Matematikens Element. Vad är matematik. Är detta matematik? Anders Fällström Institutionen för matematik och matematisk statistik Umeå universitet

Storlek: px
Starta visningen från sidan:

Download "Matematikens Element. Vad är matematik. Är detta matematik? Anders Fällström Institutionen för matematik och matematisk statistik Umeå universitet"

Transkript

1 Matematikens Element Höstterminen 2006 Anders Fällström Institutionen för matematik och matematisk statistik Umeå universitet Vad är matematik Är detta matematik? 3 1

2 Eller kanske detta? 4 Men det här då? 5 Klart är att matematik är Abstrakt och allmängiltigt Logiskt Vetenskapens språk Historia och kultur på köpet Glädje och kreativitet skapande och roligt - jobb Bredd - produktion 6 2

3 När kreativiteten sätts på prov Gödels ofullständighetssats I varje motsägelsefritt formellt system som är tillräckligt komplext för att kunna beskriva aritmetik för naturliga tal, går det att formulera satser som varken kan bevisas eller motbevisas inom ramen för det formella systemet. Kontinuumhypotesen Det existerar ett kardinaltal mellan kardinaltalet för de hela talen och kardianaltalet för de reella talen Gödel 1938: Bryter ej mot axiomsystemet Cohen 1963: Falsk bryter ej mot axiomsystemet 7 När kreativiteten sätts på prov 8 Topologi - gummimatematik Håriga bollar! Alltid en cyklon någonstans på jorden Hundar, björnar och möss måste ha en bena i sin päls Varje polynomekvation har en komplex rot 9 3

4 Talteori, primtal och krypto Kapitel 2 i From here to infinity The Price of Primality Talteori abstrakt o oanvändbart? Matematikens drottning Primtal! 2^( ) (1994) Två problem: Hitta effektivt sätt att avgöra om ett tal är primtal Hitta effektivt sätt att dela upp icke-primtal i primfaktorer Datorer: En miljon test per sekund: 30-siffrigt tal hur lång tid? 40-siffrigt tal ca en miljon år Idag 100-siffrigt tal på 15 sekunder Andra problemet fortfarande hopplöst 11 Moduloräkning Gauss 1700-talet n = pq+r skriver vi n = r (mod p) Ex: 17 = 2 (mod 5) Fermats lilla sats: Om p primtal som inte delar a, så är a^(p-1) = 1 (mod p) ex: 3 delar inte ^2=169 = 3x så 13^2 = 1 (mod 3) 12 4

5 Primtal forts Visa att ett tal ej är ett primtal Fermats lilla sats! 13 Varför är primtal intressanta? Publika nycklar! Chiffrera dechiffrera 1970 Merkle, Diffie och Hellman Råttfällefunktion M -> f(m). Dechiffrera = hitta inversen till f 14 RSA-kryptering RSA-systemet: Rivest, Shamir och Adleman Fermats lilla sats! Tag p och q hemliga (stoooora!) primtal Lämna ut n = pq och en avkodningsnyckel E Koda talet B. C = B^E (mod n) - det kodade talet. Dechiffrera: Krävs dechiffreingsnyckel D vald s.a. DE = 1 (mod (p-1)(q-1) ) C^D = B 15 5

6 RSA-kryptering, forts. Hela världen kan känna till n och E p och q hemliga Säkerhet: svårt faktorisera givet tal (pq) i primtal 16 Exempel RSA-kryptering Tag p=11, q=13 11x13 = 143 (pq känt för alla) (p-1) = 10, (q-1) = 12 Välj tal E som saknar gemensam delare med 10 o 12 Exempelvis E=7 känt för alla! Hitta heltal d och y så att 7d 120y = 1. T.ex. (7x103) (120x6) = 1 d (dvs 103 blir den superhemliga dechiffreringsnyckeln) 17 Nu kan vi koda meddelanden Chiffrera 71. Talen 143 och 7 är kända nycklar 71^7 (mod 143) = 124 Skicka talet 124 Dechiffrera: 124^103 (mod 143) = superhemliga nyckeln 18 6

7 Hur gjorde vi? p=11 q=13 11x13=143 (offentligt) (p-1)(q-1) = 10x12 = 120 Välj E ingen gemensam delare med 120 (E=7- offentligt) Hittade 103 och 6 som uppfyller (7x103) (120x6) = 1 Koda ett tal, t.ex 71: Beräkna 71^7 (mod 143) = 124. Skicka 124 Dechiffrea: Beräkna 124^103 (mod 143) = Varför fungerar det? Vi vet att 71^7 = 124 (mod 143), så 71^7 = 143k +124 för något k Alltså är 71^7 = 11x13k+124 = (mod11) och även = (mod13) Det betyder att (71^7)^1037) 103 = 124^ (mod 11) Vi hade valt 103 s.a. 7x103 = x6, så (71^7)^103 = 71^(7x103)=71^(1+120x6) = 71x71^(120x6) = 71x(71^72)^10 11 delar ej 71, så Fermats lilla sats ger att (71^72)^10 = 1 (mod 11) 20 varför det fungerar Alltså är 124^103 = (71^7 )^103 = 71(71^72)^10 = 71x1 (mod 11) dvs 124^ = 0 mod 11 Samma resonemang med 13 ger 124^ = 0 (mod 13) 124 Vi har alltså att 11 och 13 båda delar 124^ Om vi delar 124^103 med 143 (11x13) så resten 71 (ty 124^ = 0 (mod 11x13) 21 7

NÅGOT OM KRYPTERING. Kapitel 1

NÅGOT OM KRYPTERING. Kapitel 1 Kapitel 1 NÅGOT OM KRYPTERING Behovet av att skydda information har funnits mycket länge, men först i samband med utvecklingen av datatekniken har det blivit ett allmänt problem för alla moderna samhällen.

Läs mer

RSA-kryptering och primalitetstest

RSA-kryptering och primalitetstest Matematik, KTH Bengt Ek augusti 2016 Material till kurserna SF1630 och SF1679, Diskret matematik: RSA-kryptering och primalitetstest Hemliga koder (dvs koder som används för att göra meddelanden oläsbara

Läs mer

Primtal, faktorisering och RSA

Primtal, faktorisering och RSA 17 november, 2007 Ett Exempel N = 93248941901237910481523319394135 4114125392348254384792348320134094 3019134151166139518510341256153023 2324525239230624210960123234120156 809104109501303498614012865123

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om restklassaritmetik Mikael Hindgren 19 september 2018 Exempel 1 Klockan är nu 8.00 Vad är klockan om 78 timmar? Vad var klockan för 53 timmar sedan? 8 + 78

Läs mer

Offentlig kryptering

Offentlig kryptering 127 Offentlig kryptering Johan Håstad KTH 1. Inledning. Denna uppgift går ut på att studera ett offentligt kryptosystem. Med detta menas ett kryptosystem där det är offentligt hur man krypterar, men trots

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

1.1. Fördjupning: Jämförelse av oändliga mängder

1.1. Fördjupning: Jämförelse av oändliga mängder Kapitel 1 Kardinalitet Den här texten är tagen från boken Diskret matematik av Asratian Björn Turesson (och delvis modifierad) Av den anledningen finns det visa hänvisningar på en del ställen som är ersatta

Läs mer

Kryptering och primtalsfaktorisering

Kryptering och primtalsfaktorisering Institutionen för Numerisk analys och datalogi Kryptering och primtalsfaktorisering Johan Håstad Nada, KTH johanh@nada.kth.se Ett Exempel N = 9324894190123791048152332319394135 4114125392348254384792348320134094

Läs mer

Några satser ur talteorin

Några satser ur talteorin Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan

Läs mer

POLYNOM OCH POLYNOMEKVATIONER

POLYNOM OCH POLYNOMEKVATIONER Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl

Lösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den 2 juni 2015, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den 2 juni 2015, kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den juni 015, kl 1.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Hjalpmedel: Inga hjalpmedel ar tillatna pa tentamensskrivningen. 1. (3p) Los ekvationen 13x + 18 = 13 i ringen Z 64.

Hjalpmedel: Inga hjalpmedel ar tillatna pa tentamensskrivningen. 1. (3p) Los ekvationen 13x + 18 = 13 i ringen Z 64. Matematiska Institutionen KTH Losning till tentamensskrivning i Diskret Matematik, SF och B8, torsdagen den oktober, kl.-.. Examinator Olof Heden. Hjalpmedel Inga hjalpmedel ar tillatna pa tentamensskrivningen.

Läs mer

A B A B A B S S S S S F F S F S F S F F F F

A B A B A B S S S S S F F S F S F S F F F F Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla

Läs mer

Matematik 5 Kap 2 Diskret matematik II

Matematik 5 Kap 2 Diskret matematik II Matematik 5 Kap 2 Diskret matematik II Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi

MA 11. Hur starkt de binder. 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi MA 11 Talteori och logik 2 Reella tal 3 Slutledning 4 Logik 5 Mängdlära 6-7 Talteori 8 Diofantiska ekvationer 9 Fördjupning och kryptografi propositionssymboler: bokstäver konnektiv Paranteser konnektiv

Läs mer

1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = =

1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = = Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF630, den 20 maj 2009 kl 08.00-3.00. Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Den mest väsentliga skillnaden mellan

Den mest väsentliga skillnaden mellan JULIUSZ BRZEZINSKI Om kryptering Matematik i säkerhetens tjänst Första delen av denna artikel handlade om kodningsteorin. I den andra delen behandlas kryptering som är en mycket gammal teori med rötter

Läs mer

Gaussiska heltal. Maja Wallén. U.U.D.M. Project Report 2014:38. Department of Mathematics Uppsala University

Gaussiska heltal. Maja Wallén. U.U.D.M. Project Report 2014:38. Department of Mathematics Uppsala University U.U.D.M. Project Report 014:38 Gaussiska heltal Maja Wallén Examensarbete i matematik, 15 hp Handledare och examinator: Gunnar Berg Juni 014 Department of Mathematics Uppsala University Innehållsförteckning

Läs mer

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,

Läs mer

MATEMATIK I SÄKERHETENS TJÄNST OM KODNING OCH KRYPTERING 1

MATEMATIK I SÄKERHETENS TJÄNST OM KODNING OCH KRYPTERING 1 1 MATEMATIK I SÄKERHETENS TJÄNST OM KODNING OCH KRYPTERING 1 Juliusz Brzezinski Säkerhet i tekniska sammanhang associeras mycket ofta med säkra hus, säkra bilar, säkra broar, säkra telefonförbindelser

Läs mer

Kryptografi och primalitet. Anders Björner

Kryptografi och primalitet. Anders Björner Kryptografi och primalitet Anders Björner 1 Institutionen för matematik, KTH 2 1 Kryptografi Kryptografi och primalitet Anders Björner Hemliga koder har använts av diplomater och militärer sedan urminnes

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 Institutionen för matematik, KTH Mats Boij Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 1. Ange kvot och rest vid division av 5BE med 1F där båda talen är angivna i hexadecimal

Läs mer

Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007

Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007 UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 23 oktober 2007 Relationer Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen är

Läs mer

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet Avsnitt 2 Tillägg om kongruensräkning Detta avsnitt handlar om två klassiska satser som används för att förenkla kongruensräkning: Kinesiska restsatsen och Fermats lilla sats. Den första satsen används

Läs mer

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant Matematik - Måldokument MATEMATIK ÅK 9 TAL Talet nio anses i många kulturer vara ett mystiskt och ibland också ett heligt tal. Innan kristendomen infördes i Norden ansågs talet 9 vara det mest heliga talet.

Läs mer

9F Ma: Aritmetik och bråkbegreppet

9F Ma: Aritmetik och bråkbegreppet 9F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF63, den 25 maj 2 kl 8.-3.. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

, S(6, 2). = = = =

, S(6, 2). = = = = 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 28 oktober 2001 1 Heltalen Det första kapitlet handlar om heltalen och deras aritmetik, dvs deras egenskaper som

Läs mer

Tal till Solomon Feferman

Tal till Solomon Feferman Ur: Filosofisk tidskrift, 2004, nr 1. Dag Westerståhl Tal till Solomon Feferman (Nedanstående text utgör det tal som Dag Westerståhl höll på Musikaliska Akademien i oktober 2003, i samband med att Feferman

Läs mer

Hur man skriver matematik

Hur man skriver matematik Hur man skriver matematik Niels Chr. Overgaard 2018-10-01 N. Chr. Overgaard Skriva matematik 2018-10-01 1 / 12 Information: Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man

Läs mer

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Dagens upplägg Antalet element i en mängd Kardinalitet Humes princip Cantors teorem Den universella mängden Några mängdteoretiska paradoxer

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

RSA-kryptografi för gymnasiet. Jonas Gustafsson & Isac Olofsson

RSA-kryptografi för gymnasiet. Jonas Gustafsson & Isac Olofsson RSA-kryptografi för gymnasiet Jonas Gustafsson & Isac Olofsson HT 2010 Innehåll 1 Grundläggande beräkningsmetoder och begrepp 5 1.1 Mängder.............................. 5 1.2 Kvot och rest...........................

Läs mer

Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande:

Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande: Matematik Skolverkets förslag, redovisat för regeringen 2010-09-23. Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Modeller och uttrycksfullhet hos predikatlogik Department of mathematics Umeå university Föreläsning 10 Dagens föreläsning 1 Innehåll på resten av kursen 2 Varför verifikation? Formella metoder för verifikation

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Utdrag från Verklighetens Kvadratrötter: Sida 1 en bok om matematikens användningsområden skriven av Marcus Näslund. Mer info: www.kvadratrot.se.

Utdrag från Verklighetens Kvadratrötter: Sida 1 en bok om matematikens användningsområden skriven av Marcus Näslund. Mer info: www.kvadratrot.se. Utdrag från Verklighetens Kvadratrötter: Sida 1 KRYPTOLOGI Hur matematiken skyddar dina hemligheter Talteori, primtal, moduloräkning Bakgrund Den hemliga kod som under andra världskriget användes av Nazityskland

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

RSA-kryptering. Torbjörn Tambour

RSA-kryptering. Torbjörn Tambour RSA-rytering Torbjörn Tambour RSA-metoden för rytering har den seciella och betydelsefulla egensaen att metoden för rytering är offentlig, medan metoden för derytering är hemlig. Detta an om man funderar

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.

Läs mer

Om semantisk följd och bevis

Om semantisk följd och bevis Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om semantisk följd och bevis Logik handlar bla om studiet av korrekta slutledningar, dvs frågan om när det är riktigt

Läs mer

LMA033/LMA515. Fredrik Lindgren. 4 september 2013

LMA033/LMA515. Fredrik Lindgren. 4 september 2013 LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

8F Ma: Aritmetik och bråkbegreppet

8F Ma: Aritmetik och bråkbegreppet 8F Ma: Aritmetik och bråkbegreppet Under vecka 34-43 arbetar vi med hur man skriver och räknar med tal på olika sätt. Läsårsplanering Höstterminen v34-43 Aritmetik v45-51 Algebra Vårterminen v2-7 Geometri

Läs mer

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7

Andragradsekvationer. + px + q = 0. = 3x 7 7 3x + 7 = 0. q = 7 Andragradsekvationer Tid: 70 minuter Hjälpmedel: Formelblad. Alla andragradsekvationer kan skrivas på formen Vilket värde har q i ekvationen x = 3x 7? + E Korrekt svar. B (q = 7) x + px + q = 0 (/0/0)

Läs mer

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4 VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt

Läs mer

Primtalen och aritmetikens fundamentalsats

Primtalen och aritmetikens fundamentalsats Primtalen och aritmetikens fundamentalsats Tomas Malm Bokförlaget Bärarna c 2015 Tomas Malm & Bokförlaget Bärarna Version av texten: 15 november 2016 Redigering/bearbetning av text & bild: Tomas Malm Detta

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

Kryptografi: en blandning av datavetenskap, matematik och tillämpningar

Kryptografi: en blandning av datavetenskap, matematik och tillämpningar Kryptografi: en blandning av datavetenskap, matematik och tillämpningar Björn von Sydow 21 november 2006 Kryptografins historia Fyra faser Kryptografins historia Fyra faser Antiken ca 1920 Papper och penna.

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare

Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare Umeå universitet Tentamen i matematik Institutionen för matematik Introduktion till och matematisk statistik diskret matematik Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare,

Läs mer

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15. 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen

Läs mer

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 19. Robin Stenwall Lunds universitet Filosofisk logik Kapitel 19 Robin Stenwall Lunds universitet Dagens upplägg Gödels fullständighetsteorem Sundhet och fullständighet Fullständighetsbeviset Vittneskonstanter Henkinteorin Eliminationsteoremet

Läs mer

1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. a b c d e. a a b c d e

1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. a b c d e. a a b c d e 1 Lösning till MODELLTENTA DISKRET MATEMATIK moment B FÖR D2 och F, SF1631 resp SF1630. DEL I 1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. Lösning: Vi

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

Grupper och RSA-kryptering

Grupper och RSA-kryptering UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Asymmetriska krypteringssystem: hur de är konstruerade och vilka matematiska problem de bygger på av Sara Leufstadius

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Föreläsning 9: Talteori

Föreläsning 9: Talteori DD2458, Problemlösning och programmering under press Föreläsning 9: Talteori Datum: 2009-11-11 Skribent(er): Ting-Hey Chau, Gustav Larsson, Åke Rosén Föreläsare: Fredrik Niemelä Den här föreläsningen handlar

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

LABBA MED PRIMTAL OCH DELBARHET. Andreas Wannebo

LABBA MED PRIMTAL OCH DELBARHET. Andreas Wannebo LABBA MED PRIMTAL OCH DELBARHET Andreas Wannebo Vi ska studera egenskaper för heltalen. Det finns heltal såsom 1,2,3,4,... De är de positiva heltalen och det är dem vi vill studera. Först kan man ställa

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

TALTEORI FÖR ALLA 1 Juliusz Brzezinski

TALTEORI FÖR ALLA 1 Juliusz Brzezinski TALTEORI FÖR ALLA 1 Juliusz Brzezinski För exakt 10 år sedan publicerade Andrew Wiles sitt bevis av Fermats Stora Sats. Nyheten om hans resultat väckte enorm uppmärksamhet i hela världen. Vägen till lösningen

Läs mer

Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n)

Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att. a b (mod n) Uppsala Universitet Matematiska institutionen Isac Hedén Algebra I, 5 hp Sammanfattning av föreläsning 9. Kongruenser Låt n vara ett heltal som är 2 eller större. Om a och b är två heltal så säger vi att

Läs mer

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012)

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) T4.4-T4.7, 4.3, 4.7,T4.13-T4.14 S: Jag har svårt för visa-uppgifter. i kapitel 4 Talteori. Kan du

Läs mer

Efternamn förnamn pnr programkod

Efternamn förnamn pnr programkod KTH Matematik Examinator: Petter Brändén Kursansvarig: Olof Sisask Σ p G/U bonus Efternamn förnamn pnr programkod Kontrollskrivning 4B till Diskret Matematik SF6, för CINTE, vt28 Inga hjälpmedel tillåtna.

Läs mer

_ kraven i matematik åk k 6

_ kraven i matematik åk k 6 Förmågor och värdeord v _ kraven i matematik åk k Till vilka förmågor refererar värdeorden i kursplanen årskurs?. att lösa problem på ett [välfungerande/relativt väl fungerande/i huvudsak fungerande] sätt.

Läs mer

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik

DD1350 Logik för dataloger. Fö 7 Predikatlogikens semantik DD1350 Logik för dataloger Fö 7 Predikatlogikens semantik 1 Kryssprodukt av mängder Om A och B är två mängder så är deras kryssprodukt A B mängden av alla par (a,b), där a A och b B. Ex: A={1,2}, B={3,4},

Läs mer

Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00

Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00 Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är

Läs mer

Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl

Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 1 Matematiska Institutionen KTH Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 08.00 13.00. Examinator: Petter Brändén Kursansvarig: Olof Sisask Hjälpmedel:

Läs mer

Algebra och kryptografi Facit till udda uppgifter

Algebra och kryptografi Facit till udda uppgifter VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för

Läs mer

Definitionsmängd, urbild, domän

Definitionsmängd, urbild, domän 5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är

Läs mer

1. (3p) Bestäm den minsta positiva resten vid division av talet med talet 31.

1. (3p) Bestäm den minsta positiva resten vid division av talet med talet 31. 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 7 juni 2011 kl 08.00-13.00. Examinator: Olof Heden, tel. 0730547891.

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

Tal och polynom. Johan Wild

Tal och polynom. Johan Wild Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................

Läs mer

Hela tal LCB 1999/2000

Hela tal LCB 1999/2000 Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS

Lösningar till övningstentan. Del A. UPPSALA UNIVERSITET Matematiska institutionen Styf. Övningstenta BASKURS DISTANS UPPSALA UNIVERSITET Matematiska institutionen Styf Övningstenta BASKURS DISTANS 011-0-7 Lösningar till övningstentan Del A 1. Lös ekvationen 9 + 5x = x 1 ( ). Lösning. Genom att kvadrera ekvationens led

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Något om medelvärden

Något om medelvärden 350 Något om medelvärden Pepe Winkler Uppsala Universitet Om a och a är två reella, positiva tal så kallas talet A = a + a för det aritmetiska medelvärdet och talet G = a a för det geometriska medelvärdet

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer