Korrosionsstudie av LD-gasklocka vid SSAB i Luleå

Storlek: px
Starta visningen från sidan:

Download "Korrosionsstudie av LD-gasklocka vid SSAB i Luleå"

Transkript

1 EXAMENSARBETE 2006:047 CIV Korrosionsstudie av LD-gasklocka vid SSAB i Luleå KARIN ANDERSSON CIVILINGENJÖRSPROGRAMMET Maskinteknik Luleå tekniska universitet Institutionen för Tillämpad fysik Maskin- och materialteknik Avdelningen för Materialteknik 2006:047 CIV ISSN: ISRN: LTU - EX / SE

2 Innehållsförteckning 1 INLEDNING BAKGRUND SYFTE MÅL AVGRÄNSNINGAR METOD STÅLFRAMSTÄLLNING MASUGN STÅLVERK LD-konverter ENERGIFLÖDE KORROSION GRUNDLÄGGANDE Drivkraft Korrosionshastighet LOKAL KORROSION Gropkorrosion Avlagrings- och spaltkorrosion Filiform korrosion GALVANISK KORROSION SPÄNNINGSKORROSION MIKROBIELL KORROSION SVETSKORROSION EROSIONSKORROSION KORROSIONSSKYDD INAKTIVA KORROSIONSSKYDD Korrosionsskyddsmålning Beläggning av plast, gummi och keramer Ädlare metallbeläggning AKTIVA KORROSIONSSKYDD Oädlare metallbeläggning Inhibitor POTENTIALJUSTERING Anod Katod PROVTAGNING OCH RESULTAT KONDENSAT BELÄGGNING FÄRG STÅL Korrosionshastighet DISKUSSION MÖJLIGA KORROSIONSTYPER MÖJLIGA KORROSIONSSKYDD...29

3 6.2.1 Aktiva Inaktiva SLUTSATSER FORTSATT ARBETE...31 REFERENSER...32 BILAGOR Antal sidor 1 VATTENMÄNGD 1 2 POURBAIX DIAGRAM 4 3 BERÄKNING AV KORROSIONSHASTIGHET 1 4 UPPFÖRSTORING AV RENGJORD SS BS EN

4 1 Inledning Detta är ett examensarbete till civilingenjörsutbildningen i Maskinteknik med inriktning mot material- och bearbetningsteknik, vid Luleå tekniska universitet. Av civilingenjörsutbildningens 180 poäng är de sista 20 poängen avsedda för examensarbete. Detta har utförts vid SSAB Tunnplåt AB i Luleå samt vid Institutionen för tillämpad fysik, maskin- och materialteknik, avdelningen för materialteknik, vid Luleå tekniska universitet. 1.1 Bakgrund SSAB Tunnplåt AB i Luleå tillverkar en mängd olika stålsorter med olika sammansättning. Vid ståltillverkningen genomgår stålet olika processer innan det slutligen blir den produkt som kunden beställt. I dessa processer sänks halterna av svavel, kol, fosfor och vanadin varefter stålet legeras med önskade legeringsämnen. I LD-konvertern omvandlas råjärnet genom syrgasblåsning och blir råstål. Gasen som samlas upp över LD-konvertern är giftig och energirik, varför den renas genom ett par reningssteg och därefter transporteras via ett rör ut till LD-gasklockan 400 meter bort. LUKAB Koksgas LDgasklocka Blandgasklocka LD-gas Masugnsgas Figur 1 Gasens väg Från LD-gasklockan transporteras gasen i ett jämt flöde till blandgasklockan, där den blandas med masugnsgas och koksgas (se figur 1). Därefter transporteras gasen vidare till LUKAB (Lulekraft AB, ett kraftvärmeverk), som utvinner energi ur den. Orsaken till att LD-gasen passerar LD-gasklockan är att LUKAB vill ha ett mer jämt energiinnehåll på gasen som de erhåller. Masugnsgas och koksgas bildas relativt kontinuerligt, medan LD-gasen uppstår vid syrgasblåsningarna, ungefär tre gånger i timmen. 1

5 Hösten 2001 utförde Det Norske Veritas (DNV) ultraljudsmätningar stickprovsvis samt okulär kontroll av den gasberörda delen av manteln på LD-gasklockan. Det fastslogs att manteln var kraftigt korroderad från insidan på vissa ställen. [1] Det beslutades då att delar av manteln skulle bytas och andra delar skulle repareras. Denna reparation samt bättringsmålning utfördes sommaren Det visade sig att den del av klockan som är gasberörd och rören till och från klockan var utsatt för lokal korrosion. Reparationen skulle ge gasklockan en förlängd livslängd på 3 till 4 år, men sedan måste manteln med stor sannolikhet bytas ut. Då endast den gasberörda delen (se figur 2) och dukinfästningen korroderat kan den övre delen av LD-gasklockan återanvändas. Fylld med gas gasberörd mantelyta Figur 2 Skiss över fylld gasklocka och tom gasklocka 1.2 Syfte Examensarbetets syfte är att i första hand utreda vad som orsakar korrosionen på manteln (se figur 3) och sedan att ta fram ett antal olika alternativ för att lösa problemet. Figur 3 Del av manteln på gasklockan 2

6 Ett annat syfte med detta projekt är att arbeta med ett verkligt problem på ett företag och använda de kunskaper som erhållits under studietiden. Dessutom är det ett bra tillfälle att knyta kontakter och prova på arbetslivet. 1.3 Mål Målet med detta examensarbete var att klarlägga vad som orsakar korrosionen i den gasberörda delen av LD-gasklockan och komma med ett antal alternativ för hur den kan undvikas. Resultatet har sammanställts i denna rapport till SSAB samt till Institutionen för tillämpad fysik-, maskin- och materialteknik. 1.4 Avgränsningar Projektet innebär endast undersökning av olika korrosionsskydd och olika stål som kan ingå i klockan, inte någon ändring i gasreningen eller LD-konverterns funktion. Examensarbete för civilingenjörer är på 20 högskolepoäng, vilket motsvarar 20 veckors heltidsarbete. Efter dessa 20 veckor redovisas de resultat som erhållits samt förslag till fortsatt arbete. 1.5 Metod Examensarbetet genomfördes enligt de metoder för systematisk problembehandling som tidigare använts under utbildningen vid Luleå tekniska universitet. Enligt SSABs projektmetod är detta en förstudie till ett projekt. Hur examensarbetet fortlöpt redovisades med jämna mellanrum till en styrgrupp. Första steget var att ta del av befintligt tekniskt underlag och förstå hur det hela fungerade. Nästa steg var att med hjälp av litteraturstudier komma fram till olika teorier om varför det korroderar. Sista steget var att undersöka om teorierna går ihop och utifrån det ta fram förslag på korrosionsskydd. 3

7 2 Stålframställning Hela stålframställningsprocessen tar cirka 12 timmar från det att malmpellets, koks och kalk fylls på i masugnen till dess att ämnet kapas till slabs i andra änden av verket. [2] 2.1 Masugn Processen i masugnen är kontinuerlig och den måste därför oavbrutet fyllas på med pellets, koks, kalk och andra tillsatsämnen. I masugnen reduceras järnmalmen till råjärn genom att kolet, i bland annat koksen, reagerar med syreatomerna i malmen. Det tar ungefär 8 timmar innan det som fyllts på i toppen på masugnen tappas ut som råjärn i väntande torpedos och transporteras till själva stålverket för ytterligare behandling. 2.2 Stålverk Råjärnet i en torpedo tappas över i en råjärnsskänk och förs till svavelreningen. Kalciumkarbid bubblas genom järnet och svavel reagerar med kalcium som sedan flyter upp och lägger sig som ett lock på järnbadets yta. Denna slagg skrapas bort. Efter svavelreningen förs det avsvavlade råjärnet till LD-konvertern där det blandas med skrot och genom syrgasblåsning sänks kolhalten och järnet färskas till stål. Stålet hälls över i en skänk och slaggen i en annan (se figur 4). I stålskänken tillsätts vissa legeringsämnen för en grovlegering, beroende på vilken stålsort som kunden beställt. Figur 4 LD-konvertern [2] Sista förädlingssteget av stålet är CAS-OB (Composition Adjustment by Sealed argon bubbling-oxygen Blowing) eller RH, där den exakta sammansättningen av stålet finjusteras. I CAS-OB bubblas argon genom smältan för att skydda mot 4

8 luftens syre. I RH genomgår stålet en vacuumbehandling och når låga värden av kol, syre och väte. Det flytande stålet gjuts sedan kontinuerligt i en stränggjutningsmaskin. Stålet från skänkarna går via en gjutlåda ner i en gjutform (kokill) som sedan övergår i en gjutbåge. Gjutlådan fungerar som en buffert vid skänkbyte, så att det inte blir avbrott i gjutningen. Kokillen i fråga kyler stålet så att det bildas ett tunt skal runt det flytande stålet, som sakta dras ner i gjutbågen under fortsatt kylning. Strängen kapas i 11 meter långa längder (slabs) som får ligga och svalna lite innan de skickas vidare till kunden LD-konverter I LD-konvertern förs en syrgaslans ner mot smältan och blåser ut ett antal gasstrålar med O 2 i högt tryck. Först reagerar mangan, fosfor, vanadin och kisel (Mn, P, V och Si) med syret och bildar slagg, sedan ger sig syret på kolet och bildar CO och CO 2. CO 2 existerar väldigt begränsat vid så höga temperaturer, så det finns mest CO. När de första reaktionerna sker är temperaturen ungefär 1400ºC och sen när reaktionerna med kolet sker stiger temperaturen till 1700ºC. Figur 5 LD-konvertern och gasreningen (Källa: SSAB) När gaserna som bildas i LD-konvertern sugs upp kommer det med lite luft som brinner upp med CO i en sekundär förbränning. Reaktionsprodukterna följer med de andra gaserna. Hålet där syrgaslansen förs ner tätas av en ejektor med ånga som hindrar att ännu mer luft sugs in. Gasen går igenom två olika reningssteg med vatten. Först blandas gas med vatten och med vattnet försvinner det värsta av stoftet. Vid finreningen ökas gastrycket och strömmar genom en spalt i en hastighet av 100m/s. Gasstrålen besprutas med vatten och dessa små vattendroppar fångar upp delar av det kvarvarande stoftet. 5

9 När gasen gått genom dessa två reningssteg har temperaturen sänkts till 65 70ºC och är mättad med vattenånga. Vid aktuellt tryck och temperatur innehåller gasen teoretiskt 30 % vattenånga (se bilaga 1). Om gasens syreinnehåll är för högt slår en ventil till och gasen leds rakt ut och eldas upp. Gas innehållande för mycket syre får inte blandas med brännbar gas av säkerhetsskäl. Men större delen av tiden är syrehalten lägre och gasen leds till LD-gasklockan. Den torra gasens ungefärliga innehåll kan utläsas ur figur 5 och utöver dessa gaser är den mättad med vattenånga. Dessutom innehåller LD-gasen de små stoftpartiklar som tagit sig genom gasreningen. Detta stoft fastnar på insidan av rören och gasklockan. Eftersom gasens temperatur sjunker några grader under transporten till LUKAB kondenseras vattnet i gasen och kondensat blandat med stoft rinner längs väggarna. 2.3 Energiflöde I många av processerna vid SSAB tillverkas användbara biprodukter, bland annat energirik gas som återanvänds i tillverkningen. Överflödet levereras till LUKAB som omvandlar gasen till fjärrvärme och elkraft (se figur 6). Figur 6 Energiflöden [3] 6

10 3 Korrosion Korrosion är en fysikalisk-kemisk reaktion mellan en metall och dess omgivning som orsakar ändringar av metallens egenskaper. Dessa ändringar leder oftast till skada på funktionen hos metallen eller dess omgivning. Reaktionen är oftast av elektrokemisk natur. [4] 3.1 Grundläggande Den vanligaste formen av korrosion är en reaktion mellan stål och dess omgivning som bildar ett poröst lager med reaktionsprodukter (rost). Korrosion kan ske utan närvaro av vatten, men de flesta korrosionsförlopp sker i elektrolyter baserade på vatten Drivkraft De flesta användbara metallerna finns inte i ren form i naturen utan är bundna i förening med andra ämnen, som formar exempelvis oxider, karbonater, sulfider och klorider. [5] Denna form representerar det lägsta energitillstånd som metallen kan ha i den aktuella omgivningen. Endast några av de ädlare metallerna (guld, silver och platina) har sitt lägsta energitillstånd i ren form, och finns därför obundet i naturen. Metallerna kan behandlas så att de renas från de oönskade elementen och tvingas till en ren form, men de söker sig tillbaka till det lägsta engergitillståndet med tiden - metallen korroderar. Korrosionsprodukterna är kemiskt likvärdiga med naturens metallförbindelser. När stål rostar övergår järnet till järnföreningar av oxid eller hydroxid, såsom magnetit (Fe 3 O 4 ) eller limonit (Fe 2 O 3 x H 2 O) Fe 2+ Fe 2+ Fe 2e - Figur 7 Jämvikt mellan joner som går i lösning och joner som återvänder En metall i elektrolyt skickar ut positiva joner i lösningen och då ökar koncentrationen av elektroner i metallen. Då uppstår en potentialskillnad mellan metallen och elektrolyten. På grund av attraktionen mellan laddningar med olika tecken, dras metalljonerna tillbaka till metallytan och återförenas med elektronerna (se figur 7). Så småningom inträder jämvikt mellan joner som går ut i lösningen och joner som återinträder i metallen. Denna reaktion fortsätter så 7

11 länge inget stör processen. För att en metallbit skall korrodera måste elektronerna som skapas när jonerna går ut i lösning, förbrukas av någon annan reaktion, en så kallad reduktionsprocess (se figur 8). I förorenat vatten kan det finnas många oxidationsmedel som kan konsumera elektronerna. För att korrosion skall kunna ske måste inre energin för reaktionsprodukterna vara mindre än för reaktanterna. H 2 Fe 2+ Anod 2e - H + H + Katod Figur 8 Fortskridande korrosion På en metallyta i fuktig miljö uppstår mikroceller som omväxlande är anodiska och katodiska, resultatet blir en jämt utspridd korrosion, en så kallad allmän korrosion. Detta betraktas som elektrokemiska förlopp orsakade av bildning av galvaniska element på metallytan Korrosionshastighet Korrosionshastigheten är en funktion av bland annat temperatur, aktiveringsengergi och koncentration av de deltagande ämnena. Vissa föreningar reagerar också med vatten och bildar fler vätejoner och på så sätt försurar vattnet, vilket normalt leder till ökad korrosionshastighet (se bilaga 2). Olika joner har olika jonrörlighet och på så sätt medverkar i olika hög grad till strömtransporten. Vätejoner och hydroxidjoner har relativt stor jonledningsförmåga, och transporterar därför större delen av strömmen. Den andel av strömmen som fraktas av ett visst jonslag i en elektrolytlösning kallas jonens överföringstal. 3.2 Lokal korrosion Vid lokal korrosion finns i allmänhet korrosionsceller med urskiljbara anod- och katodytor. Anoden är den del av cellen som korroderar bort och katoden bibehålls intakt. Nedanstående korrosionssätt fungerar på detta sätt. Nästan vilken inhomogenitet som helst på ytan kan orsaka lokal korrosion genom att den delas upp i lokala anoder och katoder. 8

12 3.2.1 Gropkorrosion Gropkorrosion är farligare än allmän korrosion ur synpunkten att det blir genomfrätning snabbare, så att det uppstår läckage. Fördelen med gropkorrosion i förhållande till allmän korrosion är att om det är en bärande konstruktion så spelar några få hål ingen roll, det hänger alltså på vad materialet används till Avlagrings- och spaltkorrosion Korrosion i mynningen till en smal spalt kallas spaltkorrosion. Det blir en skillnad i koncentration i och utanför spalten och där bildas då en anod i spaltmynningen och en katod i omgivande ytor. Avlagringskorrosion fungerar på samma sätt, där spalten är mellan avlagringen och metallen (se figur 9). Katod Anod Figur 9 Anod och katod vid spaltkorrosion Filiform korrosion Filiform korrosion är korrosion som sker under tunna organiska filmer på en metallyta i närvaro av fuktig atmosfär. Den börjar vanligtvis vid repor eller andra fel i färgfilmen. Den består av ett aktivt huvud och en inaktiv svans fylld med korrosionsprodukter (se figur 10). Korrosionsprodukterna har större volym än vad Fe-atomerna skulle ha haft i vanliga fall, så det uppstår mikrosprickor i färgen där ytterligare syre och vatten kan påskynda korrosionen. Isolering av svansen, för att förhindra transport av syre och vatten, deaktiverar korrosionen. Färgens genomsläpplighet och komposition har liten eller ingen inverkan på korrosionens initiering och tillväxt [7]. 9

13 Fe(OH) 3 H2 O O 2 Fe Fe OH - Stål e - e - e - Katod Anod Figur 10 Korrosion under färg Fe 2 O 3 3H 2 O 3.3 Galvanisk korrosion Galvanisk korrosion är korrosion mellan två olika metaller eller mellan en metall och ett annat elektronledande material. För att korrosionen skall kunna fortgå måste det finnas en elektrolyt som kan förbinda de olika metallerna. Det ädlare materialet blir katod och det oädlare anod. Förhållandet mellan ytstorlek spelar stor roll när det gäller galvanisk korrosion, likaså elektrolytens ledningsförmåga (se figur 11). Stor anodarea, liten katodarea, god ledningsförmåga hos elektrolyten. Stor anodarea, liten katodarea, dålig ledningsförmåga hos elektrolyten Liten anodarea, stor katodarea Figur 11 Galvanisk korrosion [4] 3.4 Spänningskorrosion För att spänningskorrosion skall kunna inträffa krävs en viss dragspänning och speciell omgivande miljö för vissa legeringar. Förhöjd temperatur påskyndar korrosionshastigheten även här. Spänningskorrosion kan inträffa i närheten av svetssträngar på grund av restspänningar i den värmepåverkade zonen. Kolstål utsätts för spänningskorrosion i närvaro av CO, CO 2 och H 2 O. Koldioxid är 10

14 lättlösligt i vatten och övergår till kolsyra. Kolsyran sönderdelas i sin tur till väteoch vätekarbonatjoner och ph sänks med ökad koncentration av vätejoner. Spänningskorrosion är mest aktivt i temperaturområdet 20 C till 60 C och uppträder endast om ytan är fuktad. [6] CO 2 + H 2 O H 2 CO 3 H 2 CO 3 H + + HCO 3-11

15 3.5 Mikrobiell korrosion Järn och kolstål har vanligtvis låga korrosionshastigheter i neutrala, syre- och saltfattiga lösningar. Den då enda möjliga katodreaktionen är 2H 2 O + 2e - H 2 + 2OH - och den sker väldigt långsamt. Risken finns dock att det i vattenmättad smuts och syrefattigt vatten kan ge höga korrosionshastigheter på grund av anaerobiska bakterier [7]. Sulfatreducerande bakterier (SRB) fungerar på detta 2- sätt och de påskyndar reaktionen från SO 4 till S 2- under konsumerande av elektroner från anodreaktionen. [4] 4Fe 4Fe e - SO H + +8e - S H 2 O Trots att exempelvis SRB kräver frånvaro av syre för att föröka sig och växa dör de inte under aerobiska förhållanden, utan ligger latenta i väntan på att förutsättningarna skall bli de rätta. Förutsättningarna för fortplantning av mikroorganismer är ett ph-värde mellan 5 och 9, närvaro av organisk substans och i många fall låg redoxpotential. Ett tecken på att det finns SRB är att det bildas H 2 S och djupa frätgropar (se figur 12). Figur 12 Till vänster, mikrobiell korrosion [8] till höger plåt från LD-gasklockan. I tankbåtar med dubbla skrov har de funnit gropkorrosion som de misstänker bland annat beror på mikrobiell korrosion. [8] 3.6 Svetskorrosion Svetskorrosion indelas i tre olika typer; svetsgodskorrosion, svetszonskorrosion och knivsnittskorrosion. [4] Vid svetsgodskorrosion är det själva svetsen bestående av tillsatsmaterial och smält basmetall som rostat. Detta inträffar då svetsen är oädlare än resten, och det uppstår ett ogynnsamt förhållande mellan anod- och katodytor. Detta brukar inte vara några problem vad gäller kolstål, eftersom tillsatsmaterialet antingen är lika oädelt eller ädlare än basmetallen. 12

16 Svetszonskorrosion är korrosion i den värmepåverkade zonen en bit från själva svetsen. Vid rätt temperatur (avstånd från svetsen) urskiljs olika ämnen och det kan ge korntillväxt, vilket ger ändrade materialegenskaper. Svetszonskorrosion kan också uppstå på grund av kvarvarande dragspänning efter uppvärmningen. I den värmepåverkade zonen kan det också uppstå väteförsprödning på grund av att martensitisk struktur uppkommit. [7] 3.7 Erosionskorrosion Ett strömmande medium mot en yta sliter ner det skyddande skiktet (färg eller korrosionsprodukter) och ytan blottas för fortsatt korrosion. Hög strömningshastighet medför snabbare korrosion. En vätska innehållande fasta produkter påskyndar också nötningen. Korrosion som uppstått genom erosion är ofta underskurna i strömningsriktningen och ytan liknar en långgrund sandstrand. 13

17 4 Korrosionsskydd Genom små förändringar av material eller miljö kan korrosionshastigheten minskas eller helt stanna och därav förlänga den aktuella konstruktionens livslängd. Tre grundläggande ingredienser krävs för att korrosion skall ske; en anod, en katod och en elektrolyt. Förutom detta fordras att anoden och katoden är i kontakt med varandra så att elektroner kan förflyttas från anoden till katoden (se figur 8). Genom att eliminera eller skydda det ena eller det andra ändras möjligheten att korrodera. Olika korrosionsskydd fungerar på olika sätt, föremålet kan tvingas in i passivt eller immunt område i Pourbaix diagrammet (se bilaga 2), eller skyddas rent fysiskt genom att täcka ytan så att det inte kan ske någon jontransport. 4.1 Inaktiva korrosionsskydd Genom att isolera anoden eller katoden hindras korrosion då anoden eller katoden försvinner från systemet. Detta är ett inaktivt korrosionsskydd. Det skyddande lagret förbrukas inte nämnvärt under användning. Vad som används för att isolera ytorna från varandra väljs på grund av miljön som korrosionsskyddet skall verka i Korrosionsskyddsmålning Alla organiska färgfilmer är genomsläppliga för fukt i någon grad, dessutom är det risk för fysiska fel i färgfilmen i form av porer eller smuts som inbjuder till korrosionsangrepp. [9] Det är svårt att måla så att ytan blir 100 % skyddad, så det är bra om korrosionsskydd i form av färg är i kombination med något annat skydd. Liksom vid målning av hus så håller inte färgen i all evighet utan måste ses över och bättras på med jämna mellanrum. När korrosion uppstår på en målad stålyta är frågan om korrosionen är orsak eller verkan. Vid korrosionsskyddsmålning är det viktigt att ytan är rengjord ordentligt och eventuellt behandlad med en etsgrundfärg, så att rostskyddsfärgen får bra vidhäftning. För bästa skydd målas ofta flera lager med olika sorters färger. De olika färgerna måste passa bra ihop så att det inte uppstår exempelvis blåsor mellan färglagerna på grund av dålig vidhäftning Beläggning av plast, gummi och keramer Dessa korrosionsskydd används till metallytor som utsätts för svåra kemiska påfrestningar. Plastbeläggningar används även till skydd av byggnadskonstruktioner och liknande. De olika typerna har olika vidhäftningsförmåga, är olika lätta att applicera och har olika motståndskraft mot kemikalier, nötning och värme. 14

18 Keramer är obenägna att reagera, har bra nötningsbeständighet, värmebeständighet och är inte ledande. En nackdel är att de generellt är spröda och därav känsliga för rörelser i konstruktionen, då beläggningen riskerar att spricka. Det finns ett mängd olika kompositer som kan användas som skydd mot korrosion, med olika bindemedel och fibrer. Med en kompositbeläggning kan man erhålla ett tjockare lager direkt utan att behöva applicera flera gånger, såsom med färg Ädlare metallbeläggning När beläggningsmetallen är ädlare än basmetallen sker ökad lokal korrosion vid porer och vassa kanter (se figur 13), så ska beläggningen skydda så måste den vara absolut heltäckande. I detta fall är basmetallen anod. Denna typ av korrosionsskydd används för att ytmetallen har en bättre korrosionsbeständighet än basmetallen och används exempelvis vid nickelbeläggning av stål. [4] Katod Anod Figur 13 Por i ädel metallbeläggning 4.2 Aktiva korrosionsskydd Aktiva korrosionsskydd, är som namnet säger aktiva, motverkar korrosionsprocessen genom att själv medverka på olika sätt så att basmetallen skyddas. Eftersom de medverkar i reaktionen förbrukas de så de måste tillsättas kontinuerligt eller med jämna mellanrum Oädlare metallbeläggning När beläggningsmetallen är oädlare än basmetallen krävs det inte en heltäckande beläggning (se figur 14), då basmetallen i detta fall är katod och beläggningen blir offeranod. Offeranoden förbrukas i samband med sin skyddande verkan. Detta fungerar bättre ju bättre ledningsförmåga elektrolyten har. (se figur 11) 15

19 Anod Katod Figur 14 Oädel metallbeläggning Inhibitor Korrosionsinhibitorer minskar korrosionshastigheten, då de tillsätts systemet (material och/eller omgivning) utan att mängden korrosiva ämnen minskar nämnvärt. Den fungerar oftast genom att bilda en skyddande hinna på metallen. Om metallen passiverats och passivatorn sedan förbrukats så bryts den passiverande filmen ner igen och resulterar i gropfrätning. För metaller som inte är passiverbara används inhibitorer som försvårar anod- och/eller katodprocessen. En inhibitor kan tillföras ytan genom att den blandas i den strömmande vätskan/gasen, ingå i rostskyddsfärgen eller i själva metallen som en legeringsbeståndsdel. Aktiva pigment i rostskyddsfärg är blymönja, zinkkromat, zinksilikat och zinkfosfat. När ytan fuktas utlöses en inhibitorverkan. E E korr med E korr utan Med inhibitor Utan inhibitor E E korr utan E korr med Utan inhibitor Med inhibitor i korr med i korr utan i i korr med i korr utan i Anodisk polarisationskurva Katodisk polarisationskurva Figur 15 Diagram över anodisk- respektive katodisk inhibitor Det finns inhibitorer som är verksamma på enbart anoden, enbart katoden (se figur 15) eller dubbelverkande. Anodiska inhibitorer påverkar anodreaktionen och bildar ett passiverande skikt på anoden, de kallas därför även för passivatorer. För låg inhibitorhalt resulterar i ett ickehomogent skikt där accelererad korrosion kan ske lokalt. Katodiska inhibitorer fungerar på liknande sätt, med skillnaden att även en låg inhibitor halt ger en viss hämning av katodreaktionen och därav motverkar anodreaktionen. De är därför inte lika känsliga som de anodiska 16

20 inhibitorerna. Dubbelverkande inhibitorer påverkar både anod- och katodreaktionen i mer eller mindre hög grad. Olika miljöfaktorer gör att de under vissa förhållanden är anodiska och under andra katodiska. [4] Rosttröga och rostfria stål fungerar genom inhibitorverkan. Legering som tillsatts stålet bildar ett skyddande skikt på stålet som fungerar som anod. Vid korrosion av olegerat stål, kolstål, är korrosionsprodukterna porösa och sitter löst så ytan blottas lätt för nya angrepp. Rosttröga stål legeras så att konstruktionen till att börja med rostar som kolstål, men korrosionshastigheten minskar sedan och produkterna som bildas är ett tätare skikt med bra vidhäftningsförmåga. Rosttröga stål legeras med koppar, krom, fosfor och kisel. Rostfritt stål innehåller minst 12 % krom men det är också vanligt att legera med nickel och molybden. På stålets yta bildas i oxiderande miljöer ett tunt (~2 nm) oxidskikt. Detta oxidskikt, som i princip består av kromoxid, återbildas direkt vid mekanisk skada om syrehalten är tillräcklig. Legeringsinnehållet påverkar stålets struktur. Ett vanligt rostfritt stål med 18 % krom och 8 % nickel (så kallat 18/8- stål) har austenitisk struktur medan stål med 22 % krom, 5 % nickel och 3 % molybden får en austenitferritisk struktur. Denna struktur ger ett så kallat duplexstål med goda mekaniska egenskaper och bra motstånd mot korrosion. 4.3 Potentialjustering Med en yttre strömkälla och en motelektrod kan det föremål som skall skyddas tvingas in i passivitets- eller immunitetsområdet, genom att öka eller minska potentialen (anodiskt- respektive katodiskt skydd). Materialet hindras från att korrodera eller får i alla fall minskad korrosionshastighet. (se bilaga 2) Anod Anodiskt skydd passiverar metallytan genom en ökning av elektrodpotentialen. Men om potentialen ökas för mycket passeras det passiva området och gropfrätning uppstår (se figur 16). Anodiskt korrosionsskydd används främst till stål legerade med krom som lätt bildar ett passivt skikt. E Transpassivt Passiverings potential Passivt Aktivt log i Figur 16 Polarisationskurva för rostfritt stål i svavelsyralösning 17

21 4.3.2 Katod Korrosionshastigheten kan minskas om man minskar elektrodpotentialen. Vanligen åstadkommer man potentialförskjutningar genom att belasta skyddsföremålets yta med en katodisk ström och tillsätta en anod. Det uppkommer då en negativ polarisation, så kallat katodiskt skydd. Katodisk polarisation reducerar oxideringshastigheten genom ett överskott av elektroner. När potentialen sänks sker en viss alkalitet vid ytan. Om stålet i vanliga fall är anoden så kan det med påtryckt ström bli katod (se figur 17). Katoden tillförs elektroner så att reaktionen blir: Fe e - Fe En elektrodpotentialminskning som inte får in skyddsföremålet i immunitetsområdet ger i alla fall en minskad korrosionshastighet. i Skyddsföremål Elektrolyt Ny anod Figur 17 Katodiskt skydd För att minska korrosionen med katodiskt skydd krävs en viss strömtäthet som beror bland annat på korrosionsmediet. Om ytan har organisk beläggning, exempelvis i form av plast, krävs låg strömtäthet då det katodiska skyddet endast krävs för de punkter där färgen inte täckt helt. 18

22 5 Provtagning och resultat 5.1 Kondensat Vecka 13 togs prover på kondensatet på tre olika ställen i rören till och från LDgasklockan. Prov 1 togs precis innan gasen kommer in i klockan, prov 2 precis där gasen går ut ur gasklockan och prov 3 togs närmast LD-konvertern. Kondensat från själva klockan dräneras ut under marken så det var inte möjligt att erhålla prov därifrån. I koksverkslabbet undersöktes om det fanns svavel (S), klorider (Cl), kolsyra (H 2 CO 3 ), vilket ph kondensatet hade och dess ledningsförmåga. Tabell 1 Kondensatprov från LD-gasklockan Provnr ph Ledningsf Färg Temperatur 3 5, µs/cm brunsvart 34,3 C 1 6,4 272 µs/cm ofärgad, lite smågrumlig 10,7 C 2 7, µs/cm brunröd 17 C (Proven är sorterade efter den ordning som gasen passerar provtagninsplatserna) Ledningsförmågan kan jämföras med avjoniserat vatten som har ledningsförmåga 1-10 ms/m och en 3,5 % NaCl-lösning som har ledningsförmåga på 5,3 S/m. [10] Det innebär att kondensatet i klockan har 2-3 gånger större ledningsförmåga än destillerat vatten och NaCl-lösningen har 530 gånger större ledningsförmåga. Dagen efter hade färgen på prov nr 1 ändrats till orangefärgad med mörk bottensats. De andra proven hade också ändrat färg men det syntes tydligast på prov nr 1. Anledningen till att färgändringen var tydlig i det första provet är att det var så klart från början. Fe-jonerna i kondensatet hade reagerat med syret i luften och bildat en orangeröd järnoxid. Kolsyran kontrollerades genom att hälla i HCl, som bubblar om provet innehåller H 2 CO 3. Det bubblade inte, men orsaken till det kan vara att det innehöll för lite kolsyra. För att kontrollera om provet innehöll svavel tillsattes klorider som bildar en svart fällning med svavel, men provet ändrades inte. Silvernitrat användes för att kontrollera om det fanns klorider. Denna funktion störs ut om provet innehåller H 2 S, men tidigare försök visade att det inte fanns nåt H 2 S. Det mest färglösa provet (prov nummer 1) blandades med en gul färg, och vid närvaro av klorider blir provet brunt vid tillsats av silvernitrat. Resultatet redovisas i tabell 2 nedan. Det kan vara missvisande resultat, med tanke på att provet kan innehålla ämnen som reagerar på oväntat sätt. Samt då det är färgändringen som noteras kan resultatet bli något felaktigt eftersom kondensatet redan är färgat. Analysering av proverna tyder annars på att det finns klorider i kondensatet. 19

23 Tabell 2 Kondensatprov från gasklockan dagen efter provtagningen. Provnr ph Färg Temperatur Klorider 3 6,04 brunsvart men lite ändrad 22,9 C 28 mg/l 1 6,2 klart orangefärgad, m mörk bottensats. 22,9 C 44 mg/l 2 7,02 brunröd men lite ändrad 22,9 C 0,7 mg/l Vecka 37 togs kondensatprover som analyserades på ALcontrol i Umeå. För att undersöka förekomst av mikroorganismer krävdes det att analysen skulle ske inom 12 timmar efter provtagningstillfället, så kondensatproverna skickades med bud till Umeå. På ALcontrol använde de standardiserade sätt för analyserna och nedan redovisas resultaten. Tabell 3 Analysresultat av kondensat Metodbeteckning Analys av Resultat Enhet Mätosäkerhet SS-EN ISO Sulfat, SO 4 <1,0 mg/l +/- 15% SS-EN ISO Klorid, Cl 2,8 mg/l +/- 20% SS-EN ISO Fluorid, F 0,52 mg/l +/- 20% SS-EN Sulfitreducerande clostridier 0,2 cfu/ml* *cfu/ml = colony forming units / ml Sulfitreducerande bakterier fungerar på liknande sätt som sulfatreducerande bakterier som nämndes ovan, där elektroner konsumeras så att korrosionen kan fortsätta. 5.2 Beläggning Vid korrosionsundersökning gjord på DNV:s begäran [1] analyserades korrosionsprodukter och beläggning på en plåtbit, dels i centrum av korrosionsgropen och dels i kanten. Den bortskrapade produkten analyserades i svepelektronmikroskop med engergidispersiv analysator. Se tabell 4 nedan: 20

24 Tabell 4 Analys korrosionsprodukter Analys O Na Al Si S P Cl Zn V Mn Mo Ni Cr Fe cent1 39,46 0,73 0,12 ~0 1,59 0,09 ~0 3,20 0,27 0,46 ~0 0,13 0,05 53,90 cent2 48,31 0,10 0,20 0,07 0,01 ~0 ~0 ~0 ~0 0,02 ~0 0,05 ~0 51,24 cent3 44,50 0,13 0,29 0,09 0,23 ~0 ~0 0,05 0,22 0,28 0,41 ~0 0,06 53,74 cent4 52,71 0,15 0,84 0,13 0,12 ~0 ~0 0,17 0,07 0,25 ~0 ~0 ~0 45,56 cent5 53,39 0,47 0,08 0,14 0,10 ~0 ~0 0,27 0,13 0,23 ~0 0,06 ~0 45,13 cent6 23,72 0,24 0,15 0,12 ~0 0,05 ~0 0,05 0,17 0,52 0,16 ~0 ~0 74,82 cent7 40,19 0,58 0,23 0,09 1,52 0,05 ~0 2,03 0,29 0,60 0,18 0,08 0,12 54,04 cent8 41,69 0,40 0,22 0,09 0,70 ~0 ~0 1,32 0,08 0,32 ~0 0,08 ~0 55,10 cent9 44,15 0,09 0,06 0,04 0,10 ~0 ~0 ~0 0,08 0,11 ~0 ~0 0,06 55,31 cent10 48,52 0,11 0,10 0,13 0,10 ~0 ~0 ~0 ~0 0,16 ~0 ~0 ~0 50,88 kant1 35,72 ~0 0,25 0,01 2,28 0,12 ~0 4,08 ~0 0,65 ~0 0,13 0,18 56,58 kant2 41,61 ~0 0,08 0,04 0,81 0,07 ~0 1,03 ~0 0,97 ~0 ~0 0,04 55,35 kant3 43,96 ~0 0,21 0,14 0,18 0,04 ~0 0,15 ~0 0,10 ~0 0,10 0,05 55,07 kant4 34,83 0,19 0,44 0,30 2,99 0,09 ~0 6,81 ~0 0,29 ~0 0,27 0,05 53,75 kant5 41,09 ~0 0,21 0,04 0,94 0,01 ~0 2,42 ~0 0,46 ~0 0,06 0,03 54,74 kant6 44,45 ~0 0,32 0,03 1,54 0,08 ~0 2,27 ~0 0,35 ~0 0,07 0,33 50,56 kant7 42,16 ~0 0,11 0,12 2,33 0,01 ~0 7,22 ~0 0,46 ~0 0,22 0,09 47,28 kant8 41,65 ~0 0,21 0,04 0,26 0,01 ~0 0,19 ~0 1,03 ~0 0,06 0,19 56,36 kant9 42,79 ~0 0,30 0,03 1,30 0,10 ~0 2,29 ~0 0,56 ~0 ~0 0,04 52,59 kant10 27,70 ~0 0,09 ~0 0,43 0,06 ~0 1,25 ~0 1,00 ~0 0,02 ~0 69,45 Vecka 14 inträffade ett missöde i LD-gasklockan, då fästet till en av wirarna som stabiliserar kupolen lossnade, rev sönder några skyddsplåtar och orsakade en reva i gummiduken. Vid detta ofrivilliga stopp öppnades ett rör precis efter klockan och hela insidan på röret var täckt med ett centimetertjockt lager av svart, lerliknande beläggning. Prov togs och skickades på analys på SSAB. Ett par sjok av beläggningen sparades för att visa hur beläggningen i röret ser ut. Närmare iakttagelse av skruvförbandet visade att den del av flänsen som varit utåt var mer korroderad än den som varit mot insidan av röret. Detta för att det troligtvis varit spaltkorrosion i den del som hade tillgång till syre. Analysen av beläggningen visade: Tabell 5 Slamanalys 1 Fe CaO SiO 2 MnO P 2 O 5 Al 2 O 3 MgO Na 2 O K 2 O V 2 O 5 TiO 2 Cr 2 O 3 % % % % % % % % % % % % 61,06 0,33 0,77 1,43 0,08 0,01 0,54 0,19 0,23 0,22 0,05 0,00 Även DNV utförde slamanalys och detta är resultatet: Tabell 6 Slamanalys 2 Fe CaO SiO 2 MnO Al 2 O 3 MgO Na 2 O K 2 O V 2 O 5 TiO 2 Cr 2 O 3 % % % % % % % % % % % 53,96 0,6 1,88 1,22 0,20 0,51 0,10 0,23 0,24 0,06 0,09 21

25 5.3 Färg Färgen som klockan ursprungligen målades i används inte idag, då utvecklingen inom detta område har gått frammåt på de 20 år som gått sedan gasklockan byggdes. Färgen i klockan har inte analyserats på grund av rådande omständigheter. Vad som hänt med färgen under denna tid har inte kunnat undersökas för att det inte finns några plåtar av manteln utanför klockan med färg kvar. 5.4 Stål Några plåtbitar av olika material sattes in i klockan, i mitten av vecka 17, vid omställning på en av SSABs LD-konvertrar. Plåtarna sattes in för att jämföra korrosionshastigheten på nedan valda stål i den miljö som det är i LD-gasklockan. De var samtliga gjorda i 4 mm plåt med måtten 100*200 mm och i överkanten två hål med en diameter på 10 mm. I ett av dessa hål genomträddes en gängstav och plåtarna fixerades med muttrar. Plåtarna behandlades inte mer än att de var tvättade och försedda med en svets tvärs över. De placerades precis innanför manluckan i LD-gasklockan, stående i kondensatet upp till ca 7 cm, varav ca 2 cm längst ner mest bestod av ler-liknande beläggning (nämnd ovan). Efter några veckor i gasklockan plockades plåtarna ut och eftersom det inte visade sig speciellt mycket synbar korrosion sattes plåtarna in igen. Vattenlinjen kom då inte på samma ställe och det kan ses på plåtarna (se figur 18). SS är materialet som finns i klockan nu och de andra stålen har valts bland vanliga konstruktionsstål med lite olika procentsats av krom (Cr), molybden (Mo), nickel (Ni) och kväve (N). Plåtarna vägdes innan de sattes in (se bilaga 3). Tabell 7 Legeringshalt på provplåtar insatta vecka 17 C Si Mn P S Stålsort (max%) (max%) (max%) (max%) (max%) Cr (%) Mo (%) Ni (%) N (%) SS ,2 0,05 0,4-0,7 0,05 0, <0,009 SS ,03 1,00 2,00 0,035 0,02 22,0-23,5-4,0-5,5 0,05-0,15 SS ,05 1,00 2,00 0,045 0,03 17,0-19,0-8,0-11,0 - SS ,05 1,00 2,00 0,045 0,03 16,0-18,5 2,5-3,0 10,5-14,0 - SS är ett duplex-stål, SS är ett vanligt rostfritt stål och SS är ett syrafast stål. Dessa stål valdes för att de är vanliga och för att litteraturstudier visar att dessa kan fungera vid olika sorters korrosion. Risken för lokal korrosion i rostfritt stål minskar med tillsats av Cr, Mo, och N. Efter diskussion med styrgruppen beslutades även att sätta in en provbit av corten. Corten är ett rosttrögt stål som innehåller koppar och fosfor och som bildar en 22

26 skyddande yta av korrosionsprodukter på konstruktionen. Styrgruppen föreslog detta för det är ett billigt material som ibland används istället för rostfritt stål. Tabell 8 Legeringshalt komplettering provplåtar C Si Mn P S Cr Ni Cu Corten A 0,12 0,25-0,75 0,2-0,5 0,07-0,15 0,035 0,5-1,25 0,65 0,25-0,55 Det finns två huvudgrupper av corten där corten A är för gods upp till 12 mm, vilket skulle räcka för LD-gasklockan, då den enligt ritningarna är en maxtjocklek på 8 mm. Litteraturstudier tyder på att corten har högre hållfasthet än vanligt stål, så troligtvis kan plåttjockleken minskas Korrosionshastighet Provbitarna som sattes in vecka 17 plockades ut vecka 35. En av SS plåtarna syns på bilden nedan (se firgur 18) Det finns tre olika sätt att avlägsna korrosionsprodukter på: mekaniskt, kemiskt och elektrolytiskt. Ideal rengöring avlägsnar enbart korrosionsprodukter och lämnar basmetallen orörd. Det finns en mängd olika kemikalier som kan användas för att avlägsna korrosionsprodukter på kolstål och rostfritt stål. I detta test användes diammoniumvätecitrat ((NH 4 ) 2 HC 6 H 5 O 7 ) eftersom det, enligt standarden, kan användas på både kolstål och rostfritt. Gas 1cm Kondensat Figur 18 SS innan avlägsning av korrosionsprodukter För att räkna ut korrosionshastigheten rengjordes plåtarna först i ett ultraljudsbad i avsikt att ta bort lösa korrosionsprodukter, sedan sänktes plåtarna ner i ett 75- gradigt bad med ammoniumdivätecitrat för att avlägsna korrosionsprodukterna, 23

27 lite i taget. Fem minuter i ammoniumdivätecitrat följt av fem minuter i ultraljudsbadet och sedan vägning. Rengöringsproceduren genomfördes flera gånger och viktminskningen noterades efter varje cykel. Detta upprepades till dess att ändringen i viktminskning planade ut. Tabell 9 Cykler Vikt (g) Viktminskning (g) 1 630, ,2 3, ,2 6, ,3 8, ,1 10, ,5 11, ,5 12, , ,1 13, ,6 13, , ,2 14,2 Skillnaden mellan ursprungsvikten och nuvarande vikt plottades mot cyklerna och resulterade i följande diagram: Diagram 1 Viktminskning som resultat av rengöringscykler på korroderad provplåt SS 1312 Viktminskning Cykler Den första delen av kurvan (de sex första cyklerna) visar viktminskring på grund av borttagning av korrosionsprodukter och andra delen (från cykel sex och framåt) visar viktminskning på grund av att kemikalierna angripit basmetallen. Extrapolering av kurvan med en linje visar hur mycket korrosionsprodukter det fanns. 24

28 Korrosionshastighet: (K*W)/(A*T*D) K= konstant 8, 76*10 4 W= viktminskning i gram A= area i cm 2 T= exponeringstid i timmar D= densitet i g/cm 3 Insättning av mätvärden (uträkning, se bilaga 3) ger en korrosionshastighet på 0,06 mm per år, på 20 år skulle det korrodera 1,2 mm om det gäller en jämt utspridd, allmän korrosion. Efter avlägsning av korrosionsprodukterna på SS syntes tydligt en mängd små gropar på plåtdelen som varit i kontakt med gasen. Den delen av plåten som stått i kondensatet var inte utsatt för gropkorroson utan endast lite allmänt korroderad (se figur 19). Vid mer noggrann granskning av ytan konstaterades att korrosionsgroparna på den värmepåverkade zonen kring svetsen var färre, men kanske något djupare. Se bilaga 4. Gas 1cm Kondensat Figur 19 Provbit SS efter avlägsnande av korrosionsprodukter Avlägsnandet av ytbeläggning på det rostfria stålet var svårare. Ammoniumdivätecitrat kunde inte avlägsna den beläggning som orsakats av miljön inne i LDgasklockan. Samtliga av de rostfria stålen hade ökat i vikt, även efter att ha tillbringat lång tid i kemikaliebadet (jämfört med innan de sattes in i klockan). Efter 1,5 timmar i kemikaliebadet hade det stål som minskat mest i vikt förlorat 25

29 1,3 g. Vid jämförelse av vikt på plåtarna innan de sattes in i klockan med vikt efter rengöring hade de rostfriaplåtarna ökat i vikt med 5 g. De målade plåtbitarna placerades i gasklockan vecka 24 och plockades ut vecka 35. Det fanns varken mycket att se eller utreda. Det som kunde konstateras var att en beläggning fastnat på samtliga ytor, en beläggning som inte gick bort i ultaljudsbad. Den delen av plåten som varit täckt i kondensat blev nästan helt ren. 26

30 6 Diskussion Som alla andra industrier förlorar SSAB pengar när något måste repareras, dels i reparationskostnader och dels i förlorad produktion. Eftersom LD-gasen inte är en länk i produktionssteget, utan en biprodukt som genererar pengar vid försäljning, så blir inte stålproduktionen lidande om inte gasklockan fungerar som den ska. Under sommarmånaderna får SSAB mindre betalt för gasen de säljer till LUKAB eftersom konsumenterna inte förbrukar så mycket värme då. Dessutom håller LUKAB stängt några veckor på sommaren och kan då inte ta emot någon gas och då är det lämpligt för reparationer av LD-gasklockan. Tanken är att eventuellt bygga en ny underdel till LD-gasklockan i lämpligt material och lämpligt korrosionsskydd, vid sidan om den nuvarande och lyfta över den delen av gasklockan som inte är gasberörd (se figur 2). Då kan byggandet av den nya underdelen vara klart till LUKAB:s sommarstopp och installationen ske under själva stoppet I allmänhet är korrosion i närheten av vatten en elektrolytisk process där vattnet är själva elektrolyten. Anoden är järnet i stålkonstruktionen samtidigt som katoden representeras av olika andra element. Anoden och katoden måste vara förbundna på något sätt så att elektronerna kan fraktas från anoden till katoden. Om ett av dessa fyra element saknas kan korrosionsaktiviteten begränsas. Gasen mättas med vattenånga vid reningen och detta examensarbete innefattar inte att ändra LD-konverterns eller gasreningens funktion, så närvaro av elektrolyt kan inte påverkas. Mängden vattenånga i gasen påverkas av temperaturen som även den beror på gasreningen. Sänks temperaturen vid reningen ytterligare är det mindre vattenånga som följer med gasen och mindre vatten som kan kondenseras. Eftersom kondensatet har så låg ledningsförmåga skulle gropkorrosionen förvärras med minskad kondensatmängd (se figur 11). En annan metod att begränsa korrosionen är att avlägsna anoden, att helt enkelt isolera anoden och katoden från varandra. Detta innebär att inte ha något bart stål, utan ett heltäckande lager korrosionsskydd. Det kan vara svårt att erhålla ett absolut täckande lager av exempelvis färg, men det är inte omöjligt. De målade provbitarna var inte angripna av korrosion tack vare att anoden isolerats från elektrolyten och katoden. Med ett tjockare lager färg erhålls färre porer. CO 2 i närvaro av vatten kan bilda kolsyra H 2 CO 3 med ett lågt lokalt ph. De flesta epoxy-färgerna har svårt att hantera miljöer med ph ner mot 4. Den korrosion som uppstått på provbitarna liknar inte den som påträffats på den gasberörda mantelytan (förutom att det är gropkorrosion) eftersom förhållandet anod-/katodarea inte varit samma. Dessutom är den aktuella mantelytan målad och har suttit inne en betydligt längre tid. Korrosionshastigheten beräknades tidigare och det ska tilläggas att den inte nödvändigtvis är linjär med tiden, utan bara en indikation på hur det kan vara. Korrosionsberäkningar gjorda på viktminskning påvisar inte lokal korrosion såsom detta fall visade sig vara. 27

31 Avlägsnandet av katoden skulle också få bort drivkraften från korrosionen. Problemet är bara att komma fram till vad katoden är. H 2 S i närvaro av fuktig gas bryts ner och bildar svavelkristaller på väggarna och dessa fungerar som en katod. Analyserna som tagits på kondensatet och beläggningen på klockan visar att det finns små mängder svavel. Om svavlet sitter på väggarna där det uppstått skavanker i färgen så kan det vara en orsak till den lokala korrosionen. Mätningar av ph-värdet längs röret tyder på att H + -joner förbrukas ju längre bort från LD-konvertern provtagningen utförts. Detta innebär att om vätejoner konsumeras så minskar även deras vilja att förbruka elektroner. 6.1 Möjliga korrosionstyper Det är mer korrosion i närheten av svetsar, enligt DNV: s rapport [1], men troligtvis beror inte det på spänningskorrosion, utan att färgen inte täckt ordentligt där. Vad gäller korrosionsskyddsmålning av svetsar är det viktigt att rengöra ordentligt (mekaniskt och kemiskt) och få bort svetsloppor, så att ytan blir jämn och klorider, så att osmotiska krafter inte drar in fukt genom färgen. Om svetslopporna får sitta kvar finns det stor risk att de sticker genom färglagret eller att färglagret blir tunnare just där, och det ger ökad risk för gropkorrosion. När det smutsiga kondensatet rinner längs väggarna nöter det hål på färgen. När det uppstår ett hål i färgen kan korrosion av den blottade stålytan ske. Erosion kan vara det som fått färgen att fallera. Kondens innehållande stoftpartiklar från gasen har runnit längs väggarna och resulterat i nötning på färgen. Där stålytan blottats kan lokal korrosion uppstå i form av gropkorrosion. Det kan vara galvanisk korrosion där beläggningen är katoden och stålet anod, men då måste färgen vara ledande. Vanligtvis är inte färg ledande. I dubbelskrovade oljetankar är miljön till vissa delar lik den i LD-gasklockan. Den mikrobiella korrosion som det är i tankbåtarna kräver att det finns anaeroba bakterier. Analysen som ALcontrol i Umeå gjorde visade att det fanns både sulfat-joner och sulfitreducerande clostrider, så mikrobiell korrosion är möjlig i gasklockan. Resultatet säger att det inte finns så mycket, men koncentrationen bakterier är troligtvis högre i beläggningen än den är i själva kondensatet. Högtrycksledningar för gas kan råka ut för SCC (stress corrosion cracking) som orsakas av att det höga trycket applicerar dragspänningar, men i LD-gasklockan är trycket precis över atmosfärstryck. I svetsfogar uppstår en inre spänning i den värmepåverkade zonen, men eftersom korrosionen inte enbart koncentrerat sig till den värmepåverkade zonen tyder det på att SCC inte är orsaken. Tvärt om visar provbitarna på att det är något förminskad korrosion i den värmepåverkade zonen. Den enda spänning som uppstår i konstruktionen, förutom i svetsfogar, är egenvikten på gasklockan och det är bara tryckspänning. Korrosion kan ske snabbt även utan närvaro av syre vid lågt ph värde. Uppmätta ph-värden tyder visserligen på att kondensatet är neutralt eller strax under, men det kan vara väldigt lågt lokalt i groparna och det är svårt att påvisa. 28

32 6.2 Möjliga korrosionsskydd Aktiva Rosttröga och rostfria stål baseras på att det bildas ett skyddande oxidlager. Eftersom korrosionen i gasklockan inte är atmosfärisk så är det svårt att veta vilka korrosionsprodukter som uppstår på olika legerade stål samt hur hållbara de är. Rostfria stål är endast rostfria under vissa förhållanden. Det bildas ett skyddande oxidlager som är passivt och det är inte säkert att det bildas i klockan på grund av andra förutsättningar. Dessutom fungerar fel i oxidlagret på samma sätt som fel i färg, det ger alltså gropkorrosion. Rostfria stål kan klara en tid i klockan men när det passiva skyddet tillbakabildats kan det lätt angripas och korrodera likt vanligt kolstål. Litteraturstudier visar att rosttröga konstruktionsstål som används i vatten eller jord rostar såsom vanligt kolstål och bör därför kompletteras med nåt annat korrosionsskydd. Vid användning av rosttröga stål bör man undvika ansamling av vatten vilket är svårt i gasklockan, då stoftet som fastnar på väggarna inbjuder vatten att stanna. För att det ska bildas ett stabilt lager av korrosionsprodukter på ytan krävs att ytan fuktas och torkas om vart annat, och i LD-gasklockan är det fuktigt hela tiden. Beläggning med zink kan inte användas för det kan bara ge stål katodiskt skydd under 50 C. Över den temperaturen kan elektrodpotentialförhållanden vara omkastade så att zink är ädlare än stål och därav mer stjälpa än hjälpa. Katodiskt skydd i form av ström eller offeranod i samband med målning kombinerar aktivt och inaktivt korrosionsskydd. De kompletterar varandra för bästa resultat. Katodiskt skydd täcker vid skavanker i färgen och eftersom de bara ytorna är så små så blir det förlängd livslängd på offeranoden eller lägre strömförbrukning för den påtryckta strömmen. Katodiskt skydd skulle inte funka i detta fall, och risken finns att närliggande konstruktioner råkar illa ut på grund av läckströmskorrosion. En annan nackdel är att katodiskt skydd kräver att ytan är helt täckt med vatten, så att elektronerna kan röra sig fritt. Det kan altså inte användas på LD-gasklockan. Inhibitortillsats till omgivande miljö kräver underhåll och är klurigt att få i rätt mängd, dessutom är det svårt att veta hur de skulle reagera i miljön som finns i klockan Inaktiva Ett ordentligt korrosionsskydd från början förlänger livslängden på konstruktionen och underhållskostnaderna blir lägre. Används färg som korrosionsskydd måste den i största möjliga mån vara heltäckande, fel i skyddet orsakar lokal korrosion. Fördelen med målning som korrosionsskydd är att det är enkelt, billigt att applicera och underhålla. Korrosionsskydd av svetsar ska som tidigare nämnts ske genom noggrann rengöring följt av målning. 29

Material föreläsning 7. HT2 7,5 p halvfart Janne Färm

Material föreläsning 7. HT2 7,5 p halvfart Janne Färm Material föreläsning 7 HT2 7,5 p halvfart Janne Färm Fredag 11:e December 10:15 12:00 PPU105 Material Förmiddagens agenda Hållbarhet: oxidation och korrosion ch 17 Paus Processers egenskaper ch 18 2 Hållbarhet:

Läs mer

Inhibitorer Kylvattenkonferens Solna 3/5 2017

Inhibitorer Kylvattenkonferens Solna 3/5 2017 Inhibitorer Kylvattenkonferens Solna 3/5 2017 Niklas Dahlberg 1 Varför behövs vattenbehandling? Fokus på problemen: MIKROBIO KORROSION Vad orsakar scaling? Faktorer som påverkar bildandet av scaling: Suspenderande

Läs mer

Föreläsning om metallers korrosion Prof. Christofer Leygraf, Materialvetenskap, KTH

Föreläsning om metallers korrosion Prof. Christofer Leygraf, Materialvetenskap, KTH Materiallära för Maskinteknik, 4H1063, 4p Föreläsning om metallers korrosion Prof. Christofer Leygraf, Materialvetenskap, Korrosion Corrodere (latin) = gnaga sönder Fritt efter Callisters bok: avsnitt

Läs mer

Uppgiften Materiel Brunn nummer Metall eller metallkombination

Uppgiften Materiel Brunn nummer Metall eller metallkombination Hemlaboration 5 B (Härnösand) Korrosions och korrosionsskydd Teori En galvanisk cell består av två elektroder (anod och katod), en förbindelse mellan dessa och en elektrolyt.. Galvanisk korrosion kan liknas

Läs mer

Makes Industry Grow. Rostfritt Material. Korrosion

Makes Industry Grow. Rostfritt Material. Korrosion Rostfritt Material Korrosion Korrosionsmotstånd beror på omgivning och miljö Begränsningar beroende på media ger olika korrosionsbeständighet Kol och kol-mangan-stål Mikrolegerade stål Låglegerade stål

Läs mer

Korrosion laboration 1KB201 Grundläggande Materialkemi

Korrosion laboration 1KB201 Grundläggande Materialkemi Korrosion laboration 1KB201 Grundläggande Materialkemi Utförs av: William Sjöström (SENSUR) Rapport skriven av: William Sjöström Sammanfattning Om en metall inte är stabil i den omgivande miljön så kan

Läs mer

Materia Sammanfattning. Materia

Materia Sammanfattning. Materia Materia Sammanfattning Material = vad föremålet (materiel) är gjort av. Materia finns överallt (består av atomer). OBS! Materia Något som tar plats. Kan mäta hur mycket plats den tar eller väga. Materia

Läs mer

Passivitet = oupplösliga korrosionsprodukter. lagret = extrem snabb korrosion.

Passivitet = oupplösliga korrosionsprodukter. lagret = extrem snabb korrosion. Passivitet = oupplösliga korrosionsprodukter Repassivering (idealiskt!) Lokal nedbrytning av passiva lagret = extrem snabb korrosion. Fisklina syndromet (2) Korrosionsformer / Rostfritt Allmän korrosion

Läs mer

Minican resultatöversikt juni 2011

Minican resultatöversikt juni 2011 Sidan av Minican resultatöversikt juni Sammanställt från arbetsmaterial SKBModelCanisterProgressReport Dec_Issue -4-7 MINICAN microbe report Claes Taxén Siren Bortelid Moen Kjell Andersson Översikt över

Läs mer

REPETITION AV NÅGRA KEMISKA BEGREPP

REPETITION AV NÅGRA KEMISKA BEGREPP KEMI RUNT OMKRING OSS Man skulle kunna säga att kemi handlar om ämnen och hur ämnena kan förändras. Kemi finns runt omkring oss hela tiden. När din mage smälter maten är det kemi, när din pappa bakar sockerkaka

Läs mer

AvantGuard Omdefinierar korrosionsskydd

AvantGuard Omdefinierar korrosionsskydd AvantGuard Omdefinierar korrosionsskydd AvantGuard Omdefinierar korrosionsskydd använder en ny kombination av zink, ihåliga glaspärlor och en upphovsrättsskyddad aktivator som aktiverar zinken och förbättrar

Läs mer

CorEr. Boden Energi AB utför prov med CoreEr i sopförbrännigspanna

CorEr. Boden Energi AB utför prov med CoreEr i sopförbrännigspanna CorEr Boden Energi AB utför prov med CoreEr i sopförbrännigspanna År 2007 startade Boden Energi AB sin senaste sopförbränningspanna av typen Roster, levererad av B&W Volund. Pannan förbränner cirka 50

Läs mer

1.6 Zinkens korrosion

1.6 Zinkens korrosion 1.6 Zinkens korrosion Stål är vår tids mest använda material. Men stål har en stor nackdel och det är dess höga korrosionshastighet. Att skydda stålkonstruktioner och detaljer mot rost har därför stort

Läs mer

Göran Stenman. Syror och Baser. Göran Stenman, Ursviksskolan 6-9, Ursviken

Göran Stenman. Syror och Baser. Göran Stenman, Ursviksskolan 6-9, Ursviken Göran Stenman Syror och Baser Göran Stenman, Ursviksskolan 6-9, Ursviken www.lektion.se Syror och baser är frätande, det viktigaste att komma ihåg då vi laborerar är.. Skyddsglasögon Göran Göran Stenman

Läs mer

Framställning av järn

Framställning av järn Ämnen i jordskorpan Få rena grundämnen i naturen Ingår i kemiska föreningar I berggrunden (fasta massan i jordskorpan) finns många olika kemiska föreningar. De flesta berggrund innehåller syre Berggrunden

Läs mer

Utvärderingar för processkännedom och utveckling några exempel på hur analyser/provning ger nyttig kunskap. Karin Lindqvist, Swerea IVF

Utvärderingar för processkännedom och utveckling några exempel på hur analyser/provning ger nyttig kunskap. Karin Lindqvist, Swerea IVF Utvärderingar för processkännedom och utveckling några exempel på hur analyser/provning ger nyttig kunskap Karin Lindqvist, Swerea IVF Exempel 1) Vad finns under ytan? Företaget X hade sett sjunkande kvalité

Läs mer

Materien. Vad är materia? Atomer. Grundämnen. Molekyler

Materien. Vad är materia? Atomer. Grundämnen. Molekyler Materien Vad är materia? Allt som går att ta på och väger någonting är materia. Detta gäller även gaser som t.ex. luft. Om du sticker ut handen genom bilrutan känner du tydligt att det finns något där

Läs mer

Galvaniska element. Niklas Dahrén

Galvaniska element. Niklas Dahrén Galvaniska element Niklas Dahrén Galvaniska element/celler ü Olika anordningar som skapar elektrisk energi utifrån kemiska reaktioner (redoxreaktioner) kallas för galvaniska element (eller galvaniska celler).

Läs mer

Ämnen runt omkring oss åk 6

Ämnen runt omkring oss åk 6 Ämnen runt omkring oss åk 6 Begrepp att kunna Atom Avdunstning Basisk Blandning Brännbarhet Egenskaper Fast form Flytande form Fotosyntes Gasform Grundämne Kemisk förening Kemisk reaktion Kondensering

Läs mer

Galvaniska element. Niklas Dahrén

Galvaniska element. Niklas Dahrén Galvaniska element Niklas Dahrén Galvaniska element/celler Olika anordningar som skapar elektrisk energi utifrån kemiska reaktioner (redoxreaktioner) kallas för galvaniska element (eller galvaniska celler).

Läs mer

Korrosion hos förzinkat stål i karbonatiserad och kloridhaltig betong

Korrosion hos förzinkat stål i karbonatiserad och kloridhaltig betong Korrosion hos förzinkat stål i karbonatiserad och kloridhaltig betong -en studie utförd av Korrosionsinstitutet Annikki Hirn, MSc Informationskontor för frågor rörande varmförzinkning av stål Jobbar med

Läs mer

Kap 8 Redox-reaktioner. Reduktion/Oxidation (elektrokemi)

Kap 8 Redox-reaktioner. Reduktion/Oxidation (elektrokemi) Kap 8 Redox-reaktioner Reduktion/Oxidation (elektrokemi) Zinkbleck (zinkplåt) i en kopparsulfatlösning Zn (s) + CuSO 4 (aq) Zn (s) + Cu 2+ (aq) + SO 4 2+ (aq) Vad händer? Magnesium brinner i luft Vad

Läs mer

Faktorer som påverkar korrosionshärdigheten hos metalliska material i badvatten

Faktorer som påverkar korrosionshärdigheten hos metalliska material i badvatten MATERIALVAL I BADANLÄGGNINGAR FÖR ATT UNDVIKA FRAMTIDA KORROSIONSPROBLEM Bror Sederholm, RISE KIMAB Mars 2019 RISE Research Institutes of Sweden Faktorer som påverkar korrosionshärdigheten hos metalliska

Läs mer

Vad är vatten? Ytspänning

Vad är vatten? Ytspänning Vad är vatten? Vatten är livsviktigt för att det ska finnas liv på jorden. I vatten finns något som kallas molekyler. Dessa molekyler går inte att se med ögat, utan måste ses med mikroskop. Molekylerna

Läs mer

1.4 Korrosionslära och korrosion

1.4 Korrosionslära och korrosion 1.4 Korrosionslära och korrosion Korrosion kommer av det latinska verbet corrodere, som betyder sönderfräta eller söndergnaga. Numera används ordet korrosion som ett samlande begrepp för alla materials

Läs mer

PPU408 HT15. Aluminium. Lars Bark MdH/IDT 2015-12-03

PPU408 HT15. Aluminium. Lars Bark MdH/IDT 2015-12-03 Aluminium 1 1807 1824 1886 - Engelsmannen Humphrey Davy (1778-1829) insåg att metallen måste finnas men lyckades inte framställa den. - Han gav den dock namnet Aluminum. - Den danske vetenskapsmannen H.

Läs mer

Labbrapport 1 Kemilaboration ämnens uppbyggnad, egenskaper och reaktioner. Naturkunskap B Hösten 2007 Av Tommy Jansson

Labbrapport 1 Kemilaboration ämnens uppbyggnad, egenskaper och reaktioner. Naturkunskap B Hösten 2007 Av Tommy Jansson Labbrapport 1 Kemilaboration ämnens uppbyggnad, egenskaper och reaktioner. Naturkunskap B Hösten 2007 Av Tommy Jansson Försök 1: Beskriv ämnet magnesium: Magnesium är ett grundämne (nummer 12 i det periodiska

Läs mer

ämnen omkring oss bildspel ny.notebook October 06, 2014 Ämnen omkring oss

ämnen omkring oss bildspel ny.notebook October 06, 2014 Ämnen omkring oss Ämnen omkring oss 1 Mål Eleverna ska kunna > Kunna förklara vad en atom och molekyl är. > Vet a vad ett grundämne är och ge exempel > Veta vad en kemisk förening är och ge exempel > Veta att ämnen har

Läs mer

Kemiska beteckningar på de vanligaste atomslagen - känna till jonladdning på de vanligaste olika kemiska jonerna

Kemiska beteckningar på de vanligaste atomslagen - känna till jonladdning på de vanligaste olika kemiska jonerna Elektrokemi Kemiska beteckningar på de vanligaste atomslagen - känna till jonladdning på de vanligaste olika kemiska jonerna Elektrokemiska spänningsserien: Alla metaller i det periodiska systemet finns

Läs mer

Minican Brytning av försök 3

Minican Brytning av försök 3 Sidan 1 av 5 Minican Brytning av försök 3 Sammanfattning från: Plan for the Proposed Removal of MiniCan Experiment 3 from Borehole KA3386A04, Dokument ID 1275538 1 Hela minkapseln och insatsen tas ut och

Läs mer

Så jobbar du med varmförzinkat stål

Så jobbar du med varmförzinkat stål Från projektering till montering Så jobbar du med varmförzinkat stål Annikki Hirn Nordic Galvanizers Nordic Galvanizers - branschföreningen för varmförzinkningsföretag i Norden Driver ett informationskontor

Läs mer

Bilaga 2. Ackrediteringens omfattning. Kemisk analys /1313

Bilaga 2. Ackrediteringens omfattning. Kemisk analys /1313 Ackrediteringens omfattning Laboratorier Degerfors Laboratorium AB Degerfors Ackrediteringsnummer 1890 A003432-001 Kemisk analys Oorganisk kemi Aluminium, Al ASTM E1086:2014 OES Stål ASTM E1621:2013 XRF

Läs mer

PM Ytbehandling. Anodisering. Christoffer Löfstrand 2011 01 16

PM Ytbehandling. Anodisering. Christoffer Löfstrand 2011 01 16 PM Ytbehandling Anodisering Christoffer Löfstrand 2011 01 16 Fördjupningsarbetet beskrivet med ett PM behandlar området Ytbehandling, med speciell inriktning på anodisering av olika metaller, framförallt

Läs mer

Corrosion of steel in concrete at various mouisture and chloride conditions. Licentiate work Johan Ahlström

Corrosion of steel in concrete at various mouisture and chloride conditions. Licentiate work Johan Ahlström Corrosion of steel in concrete at various mouisture and chloride conditions. Licentiate work Johan Ahlström Påträffade korrosionsskador i betongkonstruktioner Konstruktioner i kloridhaltiga miljöer. -Många

Läs mer

7.4 Avvikelser vid varmförzinkning

7.4 Avvikelser vid varmförzinkning 7.4 Avvikelser vid varmförzinkning Nedan beskrivs några av de vanligaste avvikelserna vid varmförzinkning. Vill du veta mer kan du studera Nordisk Förzinkningsförenings häfte Avvikelser vid varmförzinkning

Läs mer

VATTENS PÅVERKAN PÅ INSTRUMENT Vad sker med ytskiktet när man använder olika vattenkvalitet?

VATTENS PÅVERKAN PÅ INSTRUMENT Vad sker med ytskiktet när man använder olika vattenkvalitet? VATTENS PÅVERKAN PÅ INSTRUMENT Vad sker med ytskiktet när man använder olika vattenkvalitet? Steriltekniker utbildningen Sollefteå Lärcenter 300 YH p, 2014 Författare: Helén Graf Leseth, Åsa Jansson. Handledare:

Läs mer

ZERUST korrosionsskydd för elektronik och elektronisk utrustning

ZERUST korrosionsskydd för elektronik och elektronisk utrustning ZERUST korrosionsskydd för elektronik och elektronisk utrustning Varför ZERUST? Reducerad produktivitet och fel på elektronisk utrustning är två problem som orsakas av korrosion. Korrosion kan uppstå när

Läs mer

VÅTKORROSION ANLEDNINGAR OCH ÅTGÄRDER. I tekniska vattensystem. 2000 BJÖRN CARLSSON

VÅTKORROSION ANLEDNINGAR OCH ÅTGÄRDER. I tekniska vattensystem. 2000 BJÖRN CARLSSON VÅTKORROSION I tekniska vattensystem. ANLEDNINGAR OCH ÅTGÄRDER 2000 BJÖRN CARLSSON 1 Korrosion i tekniska vattensystem Korrosion på insidan av rörledningar och komponenter i våra vanligast förekommande

Läs mer

Lågtemperaturkorrosion

Lågtemperaturkorrosion Feb-2007 Lågtemperaturkorrosion Erfarenheter från Våt/Torra Rökgasreningsanläggningar efter Biobränsle och Avfallseldning Tina Edvardsson Lågtemperaturkorrosion Introduktion - Definition Lågtemperaturkorrosion

Läs mer

Svar till Tänk ut-frågor i faktaboken

Svar till Tänk ut-frågor i faktaboken Sid. 269 13.1 Vad menas med att en metall ar adel? Den reagerar inte sa latt med andra amnen, den reagerar inte med saltsyra. 13.2 Ge exempel pa tre oadla metaller. Li, Mg, Al, Zn, Fe, Pb 13.3 Ge exempel

Läs mer

Smutsfilter med mikrobubbelavskiljning. ventim.se

Smutsfilter med mikrobubbelavskiljning. ventim.se Smutsfilter med mikrobubbelavskiljning ventim.se Smutsfilter med mikrobubbelavskiljning Smutsfilter av rostfritt stål med mikrobubbelavskiljning för säker, ren, effektiv och hygienisk drift och lägre driftskostnader.

Läs mer

TENTAMEN Material. Moment: Tentamen (TEN1), 3,5 högskolepoäng, betyg 3, 4 eller 5. Skriv din kod, kurskoden och kursnamn på varje inlämnat blad!

TENTAMEN Material. Moment: Tentamen (TEN1), 3,5 högskolepoäng, betyg 3, 4 eller 5. Skriv din kod, kurskoden och kursnamn på varje inlämnat blad! TENTAMEN Material Kurskod: PPU105 Moment: Tentamen (TEN1), 3,5 högskolepoäng, betyg 3, 4 eller 5 Datum: 2015-01-14 14:10-18:30 Hjälpmedel: Skriv och ritmateriel, räknedosa. Läs detta innan du börjar med

Läs mer

Materien. Vad är materia? Atomer. Grundämnen. Molekyler

Materien. Vad är materia? Atomer. Grundämnen. Molekyler Materien Vad är materia? Allt som går att ta på och väger någonting är materia. Detta gäller även gaser som t.ex. luft. Om du sticker ut handen genom bilrutan känner du tydligt att det finns något där

Läs mer

Addion. Matt mässing. Krom. Brunoxid. Kort om ytbehandling. ASSA ABLOY, the global leader in door opening solutions.

Addion. Matt mässing. Krom. Brunoxid. Kort om ytbehandling. ASSA ABLOY, the global leader in door opening solutions. Polygiene Technology Addion Matt mässing Brunoxid Krom Kort om ytbehandling ASSA ABLOY, the global leader in door opening solutions. Innehållsförteckning Ytbehandling förhindrar eller fördröjer korrosion

Läs mer

Varför rostar armering i betong?

Varför rostar armering i betong? Licavhandling Johan Ahlström, populärvetenskaplig sammanfattning (JT 2014-08-28), sida 1 av 6. Varför rostar armering i betong? Armering ingjuten i betong har normalt sett en mycket låg korrosionshastighet.

Läs mer

EKA-projektet. Analysmetoder, mätkrav och provhantering av grundvatten

EKA-projektet. Analysmetoder, mätkrav och provhantering av grundvatten EKA-projektet. er, mätkrav och provhantering av grundvatten Tabell 1. Grundämnen Kvicksilver, Hg 0,1 ng/l +/- 5 % Metod 09 vatten USA EPA-metoden 1631:revision B Metyl-Kvicksilver, Me-Hg 0,06 ng/l +/-

Läs mer

Varför Ytbehandla? Korrosion kostar

Varför Ytbehandla? Korrosion kostar Varför Ytbehandla? Korrosion kostar Korrosion Vad är korrosion? Ordet är latin och betyder gnaga sönder, fräta. Materialförstörelsen kallas korrosion. Årligen korroderar / rostar det för miljarder kronor

Läs mer

Analyslaboratoriet, 4380 A OES 0,003 5,5 vikt% Stål Nej Nej ASTM E415, mod OES 0,003 1,5 vikt% Stål Nej Nej ASTM E572, mod/ss-en 10315:2006

Analyslaboratoriet, 4380 A OES 0,003 5,5 vikt% Stål Nej Nej ASTM E415, mod OES 0,003 1,5 vikt% Stål Nej Nej ASTM E572, mod/ss-en 10315:2006 Ackrediteringens omfattning AB Sandvik Materials Technology Sandviken Ackrediteringsnummer 1636 Analyslaboratoriet, 4380 A001539-001 Kemisk analys Teknikområde Parameter Metod Mätprincip Mätområde Provtyp

Läs mer

Bedömning av korrosionstillstånd i armering med elektrokemiska mätmetoder. Johan Ahlström Johan.ahlstrom@swerea.se

Bedömning av korrosionstillstånd i armering med elektrokemiska mätmetoder. Johan Ahlström Johan.ahlstrom@swerea.se Bedömning av korrosionstillstånd i armering med elektrokemiska mätmetoder Johan Ahlström Johan.ahlstrom@swerea.se 1 Innehåll Kort teori Potentialkartering Linjär polarisationsresistansteknik 2 Teori Jonledare:

Läs mer

12 ELEKTROKEMISK KORROSION

12 ELEKTROKEMISK KORROSION 12 ELEKTROKEMISK KORROSION 12.1 INLEDNING Korrosion i fartyg har varit ett känt problem ända sedan slutet av 1700-talet då man fick stora problem i s.k. kompositbyggen med stävar, spant och roder av stål

Läs mer

CO +( CO 2 )+ Fe 2 O 3 -> Fe 3 O 4 + CO + CO 2

CO +( CO 2 )+ Fe 2 O 3 -> Fe 3 O 4 + CO + CO 2 Högst upp i masugnen: Ugnen fylls på med malm- och träkolsbitar Kolmonoxiden i masugnsgasen reagerar med hematiten och det bildas magnetit och koldioxid. kvävgasen ( ) torkar och värmer malm 2 O 3 2 3

Läs mer

Metallundersökning Indalsälven, augusti 2008

Metallundersökning Indalsälven, augusti 2008 Metallundersökning Indalsälven, augusti 2008 EM LAB Strömsund 1 Förord Denna rapport är sammanställd av EM LAB (Laboratoriet för Energi och Miljöanalyser) på uppdrag av Indalsälvens Vattenvårdsförbund.

Läs mer

Fouling? Don t fight it. Release it.

Fouling? Don t fight it. Release it. Fouling? Don t fight it. Release it. Upptäck HEMPEL:s senaste innovation och tekniska landvinning nya SilicOne bexäxningssläppande silikonbottenfärgssystem! + + Grundfärg Silikongrundfärg Silikonbottenfärg

Läs mer

Den elektrokemiska spänningsserien. Niklas Dahrén

Den elektrokemiska spänningsserien. Niklas Dahrén Den elektrokemiska spänningsserien Niklas Dahrén Metaller som reduktionsmedel Metaller fungerar ofta som reduktionsmedel: Metaller fungerar ofta som reduktionsmedel eftersom de avger sina valenselektroner

Läs mer

Molekyler och molekylmodeller. En modell av strukturen hos is, fruset vatten

Molekyler och molekylmodeller. En modell av strukturen hos is, fruset vatten Molekyler och molekylmodeller En modell av strukturen hos is, fruset vatten Sammanställt av Franciska Sundholm 2007 Molekyler och molekylmodeller En gren av kemin beskriver strukturen hos olika föreningar

Läs mer

Skogsindustridagarna 2014 Utmattningsskador hos batchkokare? 2014-03-19

Skogsindustridagarna 2014 Utmattningsskador hos batchkokare? 2014-03-19 Skogsindustridagarna 2014 Utmattningsskador hos batchkokare? 1 Först lite information om hur en batchkokare fungerar Vid satsvis kokning (batchkokning) fylls kokaren med flis, vitlut och svartlut. Kokvätskan

Läs mer

Nya begrepp i elektrokemi

Nya begrepp i elektrokemi Nya begrepp i elektrokemi 1 Elektrolys och elektroly4ska processer Laddningsmängd i elektrokemiska processer Rening av råkoppar Galvanisering av järn (elförzinkning) Energiförbrukning Klor- alkaliprocessen

Läs mer

Den elektrokemiska spänningsserien. Niklas Dahrén

Den elektrokemiska spänningsserien. Niklas Dahrén Den elektrokemiska spänningsserien Niklas Dahrén Metaller som reduktionsmedel ü Metaller avger gärna sina valenselektroner till andra ämnen p.g.a. låg elektronegativitet och eftersom de metalljoner som

Läs mer

Rening vid Bergs Oljehamn

Rening vid Bergs Oljehamn Rening vid Bergs Oljehamn statoilsreningsfolder2.indd 1 08-10-09 13.24.00 statoilsreningsfolder2.indd 2 08-10-09 13.24.01 Innehåll Vattenrening vid Bergs Oljehamn 4 Gasrening vid Bergs Oljehamn 10 statoilsreningsfolder2.indd

Läs mer

Övergripande ändringsförtäckning för kapitel L. Texten i AMA och RA har blivit tydligare genom okodad underrubrik

Övergripande ändringsförtäckning för kapitel L. Texten i AMA och RA har blivit tydligare genom okodad underrubrik Övergripande ändringsförtäckning för kapitel L LC MÅLNING M M Texten i AMA och RA har blivit tydligare genom okodad underrubrik LD - SKYDDSBELÄGGNING Text rensad från metoder som inte används och ovidkommande

Läs mer

VAD ÄR KEMI? Vetenskapen om olika ämnens: Egenskaper Uppbyggnad Reaktioner med varandra KEMINS GRUNDER

VAD ÄR KEMI? Vetenskapen om olika ämnens: Egenskaper Uppbyggnad Reaktioner med varandra KEMINS GRUNDER VAD ÄR KEMI? Vetenskapen om olika ämnens: Egenskaper Uppbyggnad Reaktioner med varandra ANVÄNDNINGSOMRÅDEN Bakning Läkemedel Rengöring Plast GoreTex o.s.v. i all oändlighet ÄMNENS EGENSKAPER Utseende Hårdhet

Läs mer

ALLOY 600 UNS N06600, , NiCr15Fe

ALLOY 600 UNS N06600, , NiCr15Fe ALLOY 600 UNS N06600, 2.4816, NiCr15Fe ALLMÄNNA EGENSKAPER //////////////////////////////////////////////// //// Alloy 600 (UNS N06600) är en nickel-kromlegering avsedd att användas i applikationer under

Läs mer

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Efter överenskommelse med studenterna är rättningstiden fem veckor.

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Efter överenskommelse med studenterna är rättningstiden fem veckor. Kemi Bas A Provmoment: Tentamen Ladokkod: TX011X Tentamen ges för: Tbas, TNBas 7,5 högskolepoäng Namn: Personnummer: Tentamensdatum: 2012-10-22 Tid: 9:00-13:00 Hjälpmedel: papper, penna, radergummi kalkylator

Läs mer

Korrosion i rökgaskondenseringsanläggningar

Korrosion i rökgaskondenseringsanläggningar Korrosion i rökgaskondenseringsanläggningar Värmeforskrapport M08-831 Per-Åke Stenqvist Installed HB 1 Såväl brukare som leverantörer av pann- och rökgaskondenseringsanläggningar samt bränsleleverantörer

Läs mer

Måla direkt på rostiga ytor och spar tid och pengar!

Måla direkt på rostiga ytor och spar tid och pengar! Isotrol gör rostskyddsmålningen enkel. Måla direkt på rostiga ytor och spar tid och pengar! Oavsett om det är järnvägsbroar, kraftledningsstolpar, hamnkranar eller mindre ståldetaljer garanterar Isotrolsystemet

Läs mer

Korrosion Under Isolering (CUI)

Korrosion Under Isolering (CUI) Korrosion Under Isolering (CUI) Typiskt isolerat rör Plåt beklädnad Rör Isolering Varför Används Isolering: Personligt Skydd Energi Effektivt Process Kontroll Buller Reducering Frysskydd Brandskydd CUI

Läs mer

Korrosionsinstitutet. Swedish Corrosion Institute. Uppdragsgivare: Nicholas T Rolander Morbygden 44 SE-791 94 Falun

Korrosionsinstitutet. Swedish Corrosion Institute. Uppdragsgivare: Nicholas T Rolander Morbygden 44 SE-791 94 Falun Korrosionsinstitutet Swedish Corrosion Institute Uppdragsgivare: TOWNSHEND TRADE COMPANY Nicholas T Rolander Morbygden 44 SE-791 94 Falun Ärende: Provning av produkten Tef-Gel s förmåga att minska galvanisk

Läs mer

VAD ÄR KEMI? Vetenskapen om olika ämnens: Egenskaper Uppbyggnad Reaktioner med varandra KEMINS GRUNDER

VAD ÄR KEMI? Vetenskapen om olika ämnens: Egenskaper Uppbyggnad Reaktioner med varandra KEMINS GRUNDER VAD ÄR KEMI? Vetenskapen om olika ämnens: Egenskaper Uppbyggnad Reaktioner med varandra ANVÄNDNINGSOMRÅDEN Bakning Läkemedel Rengöring Plast GoreTex o.s.v. i all oändlighet ÄMNENS EGENSKAPER Utseende Hårdhet

Läs mer

Karl Johans skola Åk 6 MATERIA

Karl Johans skola Åk 6 MATERIA MATERIA Vad är materia? Överallt omkring dig finns det massor av föremål som du kan se eller känna på. De kan bestå av olika material som sten, trä, järn, koppar, guld, plast eller annat. Oavsett vilket

Läs mer

Repetition av hur en atom blir en jon.

Repetition av hur en atom blir en jon. Repetition av hur en atom blir en jon. ex. 11 Na Det finns en elektron i det yttersta skalet. Natrium vill bli av med den för att få fullt i sitt yttersta skal. Natrium ger då bort den och natriumatomen

Läs mer

SANODAL Deep Black MLW

SANODAL Deep Black MLW TEKNISK INFORMATION ALUMINIUM SANODAL Deep Black MLW Sanodal Deep Black MLW är ett färgämne med mycket goda all-round egenskaper, framförallt hög ljushärdighet och mycket god väderbeständighet. Huvudsakliga

Läs mer

Stål en del av vår vardag

Stål en del av vår vardag Stål en del av vår vardag Stål finns i det mesta vi har runtomkring oss, bilar, strykjärn, mobiler, bestick och gatlampor. Produkter som inte innehåller stål är ofta plastprodukter som tillverkats i stålformar.

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Metalliska Material Provmoment: Ladokkod: Tentamen ges för: Tentamen A129TG TGMAI16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 171027 Tid: 09.00-13.00 Hjälpmedel: Miniräknare Formler, figurer, tabeller

Läs mer

Grundvattenkvaliteten i Örebro län

Grundvattenkvaliteten i Örebro län Grundvattenkvaliteten i Örebro län I samband med en kartering som utförts (1991) av SGU har 102 brunnar och källor provtagits och analyserats fysikaliskt-kemiskt. Bl.a. har följande undersökts: Innehåll...

Läs mer

Joner Syror och baser 2 Salter. Kemi direkt sid. 162-175

Joner Syror och baser 2 Salter. Kemi direkt sid. 162-175 Joner Syror och baser 2 Salter Kemi direkt sid. 162-175 Efter att du läst sidorna ska du kunna: Joner Förklara skillnaden mellan en atom och en jon. Beskriva hur en jon bildas och ge exempel på vanliga

Läs mer

Evercrete Vetrofluid

Evercrete Vetrofluid Evercrete Vetrofluid Evercrete Vetrofluid är ett speciellt impregneringsmedel som skyddar betong från försämring. Dess huvudsakliga formula baseras på vattenglas med en speciell katalysator som tillåter

Läs mer

1.5 Beläggningsmetoder med zink

1.5 Beläggningsmetoder med zink 1.5 Beläggningsmetoder med zink Zink är en mycket använd ytbehandlingsmetall, som ger stål en kraftigt förbättrad livslängd. Zink används i skikttjocklekar från 3 µm upp till 250 µm, vilket innebär från

Läs mer

Korrosion på sopsugsrör skyddat av offeranoder.

Korrosion på sopsugsrör skyddat av offeranoder. Stockholm 15 december 1996 Korrosion på sopsugsrör skyddat av offeranoder. Erik Levlin, Teknisk doktor, Vattenvårdsteknik, Kgl. Tekniska Högskolan Mätning av korrosionspotential längs en rörsträcka Mot

Läs mer

LUFT, VATTEN, MARK, SYROR OCH BASER

LUFT, VATTEN, MARK, SYROR OCH BASER -: KAPITEL 44 LUFT, VATTEN, MARK, SYROR... OCH BASER Luft, vatten, mark, syror och baser :3)---- =-lnnehå II Luft sid. 46 Vatten sid. 53 Mark sid. 60 Syror och baser 1 sid. 64 FUNDERA PÅ Hur mycket väger

Läs mer

EXAMENSARBETE. Korrosionsstudie av förtjockare och separatorkar i Kiruna anrikningsverk 3 vid LKAB. Jan Andersson 2013

EXAMENSARBETE. Korrosionsstudie av förtjockare och separatorkar i Kiruna anrikningsverk 3 vid LKAB. Jan Andersson 2013 EXAMENSARBETE Korrosionsstudie av förtjockare och separatorkar i Kiruna anrikningsverk 3 vid LKAB Jan Andersson 2013 Civilingenjörsexamen Maskinteknik Luleå tekniska universitet Institutionen för teknikvetenskap

Läs mer

Produkthandbok. Betning Betpasta, Spraybetmedel, Badbetvätska, Polermedel, Rengöringsmedel, Teknisk information.

Produkthandbok. Betning Betpasta, Spraybetmedel, Badbetvätska, Polermedel, Rengöringsmedel, Teknisk information. Produkthandbok. Betning Betpasta, Spraybetmedel, Badbetvätska, Polermedel, Rengöringsmedel, Teknisk information. TeroSystem TeroSystem AB Flöjelbergsgatan 16A, 43137 Mölndal www.terosystem.se Tel: 031-3381700

Läs mer

Additivs inverkan på lågtemperaturkorrosion SEBRA Bränslebaserad el- och värmeproduktion Stockholm juni 2016 SP Sveriges Tekniska

Additivs inverkan på lågtemperaturkorrosion SEBRA Bränslebaserad el- och värmeproduktion Stockholm juni 2016 SP Sveriges Tekniska Additivs inverkan på lågtemperaturkorrosion SEBRA Bränslebaserad el- och värmeproduktion Stockholm 15-16 juni 2016 SP Sveriges Tekniska Forskningsinstitut Anders Hjörnhede Mål Genom dosering av svavel

Läs mer

Biobränsle. Biogas. Effekt. Elektricitet. Energi

Biobränsle. Biogas. Effekt. Elektricitet. Energi Biobränsle X är bränslen som har organiskt ursprung, biomassa, och kommer från de växter som lever på vår jord just nu. Exempel på X är ved, rapsolja, biogas och vissa typer av avfall. Biogas Gas som består

Läs mer

Dragprov, en demonstration

Dragprov, en demonstration Dragprov, en demonstration Stål Grundämnet järn är huvudbeståndsdelen i stål. I normalt konstruktionsstål, som är det vi ska arbeta med, är kolhalten högst 0,20-0,25 %. En av anledningarna är att stålet

Läs mer

Krypgrundsisolering Monteringsanvisning

Krypgrundsisolering Monteringsanvisning Fuktskyddssystem för Tak, Bygg och VA Krypgrundsisolering Monteringsanvisning MOT FUKT, MÖGEL OCH RADON I KRYPGRUND 10 mm tjock Krypgrundsisolering som höjer temperaturen normalt med +2 o C och ger ett

Läs mer

JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 3(3)

JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 3(3) KEM A02 Allmän- och oorganisk kemi JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 3(3) mer löslighetsprodukt! Repetition Henderson-Hasselbach ekvationen för beräkning av ph i buffert - OK att använda - viktigast

Läs mer

Sortera på olika sätt

Sortera på olika sätt Material Sortera material Att sortera material innebär att vi delar i materialen i grupper utifrån deras egenskaper. Egenskaper berättar hur någonting är, t.ex. färg, form, storlek, naturligt eller konstgjort.

Läs mer

JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 2(2)

JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 2(2) KEM A02 Allmän- och oorganisk kemi JÄMVIKT i LÖSNING A: Kap 12 Föreläsning 2(2) mer löslighetsprodukt! 12.9 The common ion effect utsaltning[utfällning] genom tillsats av samma jonslag BAKGRUND Många metalljoner

Läs mer

Uppsala Ackrediteringsnummer Sektionen för geokemi och hydrologi A Ekmanhämtare Sötvatten Ja Ja. Sparkmetod Sötvatten Ja Ja

Uppsala Ackrediteringsnummer Sektionen för geokemi och hydrologi A Ekmanhämtare Sötvatten Ja Ja. Sparkmetod Sötvatten Ja Ja Ackrediteringens omfattning Laboratorier Sveriges lantbruksuniversitet (SLU), Institutionen för vatten och miljö Uppsala Ackrediteringsnummer 1208 Sektionen för geokemi och hydrologi A000040-002 Biologiska

Läs mer

CRISTAL E. Framtidens svetsning är Cristalklar. Den nya generationen av rostfria MMA elektroder. www.oerlikon-welding.com 2006-222 RL00537R

CRISTAL E. Framtidens svetsning är Cristalklar. Den nya generationen av rostfria MMA elektroder. www.oerlikon-welding.com 2006-222 RL00537R CRISTAL E Den nya generationen av rostfria MMA elektroder. Framtidens svetsning är Cristalklar. Patenterat RL00537R www.oerlikon-welding.com CRISTAL : Den nya generationen rostfria elektroder 3534-053

Läs mer

Installationsanvisning och bruksanvisning. Reningsgrad standard 100 micron (0,1mm)

Installationsanvisning och bruksanvisning. Reningsgrad standard 100 micron (0,1mm) Installationsanvisning och bruksanvisning JPF AT ¾ " 2 Reningsgrad standard 100 micron (0,1mm) Obs! Läs noga igenom installation och bruksanvisning innan ni monterar och driftsätter detta filter. Viktigt

Läs mer

Bindemedel för stabilisering av muddermassor. Sven-Erik Johansson Cementa AB

Bindemedel för stabilisering av muddermassor. Sven-Erik Johansson Cementa AB för stabilisering av muddermassor Sven-Erik Johansson Cementa AB Inledning Vad vill vi åstadkomma? Täthet Hållfasthet Miljöegenskaper Beständighet Grundprinciper för funktion Struktur Grundprinciper för

Läs mer

Materia och aggregationsformer. Niklas Dahrén

Materia och aggregationsformer. Niklas Dahrén Materia och aggregationsformer Niklas Dahrén Vad är materia? Materia är egentligen allting som vi ser omkring oss! Allt som är uppbyggt av atomer kallas för materia. Materia kännetecknas av att det har

Läs mer

Skötselanvisningar för TERRAZZO GOLV. Slitstarka Stengolv som läggs av egna hantverkare. Herrljunga Terrazzo AB

Skötselanvisningar för TERRAZZO GOLV. Slitstarka Stengolv som läggs av egna hantverkare. Herrljunga Terrazzo AB 2014-03-27 1 (5) Skötselanvisningar för TERRAZZO GOLV Slitstarka Stengolv som läggs av egna hantverkare Herrljunga Terrazzo AB Box 13, SE-524 21 Herrljunga Office +46 (0)513-78 50 00 www.terrazzo.se 2014-03-27

Läs mer

Kemisk jämvikt. Kap 3

Kemisk jämvikt. Kap 3 Kemisk jämvikt Kap 3 En reaktionsformel säger vilka ämnen som reagerar vilka som bildas samt förhållandena mellan ämnena En reaktionsformel säger inte hur mycket som reagerar/bildas Ingen reaktion ger

Läs mer

ICP-MS > 0,15 µg/g TS Biologiskt. Bly, Pb SS-EN ISO :2005 ICP-MS > 0,05 µg/l Dricksvatten Nej Nej

ICP-MS > 0,15 µg/g TS Biologiskt. Bly, Pb SS-EN ISO :2005 ICP-MS > 0,05 µg/l Dricksvatten Nej Nej Ackrediteringens omfattning Stockholms Universitet, Institutionen för miljövetenskap och analytisk kemi ACES Enheterna för biogeokemi och miljöföroreningars kemi Stockholm Ackrediteringsnummer 1295 A000046-001

Läs mer

Material föreläsning 7. HT2 7,5 p halvfart Janne Carlsson

Material föreläsning 7. HT2 7,5 p halvfart Janne Carlsson Material föreläsning 7 HT2 7,5 p halvfart Janne Carlsson Fredag 9:e December 10:15 12:00 PPU105 Material Förmiddagens agenda Hållbarhet: oxidation och korrosion ch 17 Paus Processers egenskaper ch 18 2

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR V1, 14 DECEMBER 2010 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Värmelära. Fysik åk 8

Värmelära. Fysik åk 8 Värmelära Fysik åk 8 Fundera på det här! Varför kan man hålla i en grillpinne av trä men inte av järn? Varför spolar man syltburkar under varmvatten om de inte går att få upp? Varför hänger elledningar

Läs mer

Installation, svetsning och underhåll

Installation, svetsning och underhåll Installation, svetsning och underhåll Givetvis måste noggrann slaggborttagning utföras där detta förekommer. Förvärm om möjligt till 200 C, men ej över 20 C, innan svetsningen påbörjas, och håll temperaturen

Läs mer