columns can be used. For this reason certain types of concrete halls often have a hard time competing against other materials and are often dropped at an early stage. The focus of this report is to verify whether using purlins to stabilize concrete halls leads to a reduction in the amount of concrete and reinforcement that is needed as compared to the traditional way with cantilever columns. A third option which is also studied is a combination of the methods mentioned. This means that the columns are fixed at the bases and supported at the top by diaphragm action in the roof. For each of the three stabilizing methods mentioned a number of different rectangular cross-sections and five different column lengths will be considered. Strength and stability calculations will be done according to Eurocode using the computer program Frame Analysis by Strusoft. The results are presented in tables and diagrams where it s possible see which of the three stabilizing methods is most favorable from a material use standpoint. Keywords: Concrete column, diaphragm action, horizontal stability, purlin.

6

7 Abstrakt Idag konstrueras betonghallar främst med fast inspända konsolpelare. Ett annat sätt att tillgodose stomstabiliteten är att använda sig av pendelpelare i kombination med vindsträvor i väggen och skivverkan i taket. Detta sätt är vanligare för stål och limträstommar och innebär kortare knäcklängd på pelaren vilket medför att slankare dimensioner kan användas. Vissa typer av hallar med betongpelare har därför svårt att konkurrera mot stål och limträstommar och bli på så sätt borträknade i tidigt stadium. Tyngdpunkten av rapporten ligger i att kontrollera om man med hjälp av vindsträvor i väggen minskar mängden betong och armering som behövs i jämförelse med det traditionella sättet med konsolpelare. Ett tredje alternativ som också ska studeras är en kombination av de redan nämnda fallen. Detta innebär att pelarna är inspända i botten och ledade i toppen i kombination med vindsträvor i väggen och skivverkan i taket. För de tre olika stabiliseringsfallen kommer både kvadratiska och rektangulära pelare användas samt att fem olika pelarlängder kommer beaktas. Tvärsnitt- och stabilitetskontroller kommer att göras enligt Eurokod med hjälp av dataprogrammet Ramanalys som saluförs av Strusoft. Resultatet redovisas i tabeller och diagram där man kan utläsa vilket av de tre stabiliseringsfallen som är mest gynnsamt ur en materialkostnadsmässig synvinkel. Nyckelord: Betongpelare, skivverkan, stomstabilitet, vindsträva.

8

9 Innehåll 1. Inledning Bakgrund Syfte Metodval Motivering till metodval Mål Begränsningar Beteckningar Teorin bakom Eurokoderna Uppbyggnad Nationella val Nationella bilagan Beräkningsguide för de olika fallen Förutsättningar Laster Egentyngd tak Egentyngd takbalk Egentyngd pelare Snölast Vindlast på vägg Lastkombinationer Brottgränstillstånd Brukgränstillstånd Geometriska imperfektioner Oavsiktlig initiallutning snedställning av pelaren Initialkrokighet pelarens krokighet Oavsiktlig excentricitet Kraft i vindsträvor (fall två och tre) Kryptal Krympning Resultat Dimensionering av pelare i Ramanalys Dimensionering av vindsträvor i Ramanalys Dimensionering av holkar Sammanställda resultat av vikt betong och stål Slutsats Källor... 35

10 Bilagor Bilaga 1: Vindlast Bilaga 2: Snedställning Bilaga 3: Initialkrokighet Bilaga 4: Vindsträva Bilaga 5: Kryptal Bilaga 6: Krympning Bilaga 7: Dimensionering av pelare... 56

11 1. Inledning 1.1 Bakgrund Abetong är ett av landets ledande företag inom prefabricerade betongprodukter, företaget ingår i HeidelbergCement Northern Europe. De tillverkar hallar med hjälp av pelar balk stommar av betong, med inspända pelare som är fria i toppen samt skivverkan i taket. För långsmala hallbyggnader är detta ett enkelt sätt att tillgodose stomstabiliteten på. Nackdelen med detta system är att dimensionerna på pelarna blir väldigt stora, vilket leder till dyra konstruktioner. Ur ett utdrag beskrivs följande: Det enklaste systemet som tillfredsställer stomstabiliteten bäst, är rent teoretiskt med inspända pelare. Att anordna denna metod är ofta väldigt kostsamt både utifrån utformning och infästning till pelare och till grundkonstruktionen. 1 Ett annat sätt att tillgodose stomstabiliteten på, är att använda sig av vindkryss i kombination med skivverkan. Detta är väldigt ovanligt för betongstommar men desto vanligare för stål och limträstommar. För vissa typer av hallar blir betongstommarna utkonkurrerade av stål och limträstommar, då dessa utnyttjar vindkryss och därmed får kortare knäcklängd på pelaren. Ur ett utdrag beskrivs följande om detta stabiliseringssätt: Det mest ekonomiska sättet att stabilisera en hallbyggnad på, är att placera vindkryss i både gavlar och långsidor, samt skivverkan i taket. Detta i kombination med ledade pelare. Taket fungerar därmed som en styv skiva som överför vindkrafterna till vindkryssen. 2 Ett tredje sätt att tillgodose stomstabiliteten på är att göra en kombination av dessa två fall som är beskrivna ovan, dvs. med skivverkan i taken och pelare som är inspända i botten och ledade i toppen. Vilka av dessa olika fallen är då mest gynnsamt utifrån summa vikt betong och summa vikt stål? 1.2 Syfte Syftet med detta examensarbete är att, i samarbete med Abetong, kontrollera om det ur ett materialkostnadsmässigt synsätt kan vara ett alternativ för betongstommar att lösa stomstabiliteten med vindkryss istället för inspända pelare eller en kombination av dessa. Arbetet kommer att omfatta användning av både kvadratiska och rektangulära pelare. Dessa pelare har fem olika längder med varierande laster. 1 H. Johnsson, L. Stehn, A. Björnfot 2007, s T. Höglund 2000, s 1 1

12 1.3 Metodval Examensarbetet bestod av litteraturstudie samt en mängd olika beräkningar. Beräkningarna utfördes utefter Eurokoderna Motivering till metodval Litteraturstudien utgjorde grunden för förståelse av olika stomstabilitetslösningar. Dessa studier hämtades dels från normerna och dels från lösta exempel i olika böcker. De yttre och inre lasterna samt de olika lastkombinationerna beräknades för hand enligt Eurokoderna och därefter utfördes beräkningar i dataprogrammet Ramanalys som saluförs av Strusoft. Ramanalys beräknar tvärsnitts- och stabilitetskontroller enligt andra ordningens teori i denna rapport. Detta medför att man förutom de yttre och inre lasterna även tar hänsyn till geometriska imperfektioner. Alla dessa beräkningar utfördes för att komma fram till vilka dimensioner och armeringsmängder som krävs ur stomstabilitetssynpunkt för de olika fallen. 1.4 Mål Målet med examensarbetet är att analysera tre olika alternativ gällande pelare: Fall ett - Inspända i botten och fria i toppen Fall två - Ledade i botten och ledade i toppen Fall tre - Inspända i botten och ledade i toppen För fall två och tre fodras även skivverkan i taket för att byggnaden ska vara stabil. För alla tre fallen är målet att utnyttjandegraden på pelaren ska bli så hög som möjligt, samtidigt som den ska klara deformationskraven. Utifrån detta kommer tvärsnitt på pelare och holkar att dimensioneras samt armeringsmängden beräknas. För varje pelarlängd jämförs sedan summa vikt betong och summa vikt stål. Tanken är att detta ska illustreras i ett flertal diagram där man kan utläsa vilket fall som är bäst för respektive pelarlängd. 2

13 1.5 Begränsningar Examensarbetet kommer inte ta hänsyn till t.ex. monteringskostnader eller tid, utan endast belysa materialkostnaden. 3

14 2. Beteckningar snedställningslast karakteristisk egentyngd tunghet på taket c/c-avstånd mellan pelarna karakteristisk snölast snölastens formfaktor exponeringsfaktor för snö den termiska koefficienten för snö karakteristisk värde för snölast på mark karakteristisk vindlast karakteristiskt hastighetstryck referenshöjden för utvändig vindlast referenshöjden för invändig vindlast formfaktor för utvändig vindlast formfaktor för invändig vindlast byggnadens höjd lutning som uppkommer på grund av imperfektioner ett grundvärde, rekommenderat värde 1/200 reduktionsfaktor för längd eller höjd reduktionsfaktor för antalet delar höjden på pelaren i enskild bärverksdel och höjden på hela byggnaden i stabiliserande system antalet vertikala delar som bidrar till den totala inverkan excentricitet effektiva längden är den dimensionerande kraften från vinden på en vindsträva kraften på en vindsträva koefficient som beror på säkerhetsklassen faktor som varierar beroende på vad det är för last kryptal nominellt kryptal faktor som beaktar inverkan av relativ luftfuktighet relativ luftfuktighet i omgivande miljö bärverksdelens ekvivalenta tjocklek tvärsnittsarean den del av tvärsnittets omkrets som är i kontakt med luft faktor som beaktar inverkan av betongens hållfasthet betongens medeltryckhållfasthet vid 28 dagars ålder 4

15 HL faktor som beaktar inverkan av betongens ålder vid pålastning betongens ålder vid pålastning koefficient som beskriver krypningens utveckling med tiden efter pålastning betongens ålder vid betraktad tidpunkt koefficient som används vid bestämning av kryptal total krympning uttorkningskrympning koefficient som beror på betongens ålder vid början av uttorkningskrympningen autogen krympning huvudlast 5

16 3. Teorin bakom Eurokoderna Från och med 1 januari 2011, är det lag på att följa en ny norm angående byggkonstruktion i Sverige. Denna norm heter Eurokod och är samma i hela EU. Normen började ta form redan år 1975, då EG-kommissionen (namnet på nuvarande EU) beslutade sig för att utforma ett arbetsprogram för byggområdet. Syftet med detta program var att ta fram tekniska regler för dimensionering av byggnadsverk, som så småningom skulle ersätta de gamla reglerna. År 1989 beslutade EG-kommissionen att låta den europeiska standardiseringsorganisationen CEN (European Committee for Standardization) ta över arbetet och på det sättet ger normerna stämpeln EN (Europastandard). 3 Genom SIS (Svensk Standard Standardisering), som är en nationell partner till CEN, fick Sverige möjlighet att delta i arbetet och tog fram Eurokoderna enligt svensk version SS-EN (Svensk standard Europastandard). 3.1 Uppbyggnad Eurokoderna består av tio stycken olika delar, där sedan varje del är uppdelad i flera stycken underdelar. De tio delarna av Eurokoderna är följande: EN 1990 Eurokod 0: Grundläggande dimensioneringsregler för bärverk EN 1991 Eurokod 1: Laster på bärverk EN 1992 Eurokod 2: Dimensionering av betongkonstruktioner EN 1993 Eurokod 3: Dimensionering av stålkonstruktioner EN 1994 Eurokod 4: Dimensionering av samverkanskonstruktioner i stål och betong EN 1995 Eurokod 5: Dimensionering av träkonstruktioner EN 1996 Eurokod 6: Dimensionering av murverkskonstruktioner EN 1997 Eurokod 7: Dimensionering av geokonstruktioner EN 1998 Eurokod 8: Dimensionering av bärverk med hänsyn till jordbävning EN 1999 Eurokod 9: Dimensionering av aluminiumkonstruktioner 3 Eurokod , s 49 6

17 3.2 Nationella val Beroende på geografi, klimat, levnadssätt och säkerhetsnivå är det inte lätt att göra bestämmelser som ska gälla för alla olika länder i EU. I Eurokoderna anges valmöjligheter i form av nationellt valbara parametrar, NDP (nationally determined parameters). 4 Dessa parametrar är rekommenderade värden och det förutsätts att man använder sig av dessa, ifall man inte har starka skäl till att använda sig av andra värden. I Sverige är det Boverket, tillsammans med Trafikverket, som väljer de svenska parametrarna som skiljer från Eurokoderna. Dessa parametrar redovisas i EKS, ett regelsystem som har ersatt Boverkets konstruktionsregler. Ett exempel på en parameter som finns i EKS är landspecifik data för t.ex. vind- och snölaster. 3.3 Nationella bilagan Tidigare upplagor har man funnit den nationella bilagan längst bak i Eurokoden, men nu har man beslutat att den inte ska vara där i nya utgåvor. De svenska värdena kommer enbart att redovisas i EKS. Tanken är att den nationella bilagan så småningom ska ges som en separat bok på engelska. Det beror på att, i vilket land man än är, så ska man kunna ha Eurokoden på sitt egna språk och komplettera med den nationella bilagan för just det landet. 5 4 Eurokoder De nya dimensioneringsreglerna för bärverk 5 Eurokoder - SIS/TK 203, Nationella bilagor 7

18 4. Beräkningsguide för de olika fallen Tre olika stabiliseringslösningar i betong enligt Eurokod ska analyseras och beräknas. Utifrån det och med en känd längd, få fram den optimala tvärsnittsdimensionen och armeringsmängden för en viss pelare. Nedan visas en bild på pelare med tre olika stabiliseringslösningar som kommer beaktas i rapporten. Figur 4.1 De tre olika stabiliseringslösningarna 4.1 Förutsättningar Beräkningarna kommer utföras på fem olika pelarlängder, 6,5, 8,5, 10,5, 12,5 samt 14,5 meter. Grundläggningen skall ske med pelarholkar, där holkens överkant är 300 mm ifrån färdigt golv samt att pelarens inspänningssnitt är 200 mm ner i holken. Se illustration nedan: Figur 4.2 Grundläggning 8

19 Vidare är förutsättningarna för rapporten enligt nedan: Byggnadens längd x bredd = 60 x 24 m Höjd på takbalk =1,2 m c/c-avstånd mellan pelarna = 6 m Betongklass C40/50 och armeringsklass K500 B-T Säkerhetsklass 3, exponeringsklass XC1, livslängd på 50 år Snözon 2,0 kn/m 2 Två olika vindhastigheter med tillhörande terrängtyp; vindhastighet 24 m/s med terrängtyp II och vindhastighet 26 m/s med terrängtyp I. Terrängtyp I utgörs av sjö eller plant och horisontellt område med försumbar vegetation och utan träd och byggnader. Terrängtyp II utgörs av område med låg vegetation som gräs och enstaka träd och byggnader. 6 Vindsträvor av VKR-rör Deformationskrav är /150 i karakteristisk lastkombination, detta i samråd med Abetong En sektion över byggnaden illustreras nedan: (mm) Figur 4.3 Bildsektion över byggnaden På nästa sida visas illustrativt hur de olika fallen belastas av yttre laster. Oavsett vilket fall man studerar, så måste man räkna med snedställningskrafter och initialkrokighet. I fall ett tas snedställningskraften upp av pelaren medan den tas upp i vindsträvorna i fall två och tre. 6 Eurokod , kap , s 20 9

20 Detta medför att man i fall ett kontrollerar dimensioneringen och stabiliteten som en ram (ett stabiliserande system), medan man i fall två och tre kontrollera dimensioneringen som en enskild pelare. Figur Belastningen för fall ett Figur 4.5 Belastningen för fall två och fall tre 4.2 Laster På nästa sida beräknas de yttre lasterna på byggnaden. Det handlar om laster från tak, takbalk och pelare samt laster från snö och vind. 10

21 4.2.1 Egentyngd tak Takets egentyngd sätts till 0,3 kn/m 2, dvs. lätt tak. Detta värde multipliceras även med en kontinuitetsfaktor 1,1. Detta gör man på grund av att taket är ett tredimensionellt bärverk vilket medför att det är svårt att beräkna och uppskatta lasterna 7. Den karakteristiska egentyngden på taket blir följande: där är tungheten på taket är c/c-pelare är en kontinuitetsfaktor Egentyngd takbalk Takbalken är en s.k. SIB/f, dvs. en sadelbalk med I-tvärsnitt. 8 Balken är illustrerad som både tvärsnitt och elevation nedan. (mm) Figur 4.6 Ett I-tvärsnitt och en elevation över SIB/f-balken Vikten på takbalken är 11 ton vilket ger en karakteristisk egentyngd på: 7 Kontinuitetsfaktor vid dimensionering av takbalkar 8 Standardbalkar SIB/f 11

22 4.2.3 Egentyngd pelare Egentyngden av pelaren kommer att medräknas beroende på vilket tvärsnitt beräkningen avser. Denna vikt läggs in automatiskt i det beräkningsprogram som kommer att användas i rapporten Snölast 9 där är snölastens formfaktor är exponeringsfaktorn är den termiska koefficienten är det karakteristiska värdet för snölast på mark Enligt våra förutsättningar: Taklutning < 30 : =0,8 Snözon 2,0: =2,0 kn/m 2 Normal topografi: =1 : = Vindlast på vägg Anledningen till att man inte räknar med vindlasten på taket, beror på att vindlasten blir uppåtriktad, och därför motverkar den snölasten. Utvändig vindlast: 12 Lovartsida: 9 Eurokod , kap. 5.2(3)P, s Eurokod , kap. 5.2(8), s Kontinuitetsfaktor vid dimensionering av takbalkar 12 Eurokod , kap. 5.2(1), s 24 12

23 Läsida: där är det karakteristiska hastighetstrycket är referenshöjden för utvändig vindlast är formfaktorn för utvändig vindlast är c/c-pelare Invändig vindlast: 13 där är det karakteristiska hastighetstrycket är referenshöjden för invändig vindlast är formfaktorn för invändig vindlast är c/c-pelare Det karakteristiska hastighetstrycket räknas ut via en tabell 14 där man tar hänsyn till höjden på byggnaden, vindhastigheten samt terrängtypen. Formfaktorn som är använd i detta projekt är den rekommenderande formfaktorn för utvändig vindlast på byggnader med rektangulär form. 15 Resultatet för alla vindlaster bifogas i en tabell nedan och uträkningarna återfinns i bilaga 1. total höjd (m) q p (kn/m 2 ) C pe (lovartsida) C pe (läsida) Tabell 4.1 Vindlaster för vindhastigheten 24 m/s, terrängtyp II C pi q k1 (utv. lovartsida) (kn/m) q k2 (inv. vindlast) (kn/m) q k3 (utv. läsida) (kn/m) 7,7 0,72 0,71 (-)0,32 0,2 3,07 0,86 1,38 9,7 0,77 0,72 (-)0,34 0,2 3,33 0,92 1,57 11,7 0,81 0,73 (-)0,36 0,2 3,55 0,97 1,75 13,7 0,85 0,74 (-)0,39 0,2 3,77 1,02 1,99 15,7 0,88 0,75 (-)0,41 0,2 3,96 1,06 2,16 13 Eurokod , kap. 5.2(2), s Eurokod Bilaga NA, s Eurokod , kap. 7 tabell 7.1, s 35 13

24 total höjd (m) q p (kn/m 2 ) C pe (lovartsida) C pe (läsida) Tabell 4.2 Vindlaster för vindhastigheten 26 m/s, terrängtyp I C pi q k1 (utv. lovartsida) (kn/m) q k2 (inv. vindlast) (kn/m) q k3 (utv. läsida) (kn/m) 7,7 1,02 0,71 (-)0,32 0,2 4,35 1,22 1,96 9,7 1,07 0,72 (-)0,34 0,2 4,62 1,28 2,18 11,7 1,12 0,73 (-)0,36 0,2 4,91 1,34 2,42 13,7 1,16 0,74 (-)0,39 0,2 5,15 1,39 2,71 15,7 1,19 0,75 (-)0,41 0,2 5,36 1,43 2, Lastkombinationer I brottgränstillstånd kommer ekvationerna 6.10a och att beaktas och i brukgränstillstånd kommer karakteristisk och kvasi-permanent lastkombination att beaktas. Varje ekvation multipliceras med och denna koefficient beror på säkerhetsklassen. Rapportens förutsättning är säkerhetsklass 3, vilket medför ett värde på = 1. Ekvationerna kommer även i vissa fall multipliceras med och. Detta är koefficienter med värden enligt nedan: Last Vindlast 0,3 0 Snölast 3.0 < >2.0 kn/m 2 0,7 0,2 Tabell 4.3 -faktorer Brottgränstillstånd 17 Brottgränstillståndet används för att räkna ut det tillstånd då pelaren går i brott. I ekv. 6.10a är det ingen skillnad då snö eller vind är huvudlast, utan det är den permanenta lasten som är dominerande. I ekv. 610b är snö huvudlast i det ena fallet och vind huvudlast i det andra fallet. Se nedan för de olika ekvationerna. Ekv. 6.10a Vindlast: Snölast: Egentyngd: H-kraft: H i 16 Eurokod , Bilaga A1, s EKS 7, kap. 0, s 15 14

25 Ekv. snö huvudlast Vindlast: Snölast: Egentyngd: H-kraft: H i Ekv. vind huvudlast Vindlast: Snölast: Egentyngd: Brukgränstillstånd 18 Brukgränstillståndet används för att räkna ut det tillstånd då pelaren inte kan användas mer. Den karakteristiska lastkombinationen är en korttidslast där snö är huvudlast i det ena fallet och vind huvudlast i det andra fallet. Kvasi-permanent lastkombination avser långtidslast och där är det ingen skillnad då snö eller vind är huvudlast. Karakteristisk lastkombination - snö huvudlast Vindlast: Snölast: Egentyngd: Karakteristisk lastkombination - vind huvudlast Vindlast: Snölast: Egentyngd: Kvasi-permanent lastkombination Snölast: Vindlast: Egentyngd: 18 Eurokod , Bilaga A1, s 49 15

26 4.4 Geometriska imperfektioner När en konstruktör dimensionerar någonting, förutsätter denna att konstruktionen är utförd precis så som han har tänkt sig, dvs. att pelarna står rätt och rakt, att armeringen ligger rätt, att inga måttavvikelser förekommer i stomsystemet etc. Tyvärr är inte verkligheten sådan och därför måste oavsiktliga avvikelser beaktas. Dessa oavsiktliga avvikelser handlar om snedställning, initialkrokighet och excentricitet hos pelarna. 19 Geometriska imperfektioner 20 ska beaktas i brottgränstillstånd, men behöver inte beaktas i brukgränstillstånd Oavsiktlig initiallutning - snedställning av pelaren I fall ett beräknas snedställningskraften utifrån normalkraften som angriper de två pelarna i ramen. I fall två och tre är det utifrån den totala normalkraften som snedställningskraften beräknas och detta för att få reda på den totala kraften som tas upp i vindsträvorna. Figur 4.7 Bild över den oavsiktliga initiallutningen där 19 G. Östergaard, 2010, kap 1.8, s Eurokod , kap , s Eurokod , kap. 5.2(2)(3), s 51 16

27 är ett grundvärde, rekommenderat värde är 1/200 är reduktionsfaktor för längd eller höjd är reduktionsfaktorn för antalet delar är höjden på pelaren i enskild bärverksdel och höjden på hela byggnaden i stabiliserande system är antalet vertikala delar som bidrar till den totala inverkan Resultatet för de horisontella krafterna bifogas i en tabell nedan. I fall ett visas även illustrativt en bild där H-kraften angrips. I fall två och tre går kraften till vindsträvorna som beskrivits innan. Beräkningar återfinns i bilaga 2. total höjd (m) (kn) (Snö HL) (kn) (Vind HL) (kn) (kn) (Snö HL) (kn) 7,7 0, ,3 569,7 455,6 1,49 1,77 1,41 9,7 0, ,3 569,7 455,6 1,39 1,65 1,32 11,7 0, ,3 569,7 455,6 1,39 1,65 1,32 13,7 0, ,3 569,7 455,6 1,39 1,65 1,32 15,7 0, ,3 569,7 455,6 1,39 1,65 1,32 Tabell 4.4 Snedställningskrafter för fall ett per ram (Vind HL) (kn) Figur 4.8 Figur där snedställningskraften angrips för fall ett 17

28 total höjd (m) (kn) (Snö HL) (kn) (Vind HL) (kn) (kn) (Snö HL) (kn) 7,7 0, ,3 7975,3 6378,6 34,9 41,5 33,2 9,7 0, ,3 7975,3 6378,6 32,2 38,3 30,6 11,7 0, ,3 7975,3 6378,6 32,2 38,3 30,6 13,7 0, ,3 7975,3 6378,6 32,2 38,3 30,6 15,7 0, ,3 7975,3 6378,6 32,2 38,3 30,6 (Vind HL) (kn) Tabell 4.5 Snedställningskrafter för fall två och tre som belastar vindsträvorna totalt för alla pelare Initialkrokighet pelarens krokighet Initialkrokigheten tar hänsyn till pelarens krokighet. Nedan illustreras en bild på detta. Figur 4.9 Initialkrokighet När initialkrokighet beaktas vid fall två och tre, används en förenkling på /400. Denna förenkling får endast användas för enstaka pelare i avstyvade system, så därför kan inte denna förenkling användas i fall ett. 22 För detta fall kommer en beräkning utifrån excentriciteten att genomföras med följande ekvation: 22 Eurokod , kap , s 52 18

29 23 Nedan redovisas resultatet med hänsyn till pelarens krokighet. Beräkningen återfinns i bilaga 3. pelarhöjd (m) 0 (m) total höjd (m) e (m) x 6,5 0, ,4 7,7 0, ,5 0, ,4 9,7 0, ,5 0, ,4 11,7 0, ,5 0, ,4 13,7 0, ,5 0, ,4 15,7 0, Tabell 4.6 Initialkrokighet för fall ett Ett medelvärde av initialkrokigheten på beräkningarna av fall ett. kommer att användas på pelarna i Oavsiktlig excentricitet Pelare som har liten slankhet, dvs. korta pelare med stort tvärsnitt i förhållande till pelarens längd, kräver en separat kontroll av tvärsnittet. Enligt Eurokod ska man förutsätta en minsta excentricitet på h/30 (dock minst 20 mm). Detta är ett moment som finns längs hela elementet. 24 Nedan illustreras en sektion av en pelare där normalkraftens verkliga angreppspunkt visas och e är den oavsiktliga excentriciteten. Figur 4.10 Oavsiktlig excentricitet 23 Eurokod , kap , s T. Isaksson, A. Mårtensson, S. Thelandersson, 2010, kap. 9, s

30 Denna imperfektion tas automatiskt hänsyn till i Ramanalys och därför behövs inga beräkningar göras på denna excentricitet. 4.5 Kraft i vindsträvor (fall två och tre) Vindsträvornas huvudsakliga uppgift är att göra systemet stabilt. Det sittar endast en vindsträva i varje gavel, vilket medför att denna ska klara både drag och tryck. Dessa vindsträvors uppgift är att ta upp last i form av vind från långsidan samt snedställningslasten som uppkommer via pelarens upplagsreaktion. I både fall två och tre kommer hälften av snedställningskraften att gå till ena gaveln och den andra hälften till den andra. Vad gäller vindlasten så kommer 1/2 respektive 3/8 av vindlasten från långsidan att gå till vindsträvorna för fall två respektive fall tre. 25 Av denna vindlast kommer hälften att gå till ena gaveln och den andra hälften till den andra. Nedan visas en bild på hur mycket av vindlasten som går till vindsträvorna. Figur 4.11 Fördelning av vindlast för fall två respektive fall tre Den totala kraften på vindsträvan beräknas utifrån den totala snedställningslasten samt utvändig och invändig vindlast som angriper långsidan. Figur 4.12 Totala kraften som angriper vindsträvorna för fall två och fall tre 25 P. Johannesson & B. Vretblad, 2006, kap , s

31 där är snedställningskraften på en vindsträva är den dimensionerande kraften från vinden på en vindsträva Se tabell nedan för total kraft på vindsträva. Uträkningar återfinns i bilaga 4. pelarhöjd (m) F en vindsträva () F en vindsträva () 6,5 113,3 49,6 8,5 151,6 59,9 10,5 194,1 72,6 12,5 240,6 86,6 14,5 289,1 101,1 Tabell 4.7 Total kraft på vindsträvan för fall två med vindhastigheten 24 m/s, terrängtyp II pelarhöjd (m) F en vindsträva () F en vindsträva () ,3 61, ,2 75, ,2 93, ,7 111, ,3 130,0 Tabell 4.8 Total kraft på vindsträvan för fall två med vindhastigheten 26 m/s, terrängtyp I pelarhöjd (m) F en vindsträva () F en vindsträva () ,4 42, ,7 49, ,6 59, ,5 69, ,8 80,6 Tabell 4.9 Total kraft på vindsträva för fall tre med vindhastigheten 24 m/s, terrängtyp II 21

32 pelarhöjd (m) F en vindsträva () F en vindsträva () ,4 51, ,2 61, ,7 74, ,0 88, ,0 102,3 Tabell 4.10 Total kraft på vindsträvan för fall tre med vindhastigheten 26 m/s, terrängtyp I 4.6 Kryptal Kryptalet beror på fuktigheten i omgivningen, bärverkets dimensioner och betongens sammansättning. Den påverkas också av hur betongen reagerar vid pålastning samt belastningens varaktighet och storlek. 26 Beräkning av kryptal: 27 där är det nominella kryptalet, som kan uppskattas enligt följande: är en faktor som beaktar inverkan av relativ luftfuktighet: [ ] ( ) ( ) är relativ luftfuktighet i omgivande miljö (%) är bärverksdelens ekvivalenta tjocklek (mm): är tvärsnittsarean är den del av tvärsnittets omkrets som är i kontakt med luft 26 Eurokod , kap (1), s Eurokod , Bilaga 2, s

33 är en faktor som beaktar inverkan av betongens hållfasthet: är betongens medeltryckhållfasthet vid 28 dagars ålder (MPa) är faktor som beaktar inverkan av betongens ålder vid pålastning, t 0 : är betongens ålder vid pålastning, i dagar är en koefficient som beskriver krypningens utveckling med tiden efter pålastning: [ ] t är betongens ålder vid betraktad tidpunkt, i dagar är en koefficient: [ ] ( ) Beräkningarna kommer utföras på tre olika tvärsnitt. Därefter kommer ett medelvärde att beräknas och användas för alla beräkningar. Pålastningstiden kommer att vara 30 dagar och belastningstiden dagar. Placeringen av betongpelarna är inomhus med relativ fuktighet på 50 %. är beräknad till 48 MPa utifrån betongklass. Resultatet för kryptalet redovisas i tabellen nedan och beräkningar återfinns i bilaga 5. Tvärsnitt (b x h) 300 x 500 mm 1,596 2,425 0,4821 0, x 600 mm 1,544 2,425 0,4821 0, x 700 mm 1,506 2,425 0,4821 0,9812 Tabell 4.11 Kryptal för tre olika tvärsnitt Utifrån dessa beräkningar har ett kryptal på 1.6 valts att användas i beräkningarna i Ramanalys. 23

34 4.7 Krympning Total krympning består av två komponenter, uttorkningskrympning och autogen krympning. Uttorkningskrympningen är en funktion av vattentransporten genom den hårdnande betongen och den utbildas långsamt. Autogen krympning sker då betongen hårdnar. 28 Bräkning av krympning: 29 = + där är total krympning är uttorkningskrympning och beräknas enligt nedan är en koefficient som beror på den fiktiva tjockleken h 0 t t s är betongens ålder vid betraktad tidpunkt, i dagar är betongens ålder (dagar) vid början av uttorkningskrympningen (eller svällningen). Detta är normalt vid slutet av efterbehandlingen. är autogen krympning och beräknas enligt nedan Beräkningarna kommer precis som kryptalet att utföras på tre olika tvärsnitt. Ett medelvärde av dessa värden kommer användas för alla beräkningar. Betongens ålder vid början av svällningen har satts till noll dagar. 28 Eurokod , kap , s Eurokod , (3,8), Bilaga B, s 28 24

35 Resultatet för krympningen redovisas i tabellen nedan och uträkningarna återfinns i bilaga 6. Tvärsnitt (b x h) ( ) 300 x 500 mm 0,3609 0, x 600 mm 0,3352 0, x 700 mm 0,3121 0,31 Tabell 4.12 Krympning för tre olika tvärsnitt Utifrån dessa beräkningar har en krympning på 0,34 valts att användas i beräkningarna i Ramanalys. 25

36 5. Resultat I Ramanalys kommer alla de yttre lasterna samt kryptal och krympning, vilket har räknats fram, att läggas in manuellt. Programmet räknar sedan automatiskt ut stödreaktioner, armering, tvärsnitt, deformationer och utnyttjandegrad. Beroende på vilket tvärsnitt och armering som används kommer utnyttjandegraden att variera. Målet är att utnyttjandegraden ska vara så nära 100 % som möjligt. Den får dock inte vara större än 100 %, för då klarar inte pelaren av de laster som den ska dimensioneras för. Man måste även kontrollera så att deformationen inte överstiger de krav som ställs, dvs. /150 i karakteristisk lastkombination. Alla resultat över beräkningarna återfinns i bilaga sju. Värden i den bilagan gällande deformation, är den deformation som är störst i pelaren. I fall ett kommer deformationen vara som störst i toppen, för fall två i mitten av pelaren och för fall tre 42 % av längden från toppen. 5.1 Dimensionering av pelare i Ramanalys Dimensionen på pelaren har räknats fram i Ramanalys efter att all data gällande laster, kryptal och krympning blivit inlagda i programmet. Hänsyn har tagits till det som beskrivits ovan, dvs. att deformationskraven ska klaras samt att utnyttjandegraden ska ligga så nära 100 %. På så sätt har en optimal tvärsnittsdimension tagits fram. Som beskrivits ovan så återfinns beräkningarna på detta i bilaga 7, men du hittar även resultatet av stödreaktionerna i kap. 5.3 samt armering och tvärsnitt i kap Dimensionering av vindsträvor i Ramanalys Vindsträvan kommer att ta upp den last som räknats fram tidigare i rapporten. Denna last lades in i Ramanalys och en dimension på vindsträvan räknades fram. Till att börja med gjordes en förenklad beräkningsmodell, för att lättare räkna ut dimensionen på vindsträvan. Se illustration nedan. Figur 5.1 illustration av beräkningsmodell 26

37 Som figuren visar på föregående sida, så rätades vindsträvan upp vertikalt och sågs som en pelare. Nedan visas en tabell över resultatet av lasten på vindsträvan. Pelarlängd (m) Längd sträva (m) Kraft i vindsträva (kn) VKR-profil Vikt 6,5 9,19 160,2 150x ,5 12,02 214,4 180x ,5 14,85 275,4 250x ,5 17,68 340,3 250x ,5 20,50 408,8 400x200-12, Tabell 5.1 Last på vindsträva i fall två med vindhastigheten 24 m/s, terrängtyp II Pelarlängd (m) Längd sträva (m) Kraft i vindsträva (kn) VKR-profil Vikt 6,5 9,19 216,8 150x ,5 12,02 288,8 200x ,5 14,85 370,8 200x200-12, ,5 17,68 456,4 400x ,5 20,50 544,9 300x Tabell 5.2 Last på vindsträva i fall två med vindhastigheten 26 m/s, terrängtyp II Pelarlängd (m) Längd sträva (m) Kraft i vindsträva (kn) VKR-profil Vikt 6,5 9,19 126,4 140x ,5 12,02 166,5 180x180-6, ,5 14,85 211,6 200x ,5 17,68 260,9 220x ,5 20,50 312,3 250x Tabell 5.3 Last på vindsträva i fall tre med vindhastigheten 24 m/s, terrängtyp II Pelarlängd (m) Längd sträva (m) Kraft i vindsträva (kn) VKR-profil Vikt 6,5 9,19 168,9 140x ,5 12,02 222,3 200x200-6, ,5 14,85 283,8 200x200-12, ,5 17,68 347,9 300x ,5 20,50 114,4 400x200-12, Tabell 5.4 Last på vindsträva i fall tre med vindhastigheten 26 m/s, terrängtyp I 27

38 5.3 Dimensionering av holkar Som det sagts tidigare i rapporten så kommer grundläggningen att ske med holkar. Friktionsvinkeln för undergrunden är vald till 28. Fyra olika typer av standardholkar har använts; HG 12/15, HG 15/18, HG 18/20 samt HG 24/24. Vikten för holkarna är 800 kg, 1200 kg, 1500 kg resp kg. Siffrorna i de olika typerna av holkar beskriver längd och bredd i cm. Nedan visas illustrativt hur en av dessa fyra holkar är uppbyggd. Figur 5.2 Illustration av holk Holkarna väljs med hjälp av interaktionsdiagram från Abetong, där normalkraften är på x-axeln och momentet på y-axeln. Genom att ha normalkraften och momentet kända, kan man välja en holk som klarar dessa krafter. För tre lastfall har inte standardholkarna räckt till. För 24 m/s och längden 14,5 m har den största holken valts samt en påläggningsprocent på 20 % av vikten. Denna holk har även valts för 26 m/s och längden 12,5 m samt 14,5 m. I dessa båda fall har även en påläggningsprocent lagts på till vikten och här läggs det på 10 % respektive 30 %. Denna påläggnings-procent har tagits fram utifrån storleken av momentet. En uppskattning har 28

39 gjorts av våra handledare Göran Östergaard och Stefan Havner på Abetong, utifrån föregående storlek på pelare och holk. Därefter har en procentsats av den totala massan av betongen tagits fram och lagts till den största holken. Detta för att få tillräcklig med betong för att klara av momenten och normalkraften som uppkommer i dessa pelare. Pelarlängd (m) Normalkraft (kn) Moment (knm) Typ av holk Vikt av holk 6,5 302,0 105,4 HG 15/ ,5 314,9 177,0 HG 18/ ,5 331,2 269,3 HG 24/ ,5 373,1 404,9 HG 24/ ,5 387,2 571,2 HG 24/ % 3840 Tabell 5.5 Val av holk för fall ett med vindhastigheten 24 m/s, terrängtyp I Pelarlängd (m) Normalkraft (kn) Moment (knm) Typ av holk Vikt av holk 6,5 307,8 135,1 HG 15/ ,5 322,4 227,5 HG 24/ ,5 346,6 356,9 HG 24/ ,5 373,1 523,7 HG 24/ % ,5 464,1 840,5 HG 24/ % 4160 Tabell 5.6 Val av holk för fall ett med vindhastigheten 26 m/s, terrängtyp I Pelarlängd (m) Normalkraft (kn) Moment (knm) Typ av holk Vikt av holk 6,5 296,8 0 HG 12/ ,5 307,3 0 HG 12/ ,5 312,6 0 HG 12/ ,5 329,0 0 HG 12/ ,5 336,0 0 HG 12/ Tabell 5.7 Val av holk för fall två med vindhastigheten 24 m/s, terrängtyp II Pelarlängd (m) Normalkraft (kn) Moment (knm) Typ av holk Vikt av holk 6,5 296,8 0 HG 12/ ,5 307,3 0 HG 12/ ,5 321,9 0 HG 12/ ,5 329,0 0 HG 12/ ,5 348,8 0 HG 12/ Tabell 5.8 Val av holk för fall två med vindhastigheten 26 m/s, terrängtyp I 29

40 Pelarlängd (m) Normalkraft (kn) Moment (knm) Typ av holk Vikt av holk 6,5 296,8 41,6 HG 12/ ,5 307,3 68,4 HG 12/ ,5 321,9 96,7 HG 15/ ,5 340,0 130,5 HG 15/ ,5 370,2 172,8 HG 18/ Tabell 5.9 Val av holk för fall tre med vindhastigheten 24 m/s, terrängtyp II Pelarlängd (m) Normalkraft (kn) Moment (knm) Typ av holk Vikt av holk 6,5 296,8 54,2 HG 12/ ,5 307,3 88,8 HG 15/ ,5 321,9 129,4 HG 15/ ,5 340,0 177,8 HG 18/ ,5 370,2 249,6 HG 24/ Tabell 5.10 Val av holk för fall ett med vindhastigheten 26 m/s, terrängtyp I 5.4 Sammanställda resultat av vikt betong och stål Nedan redovisas sammanställda resultat över total vikt betong och total vikt stål. I total vikt betong beräknas summan av tvärsnittet och holken. Dessa båda multipliceras med 28, i och med att byggnaden innehåller 28 pelare. I total vikt stål beräknas summan av armeringen och vindsträvan. Armeringen multipliceras med 28, i och med 28 pelare och vindsträvan multipliceras med 2, i och med en vindsträva i varje gavel. Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,56 2, ,85 2, ,85 1,03 Tabell 5.11 Pelare 6,5 meter med vindhastighet 24 m/s, terrängtyp II Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,40 5, ,96 4, ,96 2,31 Tabell 5.12 Pelare 8,5 meter med vindhastighet 24 m/s, terrängtyp II 30

41 Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,86 7, ,96 8, ,80 3,27 Tabell 5.13 Pelare 10,5 meter med vindhastighet 24 m/s, terrängtyp II Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,60 10, ,40 9, ,86 6,66 Tabell 5.14 Pelare 12,5 meter med vindhastighet 24 m/s, terrängtyp II Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,12 20, ,40 17, ,00 8,17 Tabell 5.15 Pelare 14,5 meter med vindhastighet 24 m/s, terrängtyp II Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,20 2, ,85 2, ,85 1,75 Tabell 5.16 Pelare 6,5 meter med vindhastighet 26 m/s, terrängtyp I Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,86 2, ,96 4, ,16 3,91 Tabell 5.17 Pelare 8,5 meter med vindhastighet 26 m/s, terrängtyp I 31

42 Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,60 10, ,40 6, ,80 4,94 Tabell 5.18 Pelare 10,5 meter med vindhastighet 26 m/s, terrängtyp I Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,56 13, ,40 11, ,26 7,05 Tabell 5.19 Pelare 12,5 meter med vindhastighet 26 m/s, terrängtyp I Fall Tvärsnitt Holk Armering Vindsträva Betong total (ton) Stål total (ton) ,78 23, ,66 16, ,60 10,95 Tabell 5.20 Pelare 14,5 meter med vindhastighet 26 m/s, terrängtyp I 32

43 6. Slutsats Utifrån beräkningarna i Ramanalys har resultatet sammanställts i ett flertal tabeller. I dessa tabeller är summa vikt betong och summa vikt stål för hela byggnaden beräknade, se föregående tabell För att kunna jämföra de tre fallen som rapporten består av, har ett prismässigt förhållande mellan betongen och stålet tagits fram. Betongens vikt multipliceras med 500 kr/ton och stålets vikt multipliceras med 8000 kr/ton. Genom dessa jämförelsetal kan man lätt se vilket av de tre fallen blir mest gynnsamt vid respektive pelarlängd. Två diagram har tagits fram för att spegla detta på ett enkelt sätt. Ett avser värden för 24 m/s terrängtyp II och ett för 26 m/s terrängtyp I. Ur dessa diagram är då tanken att man lätt ska kunna utläsa vilket av de tre fallen som är mest gynnsamt vid respektive pelarlängd. Nedan visas de båda diagrammen. Figur 6.1 Jämförelsetal för vindhastigheten 24m/s terrängtyp II Figur 6.2 Jämförelsetal för vindhastigheten 26m/s terrängtyp I 33

44 Diagrammet för vindhastigheten 24 m/s och terrängtyp II är det tredje fallet för det mesta gynnsamt. Det sker dock en liten förändring vid pelarlängd 12,5 m, där det andra fallet blir mer gynnsamt. Skillnaden är dock så pass liten att man kan bortse från detta. Vad det gäller diagrammet med 26m/s i vindhastighet så kan man utläsa att fram till en pelarlängd på 12,5 m så är det tredje fallet mest gynnsamt. För pelarlängden 14,5 m blir det andra fallet mest gynnsamt. Kontentan av detta arbete bli därmed att det tredje fallet är mest gynnsamt vid de flesta pelarlängder. Fall två är mest gynnsamt vid några enstaka fall medan fall ett aldrig är gynnsam. Samtidigt måste man ha i åtanke att andra viktiga parametrar måste vägas in för att det mest gynnsamma fallet ska kunna utses. Viktiga parametrar kan vara hur det monteras på plats och vilka maskiner som behövs, hur lång tid det tar att montera, olika infästningar m.m. Det finns alltså fler aspekter att ta hänsyn till och lägga in i kalkylen då det gynnsammaste fallet ska tas fram. 34

45 Källor Böcker: T. Höglund, Stabilisering genom skivverkan, Stålbyggnadsinstitutet, ISBN: Västervik, 2000 P. Johannesson & B. Vretblad, Byggformler och tabeller, Liber AB, ISBN: Malmö, 2006 H. Johnsson, L. Stehn, A. Björnfot, Kompendium i träbyggnad, avdelningen för byggkonstruktion, Luleå tekniska universitet, 2007 T. Isaksson, A. Mårtensson, S. Thelandersson, Byggkonstruktion baserad på Eurokod, Studentlitteratur, 2010 G. Östergaard, Laster och stomstabilisering teorikompendium, Högskolan Halmstad, 2002 rev Eurokod: Grundläggande dimensioneringsregler, Svensk standard, SS-EN 1990, 2002 Eurokod 1: Laster på bärverk Del 1-3: Allmänna laster Snölast, Svensk standard, SS-EN , 2003 Eurokod 1: Laster på bärverk Del 1-4: Allmänna laster Vindlast, Svensk standard, SS-EN , 2005 Eurokod 2: Dimensionering av betongkonstruktioner Del 1-1: Allmänna regler och regler för byggnader, SS-EN , 2005 EKS 7: Boverkets författarsamling BFS 2010:28, 2010 Elektroniska källor: Eurokoder De nya dimensioneringsreglerna för bärverk, hämtad : Eurokoder SIS/TK 203, Nationella bilagor, hämtad : ItemID=6214 Kontinuitetsfaktor vid dimensionering av takbalkar, hämtad : Standardbalkar SIB/f 35

46 Bilaga 1: Vindlast Pelarlängd: 6,5m h = 6,5+1,2 = 7,7m Utvändig vindlast = = 0,32 Formfaktor: Lovartsida: 0,7+0,07 ( ) = 0,71 Läsida: 0,3+0,07( ) = (-)0,32 Invändig vindlast Formfaktor: 0,2 Fall 1 ( =24 m/s, terrängtyp II) =0,59 + 3,7( )= 0,72KN/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,71 0,72 6 = 3,07 kn/m 0,32 0,72 6 = 1,38 kn/m 0,2 0,72 6 = 0,86 kn/m Fall 2 ( =26 m/s, terrängtyp I) =0,87+3,7( ) = 1,02KN/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,71 1,02 6 = 4,35 kn/m 0,32 1,02 6 = 1,96 kn/m 0,2 1,02 6 = 1,22 kn/m 36

47 Pelarlängd: 8,5m h = 8,5+1,2 = 9,7m Utvändig vindlast = = 0,40 Formfaktor: Lovartsida: 0,7+0,15 ( ) = 0,72 Läsida: 0,3+0,15( ) = (-)0,34 Invändig vindlast Formfaktor: 0,2 Fall 1 ( =24 m/s, terrängtyp II) =0,73 + 1,7( )= 0,77KN/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,72 0,77 6 = 3,33 kn/m 0,34 0,77 6 = 1,57 kn/m 0,2 0,77 6 = 0,92 kn/m Fall 2 ( =26 m/s, terrängtyp I) =1,03+1,7( ) = 1,07 kn/ Total utvändig och invändig last på pelaren Utvändig lovartsida: 0,72 1,07 6 = 4,62 kn/m Utvändig läsida: 0,34 1,07 6 = 2.18 kn/m Invändig lovartsida: 0,2 1,07 6 = 1.28 kn/m Pelarlängd: 10,5m h = 10,5+1,2 =11,7m 37

48 Utvändig vindlast = = 0,49 Formfaktor: Lovartsida: 0,7+0,24 ( ) = 0,73 Läsida: 0,3+0,24( ) = (-)0,36 Invändig vindlast Formfaktor: 0,2 Fall 1 ( =24 m/s, terrängtyp II) =0,73 + 3,7( )= 0,81 kn/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,73 0,81 6 = 3,55 kn/m 0,36 0,81 6 = 1,75 kn/m 0,2 0,81 6 = 0,97 kn/m Fall 2 ( =26 m/s, terrängtyp I) =1,03+3,7( ) = 1,12 kn/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,73 1,12 6 = 4,91 kn/m 0,36 1,12 6 =2,42 kn/m 0,2 1,12 6 = 1,34 kn/m Pelarlängd: 12,5m h = 12,5+1,2 = 13,7m Utvändig vindlast 38

49 = = 0,57 Formfaktor: Lovartsida: 0,7+0,32 ( ) = 0,74 Läsida: 0,3+0,32( ) = (-)0,39 Invändig vindlast Formfaktor: 0,2 Fall 1 ( =24 m/s, terrängtyp II) =0,82 + 1,7( )= 0,85 kn/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,74 0,85 6 = 3,77 kn/m 0,39 0,85 6 = 1,99 kn/m 0,2 0,85 6 = 1,02 kn/m Fall 2 ( =26 m/s, terrängtyp I) =1,13+1,7( ) = 1,16 kn/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,74 1,16 6 = 5,15 kn/m 0,39 1,16 6 =2,71 kn/m 0,2 1,16 6 = 1,39 kn/m Pelarlängd: 14,5m h = 14,5+1,2 = 15,7m Utvändig vindlast = = 0,65 39

50 Formfaktor: Lovartsida: 0,7+0,4 ( ) = 0,75 Läsida: 0,3+0,4( ) = (-)0,41 Invändig vindlast Formfaktor: 0,2 Fall 1 ( =24 m/s, terrängtyp II) =0,82 + 3,7( )= 0,88 kn/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,75 0,88 6 = 3,96 kn/m 0,41 0,88 6 = 2,16 kn/m 0,2 0,88 6 = 1,06 kn/m Fall 2 ( =26 m/s, terrängtyp I) =1,13+3,7( ) = 1,19 kn/ Total utvändig och invändig last på pelaren Utvändig lovartsida: Utvändig läsida: Invändig: 0,75 1,19 6 = 5,36 kn/m 0,41 1,19 6 =2,93 kn/m 0,2 1,19 6 = 1,43 kn/m 40

51 Bilaga 2: Snedställning Fall 1 Snedställningskraft för stabiliserande system Beräkning av Normalkraft för stabiliserande system 6.10 a: 6.10 b (Snö HL): 6.10 b (Vind HL): Pelarlängd: 6,5m Ɩ = 6,5+1,2 = 7,7 m m = 2 st = = 0,8660 = = 0, 7207 = = 0,005 0,7207 0,8660 = 0,0031 = N = 0, ,3 = 1,49 kn = N = 0, ,7 = 1,77 kn = N = 0, ,6 = 1,41 kn Pelarlängd: 8,5m, 10,5m, 12,5m, 14,5m Ɩ= 8,5+1,2 = 9,7m m = 2 st = = 0, 8660 = = 0,67 (min. värde) = = 0,005 0,8660 = 0,0029 = N = 0, ,3 = 1,39 kn 41

52 = N = 0, ,7 = 1,65 kn = N = 0, ,6 = 1,32 kn Fall 2 och 3 Snedställningskraften som belastar vindsträvorna Beräkning av Normalkraft för enstaka konstruktionsdelar fall 2 & a: 6.10 b (Snö HL): 6.10 b (Vind HL): Pelarlängd: 6,5m Ɩ= 6,5+1,2 = 7,7m = = 0,7196 = = 0,7207 = = 0,005 0,7207 0,7196 = 0,0026 = 2 N = 2 0, ,3 = 34,9 kn = 2 N = 2 0, ,3 = 41,5 kn = 2 N =2 0, ,6 =33,2 kn Pelarlängd: 8,5m, 10,5m, 12,5m, 14,5m Ɩ= 8,5+1,2 = 9,7m = = 0,7196 = = 0,67 (min. värde) = = 0,005 0,67 0,7196 = 0,0024 = 2 N = 2 0, ,3 = 32,2 kn = 2 N = 2 0, ,3 = 38,3 kn = 2 N =2 0, ,6 = 30,6 kn 42

53 Bilaga 3: Initialkrokighet Fall 1 - stabiliserande system samt enskild bärverksdel Pelarlängd: 6,5m = 0, = 6,5 + 1,18 = 7,7m = = 0, ,7 = 0,024 = = 642 Pelarlängd: 8,5m = 0, = 8,5 + 1,18 = 9,7m = = 0, ,7 = 0,028 = = 693 Pelarlängd: 10,5m = 0, = 43

54 10,5 + 1,18 = 11,7m = = 0, ,7 = 0,0338 = = 603 Pelarlängd: 12,5m = 0, = 12,5 + 1,18 = 13,7m = = 0, ,7 = 0,0396 = = 692 Pelarlängd: 14,5m = 0, = 14,5 + 1,18 = 15,7m = = 0, ,7 = 0,00453 = = 693 Medelvärde: =

55 Bilaga 4: Vindsträva Den totala snedställningslasten är redan beräknad och återfinns i bilaga 2. Av denna snedställningslast går hälften till varje vindsträva. Pelarlängd 6,5m Vind HL: Snö HL: Pelarlängd 8,5m, 10,5m, 12,5m, 14,5m Vind HL: Snö HL: Fall 2 Av vindlasten på långsidan i fall två går 1/2 till vindsträvorna. Av denna vindlast går hälften till varje vindsträva. Vindhastighet 24m/s och terrängtyp II: Pelarlängd 6,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): Pelarlängd 8,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: 45

56 Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): Pelarlängd 10,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): Pelarlängd 12,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): Pelarlängd 14,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): 46

57 Vindhastighet 26m/s och terrängtyp I: Pelarlängd 6,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): Pelarlängd 8,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): Pelarlängd 10,5m Vind på långsida: Vind som belastar vindsträvorna: Vind HL: Snö HL: Kraft som belastar en vindsträva (): Kraft som belastar en vindsträva (): Pelarlängd 12,5m Vind på långsida: Vind som belastar vindsträvorna: 47

Betongkonstruktion BYGC11 (7,5hp)

Betongkonstruktion BYGC11 (7,5hp) Karlstads universitet 1(11) Betongkonstruktion BYGC11 (7,5hp) Tentamen Tid Fredag 17/01 2014 kl. 14.00 19.00 Plats Universitetets skrivsal Ansvarig Asaad Almssad tel 0736 19 2019 Carina Rehnström tel 070

Läs mer

Laster Lastnedräkning OSKAR LARSSON

Laster Lastnedräkning OSKAR LARSSON Laster Lastnedräkning OSKAR LARSSON 1 Partialkoefficientmetoden Den metod som används oftast för att ta hänsyn till osäkerheter när vi dimensionerar Varje variabel får sin egen (partiell) säkerhetsfaktor

Läs mer

Laster och lastnedräkning. Konstruktionsteknik - Byggsystem

Laster och lastnedräkning. Konstruktionsteknik - Byggsystem Laster och lastnedräkning Konstruktionsteknik - Byggsystem Brygghuset Del 2 Gör klart det alternativ ni valt att jobba med! Upprätta konstruktionshandlingar Reducerad omfattning Lastnedräkning i stommen

Läs mer

VSMF10 Byggnadskonstruktion 9 hp VT15

VSMF10 Byggnadskonstruktion 9 hp VT15 VSMF10 Byggnadskonstruktion 9 hp VT15 F1-F3: Bärande konstruktioners säkerhet och funktion 1 Krav på konstruktioner Säkerhet mot brott Lokalt (balk, pelare etc får ej brista) Globalt (stabilitet, hus får

Läs mer

Stomstabilisering KAPITEL 4 DEL 1

Stomstabilisering KAPITEL 4 DEL 1 Stomstabilisering KAPITEL 4 DEL 1 Stomstabilisering Innebär att man ser till att byggnaden klarar de horisontella krafter som den utsätts för Horisontella laster De viktigaste horisontella lasterna i Sverige

Läs mer

I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av

I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av Uppgift 2 I figuren nedan visas en ritning över stommen till ett bostadshus. Stommen ska bestå av fackverkstakstol i trä, centrumavstånd mellan takstolarna 1200 mm, lutning 4. träreglar i väggarna, centrumavstånd

Läs mer

Exempel 7: Stagningssystem

Exempel 7: Stagningssystem 20,00 7.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera stagningssstemet enligt nedan. Sstemet stagar konstruktionen som beräknas i exempel 2. Väggens stagningssstem 5,00 Takets stagningssstem

Läs mer

Olle Bywall & Paul Saad Examensarbete Karlstads Universitet

Olle Bywall & Paul Saad Examensarbete Karlstads Universitet Innehåll, Bilaga 1 Lastberäkningar... 2 Egentyngd... 2 Nyttiglast... 2 Snölast... 3 Vindlast... 5 Väggdimensionering... 8 steg 1: Dimensionering från tak... 8 steg 2: Dimensionering från våning 5... 11

Läs mer

Moment och normalkraft

Moment och normalkraft Moment och normalkraft Betong Konstruktionsteknik LTH 1 Pelare Främsta uppgift är att bära normalkraft. Konstruktionsteknik LTH 2 Pelare Typer Korta stubbiga pelare: Bärförmågan beror av hållfasthet och

Läs mer

Projekteringsanvisning

Projekteringsanvisning Projekteringsanvisning 1 Projekteringsanvisning Den bärande stommen i ett hus med IsoTimber dimensioneras av byggnadskonstruktören enligt Eurokod. Denna projekteringsanvisning är avsedd att användas som

Läs mer

Betongkonstruktion BYGC11 (7,5hp)

Betongkonstruktion BYGC11 (7,5hp) Karlstads universitet 1(12) Betongkonstruktion BYGC11 (7,5hp) Tentamen Tid Torsdag 17/1 2013 kl 14.00 19.00 Plats Universitetets skrivsal Ansvarig Asaad Almssad tel 0736 19 2019 Carina Rehnström tel 070

Läs mer

Eurokod lastkombinering exempel. Eurocode Software AB

Eurokod lastkombinering exempel. Eurocode Software AB Eurokod lastkombinering exempel Eurocode Software AB Nybyggnad Lager & Kontor Stålöverbyggnad med total bredd 24 m, total längd 64 m. Invändig fri höjd uk takbalk 5,6m. Sadeltak med taklutning 1:10. Fasader

Läs mer

Beräkningsstrategier för murverkskonstruktioner

Beräkningsstrategier för murverkskonstruktioner Beräkningsstrategier för murverkskonstruktioner Tomas Gustavsson TG konstruktioner AB 2017-06-08 Dimensionerande lastfall ofta endera av: 1. Vindlast mot fasad + min vertikallast 2. Max vertikallast +

Läs mer

Tentamen i. Konstruktionsteknik. 26 maj 2009 kl

Tentamen i. Konstruktionsteknik. 26 maj 2009 kl Bygg och Miljöteknolo gi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 26 maj 2009 kl. 8.00 13.00 Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter kan

Läs mer

Tentamen i Konstruktionsteknik

Tentamen i Konstruktionsteknik Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 3 Juni 2013 kl. 8.00 13.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter

Läs mer

4.3. 498 Gyproc Handbok 7 Gyproc Teknik. Statik. Bärförmåga hos Gyproc GFR DUROnomic Regel. Dimensioneringsvärden för transversallast och axiallast

4.3. 498 Gyproc Handbok 7 Gyproc Teknik. Statik. Bärförmåga hos Gyproc GFR DUROnomic Regel. Dimensioneringsvärden för transversallast och axiallast .3 Dimensionering av Gyproc DUROnomic Bärförmåga hos Gyproc GFR DUROnomic Regel Dimensioneringsvärden för transversallast och axiallast Gyproc GFR Duronomic förstärkningsreglar kan uppta såväl transversallaster

Läs mer

www.eurocodesoftware.se

www.eurocodesoftware.se www.eurocodesoftware.se caeec220 Pelare betong Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual Rev

Läs mer

1. Dimensionering och utformning av hallbyggnad i limträ

1. Dimensionering och utformning av hallbyggnad i limträ Tillämpad fysik och elektronik/ Byggteknik Fördjupningskurs i byggkonstruktion Annika Moström 2014 Sid 1 (5) Konstruktionsuppgift : Limträhall 1. Dimensionering och utformning av hallbyggnad i limträ Uppgiften

Läs mer

BYGGNADSKONSTRUKTION IV

BYGGNADSKONSTRUKTION IV 2006-01-28 BYGGNADSKONSTRUKTION IV Konstruktionsuppgift 2: Dimensionering och utformning av hallbyggnad i limträ Datablad Snözon... Åsavstånd a =... m Takbalksavstånd b =... m Egentyngd av yttertak g =...

Läs mer

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg Pelare ÖVNING 27 Pelaren i figuren nedan i brottgränstillståndet belastas med en centriskt placerad normalkraft 850. Kontrollera om pelarens bärförmåga är tillräcklig. Betong C30/37, b 350, 350, c 50,

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-08-8 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast.

1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik Uppgifter 2016-08-26 Träkonstruktioner 1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast.

Läs mer

Konstruktionsuppgift i byggnadsmekanik II. Flervåningsbyggnad i stål. Anders Andersson Malin Bengtsson

Konstruktionsuppgift i byggnadsmekanik II. Flervåningsbyggnad i stål. Anders Andersson Malin Bengtsson Konstruktionsuppgift i byggnadsmekanik II Flervåningsbyggnad i stål Anders Andersson Malin Bengtsson SAMMANFATTNING Syftet med projektet har varit att dimensionera en flervåningsbyggnad i stål utifrån

Läs mer

Tentamen i Konstruktionsteknik

Tentamen i Konstruktionsteknik Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 5 Juni 2015 kl. 14.00-19.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamling Räknedosa OBS! I vissa uppgifter

Läs mer

TENTAMEN I KURSEN TRÄBYGGNAD

TENTAMEN I KURSEN TRÄBYGGNAD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-05-11 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken

Läs mer

Karlstads universitet 1(7) Byggteknik

Karlstads universitet 1(7) Byggteknik Karlstads universitet 1(7) Träkonstruktion BYGB21 5 hp Tentamen Tid Lördag 28 november 2015 kl 9.00-14.00 Plats Universitetets skrivsal Ansvarig Kenny Pettersson, tel 0738 16 16 91 Hjälpmedel Miniräknare

Läs mer

TENTAMEN I KURSEN TRÄBYGGNAD

TENTAMEN I KURSEN TRÄBYGGNAD UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-03-7 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken

Läs mer

Tentamen i Konstruktionsteknik

Tentamen i Konstruktionsteknik Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 2 Juni 2014 kl. 14.00-19.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter

Läs mer

Karlstads universitet 1(7) Byggteknik. Carina Rehnström

Karlstads universitet 1(7) Byggteknik. Carina Rehnström Karlstads universitet 1(7) Träkonstruktion BYGB21 5 hp Tentamen Tid Tisdag 14 juni 2016 kl 8.15-13.15 Plats Ansvarig Hjälpmedel Universitetets skrivsal Kenny Pettersson Carina Rehnström Miniräknare Johannesson

Läs mer

(kommer inte till tentasalen men kan nås på tel )

(kommer inte till tentasalen men kan nås på tel ) Karlstads universitet 1(7) Träkonstruktion BYGB21 5 hp Tentamen Tid Tisdag 13 januari 2015 kl 14.00-19.00 Plats Ansvarig Hjälpmedel Universitetets skrivsal Carina Rehnström (kommer inte till tentasalen

Läs mer

Föreläsning 4 del 1. Stomstabilisering. Konstruktionsteknik, LTH

Föreläsning 4 del 1. Stomstabilisering. Konstruktionsteknik, LTH Föreläsning 4 del 1 Stomstabilisering 1 Laster Stabilisering - allmänt Stomstabilisering Disposition Stabilisering av flervåningsbyggnader Vertikala stabiliserande enheter Bjälklag som styv skiva 2 Stomstabilisering

Läs mer

CAEBSK10 Balkpelare stål

CAEBSK10 Balkpelare stål CAEBSK10 Balkpelare stål Användarmanual 1 Eurocode Software AB Innehåll 1 INLEDNING...3 1.1 TEKNISK BESKRIVNING...3 2 INSTRUKTIONER...3 2.1 KOMMA IGÅNG MED CAEBSK10...4 2.2 INDATA...4 2.2.1 GRUNDDATA...5

Läs mer

Eurokod laster. Eurocode Software AB

Eurokod laster. Eurocode Software AB Eurokod laster Eurocode Software AB Eurokoder SS-EN 1991 Laster SS-EN 1991-1-1 Egentyngd, nyttig last SS-EN 1991-1-2 Termisk och mekanisk påverkan vid brand SS-EN 1991-1-3 Snölast SS-EN 1991-1-4 Vindlast

Läs mer

Betong, normalkraft och moment

Betong, normalkraft och moment Betong, normalkraft och moment Kapitel 3.3.5-6 och 6 i Betongkonstruktion Kapitel 8.3.3, 9.2.3 och 9.3.3 Byggkonstruktion 8 april 2016 Dimensionering av byggnadskonstruktioner 1 Betong: normalkraft och

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Betongbalkar. Böjning. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström. Räkneuppgifter

Betongbalkar. Böjning. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström. Räkneuppgifter UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström Räkneuppgifter 2012-11-15 Betongbalkar Böjning 1. Beräkna momentkapacitet för ett betongtvärsnitt med bredd 150 mm och höjd 400 mm armerad

Läs mer

Vår kontaktperson Direkttelefon E-post

Vår kontaktperson Direkttelefon E-post Vår kontaktperson Direkttelefon E-post Gabriel Kridih, Handläggande konstruktör 2016-04-11 1 (7) 08-560 120 53 gabriel.kridih@btb.se 1 Orientering om projektet 1.1 Allmän information och sammanfattning

Läs mer

caeec205 Stadium I och II Användarmanual Eurocode Software AB

caeec205 Stadium I och II Användarmanual Eurocode Software AB caeec205 Stadium I och II Rutin för beräkning av spänningar och töjningar för olika typer av tvärsnitt, belastade med moment och normalkraft. Hänsyn tas till krympning och krypning. Rev C Eurocode Software

Läs mer

Stålbyggnadsprojektering, SBP-N Tentamen 2015-03-12

Stålbyggnadsprojektering, SBP-N Tentamen 2015-03-12 Godkända hjälpmedel till tentamen 2015 03 12 Allt utdelat kursmaterial samt lösta hemuppgifter Balktabell Miniräknare Aktuell EKS Standarden SS EN 1090 2 Eurokoder Lösningar på utdelade tentamensfrågor

Läs mer

www.eurocodesoftware.se caeec502 Pelare trä Beräkning av laster enligt SS-EN 1991-1-4:2005 och analys av pelare i trä enligt SS-EN 1995-1-1:2004. Användarmanual Rev: A Eurocode Software AB caeec502 Pelare

Läs mer

Eurokoder inledning. Eurocode Software AB

Eurokoder inledning. Eurocode Software AB Eurokoder inledning Eurocode Software AB Eurokoder/Eurocodes Eurokoder (engelska: Eurocodes) är Europagemensamma dimensioneringsregler för byggnadskonstruktion. Dessa får nu i Sverige användas parallellt

Läs mer

Stabilisering och fortskridande ras

Stabilisering och fortskridande ras Stabilisering och fortskridande ras Horisontalstabilisering av byggnader Tålighet mot olyckslaster och fortskridande ras 1 Stabilisering - allmänt Stomstabilisering Disposition Stabilisering av flervåningsbyggnader

Läs mer

caeec204 Sprickvidd Användarmanual Eurocode Software AB

caeec204 Sprickvidd Användarmanual Eurocode Software AB caeec204 Sprickvidd Program för beräkning av sprickvidd för betongtvärsnitt belastade med moment och normalkraft. Resultat är sprickvidd. Användarmanual Rev A Eurocode Software AB caeec204 Sprickvidd Sidan

Läs mer

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION

TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-0-3 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:

Läs mer

Stomdimensionering för Tillbyggnaden av ett Sjukhus en jämförelse mellan BKR och Eurokod

Stomdimensionering för Tillbyggnaden av ett Sjukhus en jämförelse mellan BKR och Eurokod Examensarbete i byggnadsteknik Stomdimensionering för Tillbyggnaden av ett Sjukhus en jämförelse mellan BKR och Eurokod Frame Design for an Additional Building Extension of a Hospital - a comparison between

Läs mer

KONSTRUKTIONSTEKNIK 1

KONSTRUKTIONSTEKNIK 1 KONSTRUKTIONSTEKNIK 1 TENTAMEN Ladokkod: 41B16B-20151-C76V5- NAMN: Personnummer: - Tentamensdatum: 17 mars 2015 Tid: 09:00 13.00 HJÄLPMEDEL: Formelsamling: Konstruktionsteknik I (inklusive här i eget skrivna

Läs mer

Konstruktionsteknik 25 maj 2012 kl Gasquesalen

Konstruktionsteknik 25 maj 2012 kl Gasquesalen Bygg och Miljöteknologi Avdelningen för Konstruktionsteknik Tentamen i Konstruktionsteknik 25 maj 2012 kl. 14.00 19.00 Gasquesalen Tillåtna hjälpmedel: Tabell & Formelsamlingar Räknedosa OBS! I vissa uppgifter

Läs mer

EN 1990 Övergripande om Eurokoder och grundläggande dimensioneringsregler. Inspecta Academy 2014-03-04

EN 1990 Övergripande om Eurokoder och grundläggande dimensioneringsregler. Inspecta Academy 2014-03-04 EN 1990 Övergripande om Eurokoder och grundläggande dimensioneringsregler Inspecta Academy 1 Eurokoder Termer och definitioner Några av definitionerna som används för eurokoderna Byggnadsverk Allting som

Läs mer

Dimensionering av byggnadskonstruktioner. Dimensionering av byggnadskonstruktioner. Förväntade studieresultat. Förväntade studieresultat

Dimensionering av byggnadskonstruktioner. Dimensionering av byggnadskonstruktioner. Förväntade studieresultat. Förväntade studieresultat Dimensionering av Dimensionering av Kursens mål: Kursen behandlar statiskt obestämda konstruktioner såsom ramar och balkar. Vidare behandlas dimensionering av balkar med knäckning, liksom transformationer

Läs mer

Dimensionering i bruksgränstillstånd

Dimensionering i bruksgränstillstånd Dimensionering i bruksgränstillstånd Kapitel 10 Byggkonstruktion 13 april 2016 Dimensionering av byggnadskonstruktioner 1 Bruksgränstillstånd Formändringar Deformationer Svängningar Sprickbildning 13 april

Läs mer

www.eurocodesoftware.se caeec201 Armering Tvärsnitt Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual

Läs mer

Exempel 5: Treledstakstol

Exempel 5: Treledstakstol 5.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera treledstakstolen enligt nedan. Beakta två olika fall: 1. Dragband av limträ. 2. Dragband av stål. 1. Dragband av limträ 2. Dragband av stål

Läs mer

Stomstabilisering KAPITEL 4 DEL 2

Stomstabilisering KAPITEL 4 DEL 2 Stomstabilisering KAPITEL 4 DEL 2 Stomstabilisering Innebär att man ser till att byggnaden klarar de horisontella krafter som den utsätts för Alla laster som verkar på en byggnad måste ledas ner i marken!

Läs mer

Exempel 11: Sammansatt ram

Exempel 11: Sammansatt ram Exempel 11: Sammansatt ram 11.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera den sammansatta ramen enligt nedan. Sammansatt ram Tvärsnitt 8 7 6 5 4 3 2 1 Takåsar Primärbalkar 18 1,80 1,80

Läs mer

caeec201 Armering Tvärsnitt Användarmanual Eurocode Software AB

caeec201 Armering Tvärsnitt Användarmanual Eurocode Software AB caeec201 Armering Tvärsnitt Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual Rev C Eurocode Software

Läs mer

Gyproc Handbok 8 Gyproc Teknik. Statik. 4.3 Statik

Gyproc Handbok 8 Gyproc Teknik. Statik. 4.3 Statik Statik Statik Byggnader uppförda med lättbyggnadsteknik stabiliseras vanligtvis mot horisontella laster, vind eller snedställningskrafter genom att utnyttja väggar och bjälklag som kraftupptagande styva

Läs mer

Beräkningsmall för vindlast enligt Eurokod baserad på väggar och olika taktyper

Beräkningsmall för vindlast enligt Eurokod baserad på väggar och olika taktyper Beräkningsmall för vindlast enligt Eurokod baserad på väggar och olika taktyper Calculation model for wind load according to Eurocode based on walls and different roof types Godkännandedatum: 2014-06-24

Läs mer

Eurokoder är namnet på Europastandarder som innehåller dimensioneringsregler för bärverk till byggnader och anläggningar.

Eurokoder är namnet på Europastandarder som innehåller dimensioneringsregler för bärverk till byggnader och anläggningar. Eurokoder Eurokoder är namnet på Europastandarder som innehåller dimensioneringsregler för bärverk till byggnader och anläggningar. Europeiska konstruktionsstandarder Eurokoderna har ersatt Boverkets och

Läs mer

caeec209 Pelartopp Användarmanual Eurocode Software AB Program för dimensionering av pelartopp. Rev C

caeec209 Pelartopp Användarmanual Eurocode Software AB Program för dimensionering av pelartopp. Rev C caeec209 Pelartopp Program för dimensionering av pelartopp. Rev C Eurocode Software AB caeec209 Pelartopp Sidan 2(13) Innehållsförteckning 1 Inledning...3 1.1 Beteckningar...3 2 Teknisk beskrivning...3

Läs mer

BOVERKETS FÖRFATTNINGSSAMLING Utgivare: Anders Larsson

BOVERKETS FÖRFATTNINGSSAMLING Utgivare: Anders Larsson BOVERKETS FÖRFATTNINGSSAMLING Utgivare: Anders Larsson BFS 2004:10 Boverkets regler om tillämpningen av europeiska beräkningsstandarder (föreskrifter och allmänna råd); Utkom från trycket den 30 juni 2004

Läs mer

caeec220 Pelare betong Användarmanual Eurocode Software AB

caeec220 Pelare betong Användarmanual Eurocode Software AB caeec220 Pelare betong Program för dimensionering av betongtvärsnitt belastade med moment och normalkraft. Resultat är drag-, tryckarmering och effektiv höjd. Användarmanual Rev C Eurocode Software AB

Läs mer

Boverkets författningssamling Utgivare: Förnamn Efternamn

Boverkets författningssamling Utgivare: Förnamn Efternamn Boverkets författningssamling Utgivare: Förnamn Efternamn Boverkets föreskrifter om ändring i verkets föreskrifter och allmänna råd (2011:10) om tillämpning av europeiska konstruktionsstandarder (eurokoder);

Läs mer

Eurokod nyttiglast. Eurocode Software AB

Eurokod nyttiglast. Eurocode Software AB Eurokod nyttiglast Eurocode Software AB Eurokoder SS-EN 1991 Laster SS-EN 1991-1-1 Egentyngd, nyttig last SS-EN 1991-1-2 Termisk och mekanisk påverkan vid brand SS-EN 1991-1-3 Snölast SS-EN 1991-1-4 Vindlast

Läs mer

caeec240 Grundplatta betong Användarmanual Eurocode Software AB Program för dimensionering av grundplattor m h t stjälpning, marktryck och armering.

caeec240 Grundplatta betong Användarmanual Eurocode Software AB Program för dimensionering av grundplattor m h t stjälpning, marktryck och armering. www.eurocodesoftware.se caeec240 Grundplatta betong Program för dimensionering av grundplattor m h t stjälpning, marktryck och armering. Användarmanual Version 1.1 Eurocode Software AB caeec240 Grundplatta

Läs mer

caeec302 Pelare stål Användarmanual Eurocode Software AB

caeec302 Pelare stål Användarmanual Eurocode Software AB caeec302 Pelare stål Beräkning av laster enligt SS-EN 1991-1-4:2005 och analys av pelare i stål enligt SS-EN 1993-1-1:2005. Användarmanual Rev: B Eurocode Software AB caeec302 Pelare stål Sidan 2(24) Innehållsförteckning

Läs mer

Spännbetongkonstruktioner. Dimensionering i brottgränstillståndet

Spännbetongkonstruktioner. Dimensionering i brottgränstillståndet Spännbetongkonstruktioner Dimensionering i brottgränstillståndet Spännarmering Introducerar tryckspänningar i zoner utsatta för dragkrafter q P0 P0 Förespänning kablarna spänns före gjutning Efterspänning

Läs mer

Bromall: Vindlast på bro

Bromall: Vindlast på bro Vindkrafter som verkar på brokonstruktioner och trafik på bro. Rev: A EN 1991-1-4: 2005 TK Bro: 2009-7 VVFS 2009: 19 Innehåll 1 ÖVERBYGGNAD 2 2 UNDERBYGGNAD 4 Sida 2 av 6 Förutsättningar/Begränsningar

Läs mer

Exempel. Inspecta Academy 2014-03-04

Exempel. Inspecta Academy 2014-03-04 Inspecta Academy 1 på stålkonstruktioner I princip alla stålkonstruktioner som består av balkar eller liknande ska dimensioneras enligt Eurocode 3 Vanligaste exempel Byggnader Broar Andra vanliga exempel

Läs mer

www.eurocodesoftware.se

www.eurocodesoftware.se www.eurocodesoftware.se caeec211 Balk betong Dimensionering av balkar i betong enligt SS EN 1992-1-1. Användarmanual Rev B Eurocode Software AB caeec211 Balk betong Sidan 2(27) Innehållsförteckning 1 Inledning...

Läs mer

SEMKO OY OPK-PELARSKOR. Bruks- och konstruktionsdirektiv Konstruktion enligt Eurokod (Svensk NA)

SEMKO OY OPK-PELARSKOR. Bruks- och konstruktionsdirektiv Konstruktion enligt Eurokod (Svensk NA) SEMKO OY -PELARSKOR Bruks- och konstruktionsdirektiv Konstruktion enligt Eurokod (Svensk NA) FMC 41874.134 27.8.2013 2 2 Sisällysluettelo: 1 -PELARSKORNAS FUNKTION...3 2 MATERIAL OCH MÅTT...3 2.1 PELARSKORNAS

Läs mer

Exempel 13: Treledsbåge

Exempel 13: Treledsbåge Exempel 13: Treledsbåge 13.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera treledsbågen enligt nedan. Treledsbåge 84,42 R72,67 12,00 3,00 56,7º 40,00 80,00 40,00 Statisk modell Bestäm tvärsnittets

Läs mer

www.eurocodesoftware.se caeec241 Pålfundament Program för dimensionering av pålfundament. Användarmanual Rev C Eurocode Software AB caeec241 Pålfundament Sidan 2(14) Innehållsförteckning 1 Allmänt... 3

Läs mer

Umeå Universitet Tillämpad fysik och elektronik Byggteknik

Umeå Universitet Tillämpad fysik och elektronik Byggteknik KONSTRUKTIONSUPPGIFT: FLERVÅNINGSBYGGNAD I STÅL 1. SYFTE Syftet med konstruktionsuppgiften är att studenterna skall få övning i att dimensionering av stålkonstruktioner samt se hur en bärande stomme till

Läs mer

Oarmerade väggar utsatta för tvärkraft (skjuvväggar) Stomanalys

Oarmerade väggar utsatta för tvärkraft (skjuvväggar) Stomanalys Oarmerade väggar utsatta för tvärkraft (skjuvväggar) Stomanalys Generellt Beskrivs i SS-EN 1996-1-1, avsnitt 6.2 och avsnitt 5.5.3 I handboken Utformning av murverkskonstruktioner enligt Eurokod 6, beskrivs

Läs mer

EXAMENSARBETE. Stomstabilisering hos prefabricerade betongkonstruktioner i 3D-beräkningsprogram. Carolin Rydberg och Kasper Reiderstedt

EXAMENSARBETE. Stomstabilisering hos prefabricerade betongkonstruktioner i 3D-beräkningsprogram. Carolin Rydberg och Kasper Reiderstedt Byggingenjör 180 hp EXAMENSARBETE Stomstabilisering hos prefabricerade betongkonstruktioner i 3D-beräkningsprogram Carolin Rydberg och Kasper Reiderstedt Byggteknik 15 hp Halmstad 2015-08-05 ABSTRACT Authors:

Läs mer

www.eurocodesoftware.se caeec241 Pålfundament Program för dimensionering av pålfundament. Användarmanual Version B Eurocode Software AB caeec241 Pålfundament Sidan 2(8) Innehållsförteckning 1 Allmänt...

Läs mer

Skivverkan i tak. Board meeting

Skivverkan i tak. Board meeting Skivverkan i tak Stomstabilisering genom skivverkan i tak och samarbetet mellan stom- och plåtkonstruktör - Jörgen Håkansson, Teknisk byggsäljare, EJOT. Stålbyggnadsdagen 27e oktober 2016 Kistamässan Presentation

Läs mer

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg

Betongkonstruktion Facit Övningstal del 2 Asaad Almssad i samarbete med Göran Lindberg Pelare ÖVNING 7 LÖSNING Dimensionerande materialegenskaper Betong C30/37 f cc f cc 30 0 MMM γ c 1,5 E cc E cc 33 γ cc 1, 7,5GGG Armering f yy f k 500 435 MMM γ s 1,15 ε yy f yy 435. 106,17. 10 3 E s 00.

Läs mer

Rapport Utredning befintliga bärande konstruktioner Påbyggnad av centrumfastighet

Rapport Utredning befintliga bärande konstruktioner Påbyggnad av centrumfastighet Rapport Utredning befintliga bärande konstruktioner Påbyggnad av centrumfastighet Beställare (kund): Fittja Centrumfastigheter AB Uppdragsnamn: Utredning Fittja centrum, etapp 1 Uppdragsnummer: 5356-001

Läs mer

SPÄNNINGSFÖRDELNING I ENSKILD BÄRVERKSDEL

SPÄNNINGSFÖRDELNING I ENSKILD BÄRVERKSDEL ISRN-UTH-INGUTB-EX-B-2017/04-SE Examensarbete 15 hp Juni 2017 SPÄNNINGSFÖRDELNING I ENSKILD BÄRVERKSDEL En jämförelse mellan handberäkningar och FEM-design 3D Structure 16 Johannes Ferner Sofia Gustafsson

Läs mer

Följande ska redovisas/dimensioneras

Följande ska redovisas/dimensioneras K-uppgift Följande ska redovisas/dimensioneras Beskriv och dimensionera stomstabiliseringssystem med ingående komponenter (t.ex. vindförband och takplåt). Gör skisser som visar hur lasterna går ner i

Läs mer

Bromall: Lastkombinationer järnvägsbro. Lastkombinering av de olika verkande lasterna vid dimensionering av järnvägsbro.

Bromall: Lastkombinationer järnvägsbro. Lastkombinering av de olika verkande lasterna vid dimensionering av järnvägsbro. Bromallar Eurocode Bromall: Lastkombinationer järnvägsbro Lastkombinering av de olika verkande lasterna vid dimensionering av järnvägsbro. Rev: A EN 1990: 2002 EN 1991-2: 2003 EN 1992-2: 2005 Innehåll

Läs mer

Eurokod lastkombinationer. Eurocode Software AB

Eurokod lastkombinationer. Eurocode Software AB Eurokod lastkombinationer Eurocode Software AB Lastkombination uppsättning av dimensioneringsvärden som används för att verifiera ett bärverks tillförlitlighet för ett gränstillstånd under samtidig påverkan

Läs mer

K-uppgifter Strukturmekanik/Materialmekanik

K-uppgifter Strukturmekanik/Materialmekanik K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.

Läs mer

Exempel 12: Balk med krökt under- och överram

Exempel 12: Balk med krökt under- och överram 6,00 Exempel 12: Exempel 12: 12.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera fackverket med krökt under- och överram enligt nedan. Överram Underram R 235,9 det.2 R 235,9 1,5 det.1 10,00

Läs mer

Exempel 2: Sadelbalk. 2.1 Konstruktion, mått och dimensioneringsunderlag. Exempel 2: Sadelbalk. Dimensionera sadelbalken enligt nedan.

Exempel 2: Sadelbalk. 2.1 Konstruktion, mått och dimensioneringsunderlag. Exempel 2: Sadelbalk. Dimensionera sadelbalken enligt nedan. 2.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera sadelbalken enligt nedan. Sadelbalk X 1 429 3,6 360 6 000 800 10 000 10 000 20 000 Statisk modell Bestäm tvärsnittets mått enligt den preliminära

Läs mer

www.eurocodesoftware.se

www.eurocodesoftware.se www.eurocodesoftware.se caeec209 Pelartopp Program för dimensionering av pelartopp. Användarmanual Rev B Eurocode Software AB caeec209 Pelartopp Sidan 2(12) Innehållsförteckning 1 Inledning... 3 1.1 Beteckningar...

Läs mer

Eurokod 3 del 1-2 Brandteknisk dimensionering av stålkonstruktioner

Eurokod 3 del 1-2 Brandteknisk dimensionering av stålkonstruktioner Eurokod 3 del 1-2 Brandteknisk dimensionering av stålkonstruktioner Peter Karlström, Konkret Rådgivande Ingenjörer i Stockholm AB Allmänt EN 1993-1-2 (Eurokod 3 del 1-2) är en av totalt 20 delar som handlar

Läs mer

2 kn/m 2. Enligt Tabell 2.5 är karakteristisk nyttig last 2,0 kn/m 2 (kategori A).

2 kn/m 2. Enligt Tabell 2.5 är karakteristisk nyttig last 2,0 kn/m 2 (kategori A). Bärande konstruktioners säkerhet och funktion G k 0, 16 5+ 0, 4, kn/m Värdet på tungheten 5 (kn/m 3 ) är ett riktvärde som normalt används för armerad betong. Översatt i massa och med g 10 m/s innebär

Läs mer

Byggnader som rasar växande problem i Sverige. Dimensionering av byggnadskonstruktioner

Byggnader som rasar växande problem i Sverige. Dimensionering av byggnadskonstruktioner Byggnader som rasar växande problem i Sverige Dimensionering av byggnadskonstruktioner Välkommen! DN-debatt, 6 november 2012 Professor Lennart Elfgren, Luleå Tekniska Universitet Professor Kent Gylltoft,

Läs mer

EN 1996-1-1 Eurokod 6, dimensionering av murverkskonstruktioner, allmänna regler och regler för byggnader Arne Cajdert, AC Byggkonsult

EN 1996-1-1 Eurokod 6, dimensionering av murverkskonstruktioner, allmänna regler och regler för byggnader Arne Cajdert, AC Byggkonsult 2005-02-07 EN 1996-1-1 Eurokod 6, dimensionering av murverkskonstruktioner, allmänna regler och regler för byggnader Arne Cajdert, AC Byggkonsult Allmänt Eurokod 6 ger dimensioneringsregler för murverkskonstruktioner

Läs mer

Dimensionering av curlinghall ELIN STENLUND LINDA STRIDBAR

Dimensionering av curlinghall ELIN STENLUND LINDA STRIDBAR Dimensionering av curlinghall En jämförande studie av BKR och Eurocode Examensarbete inom högskoleingenjörsprogrammet Byggingenjör ELIN STENLUND LINDA STRIDBAR Institutionen för bygg- och miljöteknik Avdelningen

Läs mer

JÄMFÖRANDE STUDIE AVSEENDE SVENSKA BYGGREGLER OCH DEN EUROPEISKA STANDARDEN EUROKODER Inriktning husbyggnad och betongkonstruktion

JÄMFÖRANDE STUDIE AVSEENDE SVENSKA BYGGREGLER OCH DEN EUROPEISKA STANDARDEN EUROKODER Inriktning husbyggnad och betongkonstruktion Examensarbete 15 högskolepoäng C-nivå JÄMFÖRANDE STUDIE AVSEENDE SVENSKA BYGGREGLER OCH DEN EUROPEISKA STANDARDEN EUROKODER Inriktning husbyggnad och betongkonstruktion Emelie Andersson Byggingenjörprogrammet

Läs mer

Eurokoder grundläggande dimensioneringsregler för bärverk. Eurocode Software AB

Eurokoder grundläggande dimensioneringsregler för bärverk. Eurocode Software AB Eurokoder grundläggande dimensioneringsregler för bärverk Eurocode Software AB Eurokoder SS-EN 1990 Grundläggande dimensioneringsregler SS-EN 1991 Laster SS-EN 1991-1-1 Egentyngd, nyttig last SS-EN 1991-1-2

Läs mer

Väggar med övervägande vertikal- och viss transversallast

Väggar med övervägande vertikal- och viss transversallast Väggar med övervägande vertikal- och viss transversallast 1 Generellt Beskrivs i SS-EN 1996-1-1, avsnitt 6.1 och kapitel 5 I handboken Utformning av murverkskonstruktioner enligt Eurokod 6, beskrivs i

Läs mer

Allmänna profildata. *Gäller Z och C. Dessutom finns ofta udda planplåtsbredder för tillverkning av specialprofiler.

Allmänna profildata. *Gäller Z och C. Dessutom finns ofta udda planplåtsbredder för tillverkning av specialprofiler. Lättbalkar 1 Allmänna profildata Dessutom finns ofta udda planplåtsbredder för tillverkning av specialprofiler. *Gäller Z och C. Offereras vid förfrågan. (160 180 645 finns alltid från 1,5 mm tjocklek)

Läs mer

Projektering av murverk

Projektering av murverk Murverk Material, konstruktion, hantverk Projektering av murverk Skalmurar/bärande murverk/bakmurar; förutsättningar, normkrav Skalmur ingår inte bärande huvudsystemet Bärning av skalmur måste beaktas

Läs mer

caeec301 Snittkontroll stål Användarmanual Eurocode Software AB

caeec301 Snittkontroll stål Användarmanual Eurocode Software AB caeec301 Snittkontroll stål Analys av pelarelement enligt SS-EN 1993-1-1:2005. Programmet utför snittkontroll för givna snittkrafter och upplagsvillkor. Rev: C Eurocode Software AB caeec301 Snittkontroll

Läs mer

2016-04-01. SS-Pålen Dimensioneringstabeller Slagna Stålrörspålar

2016-04-01. SS-Pålen Dimensioneringstabeller Slagna Stålrörspålar 2016-04-01 SS-Pålen Dimensioneringstabeller Slagna Stålrörspålar Dimensioneringstabeller slagna stålrörspålar 2016-05-10 1 (20) SCANDIA STEEL DIMENSIONERINGSTABELLER SLAGNA STÅLRÖRSPÅLAR, SS-PÅLEN RAPPORT

Läs mer