6. Kvantfysik Ljusets dubbelnatur

Storlek: px
Starta visningen från sidan:

Download "6. Kvantfysik Ljusets dubbelnatur"

Transkript

1 6. Kvantfysik Ljusets dubbelnatur Ljusets dubbelnatur Det som normalt bestämmer vilken färg vi upplever att ett visst föremål har är hur bra föremålet absorberar eller reflekterar de olika våglängderna i det ljus föremålet träffas av (undantag utgörs av föremål som själva sänder ut ljus, t.ex. lysrör, LEDs, datorskärmar etc, samt vissa föremål som värmts upp till hög temperatur, t.ex. Wolframtråden i en glödlampa, se också nedan). Om ljus av våglängder runt nm absorberas (tas upp) bra av ett föremål medan våglängder kring nm reflekteras bra och bara absorberas lite grand, kommer mycket mer av det röda ljuset att reflekteras mot våra ögon jämfört med de andra färgerna och vi uppfattar föremålet som rött. Material kan också släppa igenom (transmittera) elektromagnetiska vågor. Olika material transmitterar olika bra för olika våglängder. Vanligt fönsterglas släpper ju t.ex. igenom ljus inom det synliga området och också en del av IR- och UVAstrålningen. Däremot släpps inte ljus av den kortare våglängden inom UV-området (UVB och UVC) igenom, vilket är förklaringen till att man inte blir solbränd om man sitter hemma i köket bakom fönstret även om solen skiner rakt in genom det. Material som transmitterar ljus inom det synliga området brukar vi kalla genomskinliga. En lite tjockare bunt papper släpper däremot inte genom något synligt ljus, men mikrovågor kan med nästan oförminskad intensitet ta sig igenom pappersbunten. Ett föremål som absorberar all infallande strålning (all infallande ljusenergi) och därmed lika bra för alla våglängder på ljuset kallas för en (absolut) svartkropp (ett sådant föremål uppfattar vi ju som svart eftersom inget ljus av någon färg reflekteras, d.v.s. ingen ljusintensitet alls reflekteras mot våra ögon det blir mörkt). Energin som absorberas måste givetvis också kunna avges annars skulle alla föremål som absorberar ljusenergi (d.v.s. alla) få oändlig energi, vilket inte är rimligt (dessutom tenderar ju energin att sprida ut och fördela sig ganska jämnt), varför energi hela tiden avges till omgivningen Alla föremål med en temperatur över absoluta nollpunkten avger energi i form av strålning (energi avges också i andra former, t.ex. genom kollisioner med luftens molekyler). För en absolut svartkropp gäller att den också kan avge energi som strålning lika bra för alla våglängder (däremot avges i verkligheten inte lika mycket energi vid olika våglängder ens för en svartkropp). För de flesta föremål gäller dock att de även strålar ut energi bättre vid vissa våglängder än andra. Gemensamt för alla föremål är att ju varmare föremålet är desto mer av energin strålas ut vid kortare våglängder (högre frekvenser). Om man exempelvis värmer på en bit järn

2 kan man få den att börja glöda, först svagt mörkrött, sedan klarrött och därefter mer mot orange/ ljusgult och kanske t.o.m. vitaktigt när temperaturen hos järnbiten höjs ytterligare. Den mängd energi som strålas ut (emitteras) av en absolut svartkropp per tid och ytenhet = emittansen beror enbart på svartkroppens yttemperatur: Emittansen M för en svartkropp (den utstrålade effekten per kvadratmeter) ges av: M = σ T 4 σ = 5, [W/m 2 K 4 ] (Stefan-Boltzmanns lag) M = emittansen [W/m 2 ], T = yttemperaturen [K] Den våglängd vid vilken en svartkropp strålar ut som mest energi λ max ges av Wiens förskjutningslag: λ max T = 2, [K m] Solen kan med ganska god approximation ses som en gigantisk svartkropp. Solens yttemperatur är c:a 5800 K. Enligt Wiens förskjutningslag innebär detta alltså att den våglängd vid vilken solen strålar ut maximalt är c:a 2, /5800 = 0, = [m], d.v.s. c:a 500 nm, vilket är inom det synliga området (vilken tur!). De flesta andra föremål går inte lika bra att jämföra med en svartkropp, men man kan ändå få en uppfattning om ungefärliga våglängder på det ljus som rumstempererade (293 K) föremål strålar ut genom Wiens förskjutningslag: λ max = 2, / [m] = 10 µm D.v.s. de flesta rumstempererade föremål strålar ut maximalt runt våglängder i IRområdet. Fig. 6.1

3 Detta utnyttjas i bl.a. utrustning för mörkerseende och IR-kameror, där den högre temperaturen hos vissa föremål såsom levande varelser och uppvärmda fordon ger en annan våglängdsfördelning på ljuset som strålas ut från dessa än den kallare bakgrunden. På detta sätt kan människor skiljas ut från t.ex. statyer även i komplett mörker (Se också Fig. 6.1 som visar en bild av en hund, tagen i komplett mörker med en IR-kamera). Av denna anledning kallas också IR-ljus ofta för värmestrålning. Ett annat exempel på hur skillnaden i utstrålad våglängd kan utnyttjas utgörs av ett vanligt växthus: Solen strålar ju ut mycket energi i form av synligt ljus (våglängder runt 500 nm som vi konstaterat), vilket vi vet kan passera genom glaset i växthusets väggar och tak. En väsentlig del av solljuset kommer att reflekteras mot olika ytor och försvinna ut från växthuset utan att tas upp men en del absorberas av växter och andra föremål inne i växthuset. Bara en liten del av denna energi förbrukas av växterna (omvandlas till kemiskt bunden energi), en del blir till värmerörelse och resten avges i form av strålning. Eftersom växterna och föremålen i växthuset har en temperatur som bara är lite över rumstemperatur kommer dock våglängderna för det utstrålade ljuset att ligga i IR-området (som vi redan sett). Det mesta av IR-ljuset kan dock inte ta sig igenom glaset utan ganska mycket kommer att reflekteras eller strålas tillbaka inåt. Detta gör att det kommer att finnas lite mer energi inne i växthuset per volymsenhet än utanför, vilket vi märker av bl.a. genom att det blir lite varmare inne i växthuset än utanför och att växterna växer snabbare inne i växthuset än utanför. CO 2 H 2 O H 2 O CO 2 CO 2 CO 2 Fig. 6.2

4 Även jordens atmosfär fungerar lite som ett växthus (se figur 6.2 ovan), lyckligtvis! Vissa molekyler i atmosfären, t.ex. vattenånga, koldioxid (CO 2 ) och metan (CH 4 ), kan fånga upp (absorbera) ljus i IR-området som strålas ut från jordens yta (värmestrålning) för att sedan skicka ut energin igen (i form av strålning) i alla riktningar, varvid en försvarlig del sänds tillbaka in mot jordens yta. Precis som för växthuset kommer därför mer energi att hållas kvar på jorden än om dessa molekyler inte funnits i atmosfären. Detta fenomen brukar kallas växthuseffekten och gör att jordens medeltemperatur är behagliga C istället för c:a -18 C som varit fallet om inte växthuseffekten existerat. Wiens förskjutningslag ger egentligen bara den våglängd för vilken den utstrålade energin är maximal. Egentligen fördelar sig energin som strålas ut på många våglängder. Vid slutet av 1800-talet studerade man hur den utstrålade energin från en absolut svartkropp fördelade sig på olika våglängder och fick då experimentellt det principutseende som ges i Fig. 6.3 nedan: Spektral emittans [W/m 2 ] T 1 T 1 > T 2 T 2 λ max λ max Fig. 6.3 Våglängd λ [µm] D.v.s. ett ganska brett maximum kring λ max, som förskjuts åt kortare våglängder med ökande temperatur hos föremålet (enligt Wiens förskjutningslag), men i princip ingen energi strålas ut för riktigt korta våglängder. Detta var på ett sätt förbryllande eftersom det inte kunde förklaras med de samband och teorier som dittills ställts upp för elektromagnetiska vågor. I den klassiska beskrivningen hade man antagit att alla svängningar oavsett våglängd i genomsnitt innehöll samma mängd energi, d.v.s. att energin fördelade sig jämnt på alla svängningar och att det oavsett temperatur (om bara T>0) borde förekomma också vågor med korta våglängder i strålningen från föremål. De experimentella resultaten visade dock att det tydligen är mer osannolikt att svängningar med kortare våglängd (högre frekvens) fås.

5 En möjlig förklaring som presenterades av Max Planck för lite mer än 110 år sedan är att det krävs en viss minsta energi för att få en våg av en viss våglängd där den minsta energi som krävs ökar med minskande våglängd (eller ökande frekvens). Då skulle det vara osannolikt att få vågor (ljus) med riktigt kort våglängd eftersom det skulle krävas oerhört mycket energi för att de skulle skapas. Dessutom kunde då förklaras hur λ max förskjuts mot kortare våglängder när temperaturen ökar hos en svartkropp. Ju varmare ett föremål är desto mer energi har föremålet och desto mer vågor med kort våglängd skapas. Bra överrensstämmelse med de experimentella resultaten fick Planck om han antog att den minsta energi E som krävs för att få en våg med frekvensen f ges av: E = h f, h = Planck s konstant (h = 6, [Js]) D.v.s. vågor med frekvensen f skulle inte kunna förekomma med mindre energimängder än h f. Energin hos vågorna skulle inte vara kontinuerlig utan bestå av små energipaket, var och en med energin h f. Det skulle vara som att ljuset, förutom att vara en vågrörelse, skulle bestå av en ström av energipaket, en ström av ljuspartiklar var och en med viss energi. Denna hypotes har också testats i olika experiment, bl.a. ett där försök gjordes med att få en sådan ljuspartikel att kollidera med en elektron (se Fig. 6.4). Och när sådana kollisioner inträffade observerades att elektronen gavs en viss rörelseenergi vid kollisionen och åkte iväg i en viss riktning medan ljuset efter kollisionen hade vikt av och rörde sig i en annan riktning. f 2 Ljuspartikel e - Ljuspartikel f 1 e - Fig. 6.4

6 Genom att jämföra ljuspartikelns frekvens före och efter kollisionen och mäta elektronens rörelseenergi efteråt konstaterades att den rörelseenergi E k som elektronen fått precis motsvarade skillnaden mellan ljuspartikelns energi före och efter kollisionen om den beräknades enligt: E k = h f 1 - h f 2 d.v.s. om det antogs att ljuset består av ljuspartiklar, var och en med energin h f, skulle lagen om energins bevarande gälla. Om dessutom rörelsemängden skulle vara bevarad från före till efter kollisionen måste ljuspartikeln ha en viss rörelsemängd p, som efter både teoretiska resonemang och beräkningar från ovanstående experiment kunde visas att den bör ges av: p = h/λ Tydligen behöver man ibland i beskrivningen av ljus betrakta ljuset som bestående av en ström av ljuspartiklar, en ström av energipaket, d.v.s. energin är kvantiserad, uppdelad på små minsta enheter ungefär som atomerna är ett grundämnes minsta byggstenar. Dessa partiklar som ljusvågorna består av kallas också fotoner. För en foton med frekvensen f och våglängden λ gäller: E = h f = h c/λ (c = f λ) energi p = h/λ rörelsemängd Fotoelektrisk effekt Med kvantiseringen av ljusenergin kunde också ett annat fenomen få sin förklaring. Om man belyser en metallplatta med ljus kan elektroner, som finns i metallens atomer, när de träffas av ljus plocka upp energi från ljuset och få så mycket rörelseenergi att de kan övervinna kraften från de positiva atomkärnorna och lämna metallplattan (se Fig. 6.5). Det krävs dock att ljusets våglängd är kortare än ett visst värde (d.v.s. att frekvensen är högre än ett visst värde) för att några elektroner ska kunna lämna metallplattan. Om våglängden är längre än detta värde spelar det ingen roll hur mycket intensiteten på ljuset ökas, d.v.s. hur stor den totala energin på ljuset som skickas mot plattan blir, inga elektroner fås ändå att lämna plattan.

7 f 1 f 2 e - E p Φ Fig. 6.5 x I Fig. 6.5 belyses en metallplatta med ljus av frekvenserna f 1 och f 2, d.v.s. fotonerna i ljuset har energierna E 1 = h f 1 respektive E 2 = h f 2. När en elektron i metallplattan träffas av en foton kan den ta upp hela fotonens energi. Eftersom elektronen känner av attraktionskraften från de positiva kärnorna krävs det dock ett visst minsta energiupptag för att den ska kunna övervinna attraktionskraften och lämna metallplattan. Den energi som krävs kallas för utträdesarbetet och betecknas med φ (se Fig. 6.5). För att en elektron ska ha chansen att lämna plattan krävs alltså att: E = h f > Φ För f 1 i Fig. 6.5 är frekvensen alltså inte tillräckligt hög för att den energi h f 1 som en elektron tar upp vid kollisionen med en sådan foton ska vara större än utträdesarbetet, d.v.s. inga elektroner frigörs från ( slås ut ur ) plattan. För fotoner med frekvensen f 2 däremot är energin h f 2 större än φ och kan därför frigöra elektroner. Om h f > φ så kommer den del av energin som inte går åt till att övervinna attraktionskraften från kärnorna (φ) att bli till rörelseenergi hos den fria elektronen, d.v.s: E k = h f - Φ I Fig har den metallplatta som belyses med ljus också kopplats till en annan platta så att man kan ha en spänningsskillnad (potentialskillnad) mellan plattorna. Om man lägger en negativ spänning på den andra plattan kommer elektronerna som frigörs från den första att repelleras från den andra. För att färdas mot den andra plattan kommer det att gå åt energi (för att övervinna repulsionen) och för att nå hela vägen fram går det åt energi motsvarande elektronens laddning multiplicerat med spänningen mellan plattorna, d.v.s.

8 E = q U Om man också mäter strömmen i mellan plattorna får man ett mått på hur många elektroner som tar sig fram till den andra plattan. Om man då ökar spänningen så att den energi som går åt för elektronerna att nå fram till den andra plattan blir precis lika stor som den rörelseenergi E k elektronerna har när de lämnar den första plattan och sedan oändligt lite till så kommer strömmen att bli noll mellan plattorna (se som ger lägesenergin for elektronen inuti den första samt mellan de båda plattorna i Fig. 6.5). Då kommer rörelseenergin som elektronerna har när de lämnar den första plattan att räcka fram till den andra..nästan. Precis innan den andra plattan är rörelseenergin slut och de kommer att mycket kortvarigt stanna upp för att sedan åka tillbaka mot den första plattan igen, p.g.a. det elektriska fältet mellan plattorna. Man kan jämföra med att cykla fram till nedersta delen på en backe och precis där det börjar luta uppför sluta att trampa och bara rulla. Om backen inte är brant och lång räcker kanske energin (farten) till för att ta sig ända upp till toppen av backen, men om lutningen ökas, så att backen blir brantare men lika lång, så kommer cykeln att stanna innan den når till toppen på backen och sedan börja rulla baklänges nerför densamma (se i Fig. 6.5). Precis på samma sätt blir det för elektronerna om spänningen ökar mellan plattorna. Om man ökar spänningen tills det ögonblick då strömmen i precis blir noll, måste det gått åt precis lika mycket energi för elektronen att ta sig fram till den andra plattan som den fått som rörelseenergi innan, d.v.s. q U = E k = h f - Φ Så genom att mäta den spänning vid vilken strömmen blir noll så kan man, om man vet frekvensen för ljuset, räkna ut vilket utträdesarbete ett visst material har. När man räknar på små partiklar och fotoner är det bekvämt att använda sig av en annan energienhet än Joule (då dessa tal skulle bli väldigt små). Enheten elektronvolt [ev] baseras just på den energi som krävs för att flytta en elementarladdning över spänningen 1 volt. D.v.s. 1 elektronvolt [ev] är den energi som krävs för att flytta en elektron med fältet (mot något mer negativt laddat) över spänningen 1 V. 1 ev = q U = 1, [C] 1 [V] = 1, [J]

9 Extra uppgifter för den som vill öva 6.1 Jorden mottar från solen strålningsintensiteten 1,4 kw/m 2. Avståndet mellan solen och jorden är 1, m. Solens radie är 7, m. i) Beräkna solens totala strålningseffekt ii) Beräkna solens emittans. iii) Beräkna solytans temperatur under antagande att solens strålning har samma fördelning på olika våglängder som strålningen från en absolut svart kropp. iv) Vid vilken våglängd har solstrålningen sin maximala intensitet? 6.2 Uppskatta med hjälp av diagrammet nedan hur stor del av solens elektromagnetiska strålning i våglängdsområdet 0-1,5 µm som utgörs av synligt ljus. Solen har antagits stråla som en absolut svart kropp med en yttemperatur på 5700 C och varje ruta på x-axeln motsvarar 100 nm.

10 6.3 En radiosändare har frekvensen 89,1 MHz och sänder ut 2, fotoner per sekund. i) Hur stor energi har en foton i radiostrålningen? ii) Hur stor effekt strålar sändaren ut? 6.4 Tre ljusstrålar, en röd stråle, en gul stråle och en blå stråle, har samma effekt. Kan man från bara denna information avgöra om de tre olika strålarna sänder ut samma antal fotoner per sekund eller olika? Om olika, vilken stråle sänder då ut flest fotoner per sekund? 6.5 Ljus av intensiteten 1,0 kw/m 2 infaller vinkelrätt mot en perfekt speglande yta med arean 0,60 m 2. Ljusets våglängd är 0,50 µm. i) Hur många fotoner per sekund infaller mot den speglande ytan? ii) Hur stor rörelsemängd har varje foton? iii) Bestäm ändringen i varje fotons rörelsemängd vid reflexionen. iv) Beräkna kraften mot spegeln. v) Hur stort tryck motsvarar detta? vi) Hur stor bråkdel av normalt atmosfärstryck är detta? 6.6 En foton med våglängden 1, m "kolliderar med en elektron. Elektronen är i vila före kollisionen. Efter kollisionen fås en foton med våglängden 1, m i en riktning vinkelrätt mot den ursprungliga fotonen, samtidigt som elektronen kommer i rörelse. i) Beräkna rörelsemängden hos båda fotonerna. ii) Beräkna elektronens rörelsemängd (storlek och riktning) efter stöten.

11 6.7 Wolframglödtråden i en 60 W-lampa har arean 0,85 cm 2. Dess emittans är 35% av emittansen hos en absolut svart kropp. Beräkna glödtrådens temperatur. 6.8 En rubinlaser sänder ut rött ljus med våglängden 694 nm. i) Beräkna frekvensen hos laserljuset ii) Beräkna energin hos en foton i laserljuset 6.9 Vårt öga är känsligast för ljus med våglängden 510 nm. Då reagerar det på en effekt så liten som W. Hur många fotoner per sekund träffar ögat i det fallet?

Kvantfysik - introduktion

Kvantfysik - introduktion Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

Vågrörelselära & Kvantfysik, FK januari 2012

Vågrörelselära & Kvantfysik, FK januari 2012 Räkneövning 8 Vågrörelselära & Kvantfysik, FK2002 9 januari 2012 Problem 40.1 Vad är våglängden för emissionsmaximum λ max, hos en svartkropps-strålare med temperatur a) T 3 K (typ kosmiska mikrovågsbakgrunden)

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik

FyU02 Fysik med didaktisk inriktning 2 - kvantfysik FyU02 Fysik med didaktisk inriktning 2 - kvantfysik Rum A4:1021 milstead@physto.se Tel: 5537 8663 Kursplan 17 föreläsningar; ink. räkneövningar Laboration Kursbok: University Physics H. Benson I början

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 10: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värmestrålning är en av de kritiska komponent vid värmeöverföring i en rad olika förbränningsprocesser. Ragnhild

Läs mer

a sorters energ i ' ~~----~~~ Solen är vår energikälla

a sorters energ i ' ~~----~~~ Solen är vår energikälla a sorters energ i. ~--,;s..- -;-- NÄR DU HAR LÄST AVSNITTET OLIKA SORTERS ENERGI SKA DU känna till energiprincipen känna till olika sorters energi veta att energi kan omvandlas från en sort till en annan

Läs mer

7. Atomfysik väteatomen

7. Atomfysik väteatomen Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 9: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värme kan överföras från en kropp till en annan genom strålning (värmestrålning). Det är därför vi kan känna solens

Läs mer

Prov Fysik B Lösningsförslag

Prov Fysik B Lösningsförslag Prov Fysik B Lösningsförslag DEL I 1. Högerhandsregeln ger ett cirkulärt magnetfält med riktning medurs. Kompass D är därför korrekt. 2. Orsaken till den i spolen inducerade strömmen kan ses som stavmagnetens

Läs mer

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Torsdagen den 26:e maj 2011, kl 08:00 12:00 Fysik del B2 för

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin

BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/

Läs mer

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - tentamen Torsdagen den 27:e maj 2010, kl 08:00 12:00 Fysik del B2 för

Läs mer

Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden?

Upp gifter. är elektronbanans omkrets lika med en hel de Broglie-våglängd. a. Beräkna våglängden. b. Vilken energi motsvarar våglängden? Upp gifter 1. Räkna om till elektronvolt. a. 3,65 10 J 1 J. Räkna om till joule. a.,8 ev 4,5 ev 3. Vilket är den längsta ljusvåglängd som kan slå loss elektroner från en a. natriumyta? kiselyta? 4. Kan

Läs mer

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111

Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Lördagen den 9:e juni 2007, kl. 08:00 12:00 Fysik del B2 för tekniskt

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme

Läs mer

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur

4. Förhållandet mellan temperatur och rörelseenergi a. Molekyler och atomer rör sig! b. Snabbare rörelse högre rörelseenergi högre temperatur Energi 1. Vad är energi? a. Förmåga att uträtta ett arbete 2. Olika former av energi a. Lägesenergi b. Rörelseenergi c. Värmeenergi d. Strålningsenergi e. Massa f. Kemisk energi g. Elektrisk energi 3.

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Fysik 1 kapitel 6 och framåt, olika begrepp.

Fysik 1 kapitel 6 och framåt, olika begrepp. Fysik 1 kapitel 6 och framåt, olika begrepp. Pronpimol Pompom Khumkhong TE12C Laddningar som repellerar varandra Samma sorters laddningar stöter bort varandra detta innebär att de repellerar varandra.

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

Kvantmekanik. Kapitel Natalie Segercrantz

Kvantmekanik. Kapitel Natalie Segercrantz Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 1

TILLÄMPAD ATOMFYSIK Övningstenta 1 TILLÄMPAD ATOMFYSIK Övningstenta 1 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Miljöfysik. Föreläsning 2. Växthuseffekten Ozonhålet Värmekraftverk Verkningsgrad

Miljöfysik. Föreläsning 2. Växthuseffekten Ozonhålet Värmekraftverk Verkningsgrad Miljöfysik Föreläsning 2 Växthuseffekten Ozonhålet Värmekraftverk Verkningsgrad Två viktiga ekvationer Wiens strålningslag : λ max max = 2.90 10 4 3 [ ] σ = Stefan-Boltzmanns konstant = 5.67 10 mk = våglängdens

Läs mer

Sammanfattning: Fysik A Del 2

Sammanfattning: Fysik A Del 2 Sammanfattning: Fysik A Del 2 Optik Reflektion Linser Syn Ellära Laddningar Elektriska kretsar Värme Optik Reflektionslagen Ljus utbreder sig rätlinjigt. En blank yta ger upphov till spegling eller reflektion.

Läs mer

12 Elektromagnetisk strålning

12 Elektromagnetisk strålning LÖSNINGSFÖRSLAG Fysik: Fysik oc Kapitel lektromagnetisk strålning Värmestrålning. ffekt anger energi omvandlad per tidsenet, t.ex. den energi ett föremål emitterar per sekund. P t ffekt kan uttryckas i

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

TILLÄMPAD ATOMFYSIK Övningstenta 2

TILLÄMPAD ATOMFYSIK Övningstenta 2 TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.

Läs mer

Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h. TentamensKod: Tentamensdatum: Tid: 09:00 13:00

Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h. TentamensKod: Tentamensdatum: Tid: 09:00 13:00 Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h 9 högskolepoäng TentamensKod: Tentamensdatum: 2017-05-29 Tid: 09:00 13:00 Hjälpmedel: Grafritande miniräknare, linjal, gradskiva, gymnasieformelsamling,

Läs mer

Vad skall vi gå igenom under denna period?

Vad skall vi gå igenom under denna period? Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

Kaströrelse. 3,3 m. 1,1 m

Kaströrelse. 3,3 m. 1,1 m Kaströrelse 1. En liten kula, som vi kallar kula 1, släpps ifrån en höjd över marken. Exakt samtidigt skjuts kula 2 parallellt med marken ifrån samma höjd som kula 1. Luftmotståndet som verkar på kulorna

Läs mer

Alla svar till de extra uppgifterna

Alla svar till de extra uppgifterna Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0

Läs mer

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016 Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 6 januari 017 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 017 1. Enligt diagrammet är accelerationen 9,8 m/s när hissen står still eller rör sig med

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Tentamen Freagen en 1:e juni 2012, kl 08:00 12:00 Fysik el B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Tentamen

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n1, 9 JANUARI 2004 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och godkänd räknare. Obs. Inga lösblad! Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och

Läs mer

Hur gör man. Så fungerar det

Hur gör man. Så fungerar det 14. Bli ett batteri! Hur gör man Lägg din ena hand på kopparplattan och den andra handen på aluminiumplattan. Vad händer? Så fungerar det Inuti pelaren går en elektrisk ledning från kopparplattan, via

Läs mer

Tentamen i Fysik för π,

Tentamen i Fysik för π, KURSLABORATORET FYSK, LTH Tentamen i Fysik för π, 386 SKRVTD: 8 3 HJÄLPMEDEL: UTDELAT FORMELBLAD, GODKÄND RÄKNARE. LÖSNNGAR: BÖRJA VARJE NY UPPGFT PÅ NYTT BLAD OCH SKRV BARA PÅ EN SDA. LÖSNNGARNA SKA VARA

Läs mer

Miniräknare, formelsamling

Miniräknare, formelsamling Umeå Universitet TENTAMEN Linje: Kurs: Hjälpmedel: Fysik B Miniräknare, formelsamling Lärare: Joakim Lundin Datum: 09-10-29 Tid: 9.00-15.00 Kod:... Grupp:... Poäng:... Betyg U G VG... Tentamen i Fysik

Läs mer

!"#$%&'()*+&%$(,-$%."'/0/1(2( 3&)4'5"$%/'('&$6+&6$(478('*))*/'"9/0/1( :/%$10(0(*&)4'5"$%/( ;6<%/'(56+=18%&( >&$?./0/1(!

!#$%&'()*+&%$(,-$%.'/0/1(2( 3&)4'5$%/'('&$6+&6$(478('*))*/'9/0/1( :/%$10(0(*&)4'5$%/( ;6<%/'(56+=18%&( >&$?./0/1(! !"#$%&'()*+&%$(,-$%."'/0/1(2( 3&)4'5"$%/'('&$6+&6$(478('*))*/'"9/0/1( :/%$10(0(*&)4'5"$%/( ;6

Läs mer

Tentamen: Atom och Kärnfysik (1FY801)

Tentamen: Atom och Kärnfysik (1FY801) Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

Lösningar Heureka 2 Kapitel 14 Atomen

Lösningar Heureka 2 Kapitel 14 Atomen Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla

Läs mer

Namn: Fysik åk 4 Väder VT 2014. Väder Ex. Moln, snö, regn, åska, blåst och temperatur. Meteorologi Läran om vad som händer och sker i luften

Namn: Fysik åk 4 Väder VT 2014. Väder Ex. Moln, snö, regn, åska, blåst och temperatur. Meteorologi Läran om vad som händer och sker i luften Namn: Fysik åk 4 Väder VT 2014 Väder Ex. Moln, snö, regn, åska, blåst och temperatur. Meteorologi Läran om vad som händer och sker i luften År, årstider, dag och natt Vi har fyra årstider; vår, sommar,

Läs mer

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter.

1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. FACIT Instuderingsfrågor 1 Energi sid. 144-149 1. Förklara på vilket sätt energin från solen är nödvändig för alla levande djur och växter. Utan solen skulle det bli flera hundra minusgrader kallt på jorden

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012. Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Tentamen Torsdagen den 23:e maj 2013, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

Växthuseffekten och klimatförändringar

Växthuseffekten och klimatförändringar Växthuseffekten och klimatförändringar Växthuseffekten växthuseffekten, drivhuseffekten, den värmande inverkan som atmosfären utövar på jordytan. Växthuseffekten är ett naturligt fenomen som finns på alla

Läs mer

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro

Lösningar Kap 7 Elektrisk energi, spänning och ström. Andreas Josefsson. Tullängsskolan Örebro Lösningar Kap 7 Elektrisk energi, spänning och ström Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kap 7 7.1) Om kulan kan "falla" från A till B minskar dess potentiella elektriska

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin. BFL122/TEN2 samt BFL111/TEN6

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin. BFL122/TEN2 samt BFL111/TEN6 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Tentamen nsdagen den 5:e juni 2013, kl 14:00 18:00 Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL122/TEN2 samt BFL111/TEN6

Läs mer

Miljöfysik. Föreläsning 1. Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget

Miljöfysik. Föreläsning 1. Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget Miljöfysik Föreläsning 1 Information om kursen Miljöfysik Viktiga termodynamiska storheter Jordens energibudget Miljöfysik FKU200 7.5 hp Kursbok : Miljöfysik : Energi för hållbar utveckling (M. Areskoug

Läs mer

3. Potentialenergi i elfält och elektrisk potential

3. Potentialenergi i elfält och elektrisk potential 3. Potentialenergi i elfält och elektrisk potential 3.1 Potentiell energi i elfält Vi betraktar en positiv testladdning som förs i närheten av en annan laddning. I det första fallet är den andra laddningen

Läs mer

ELEKTRICITET. http://www.youtube.com/watch?v=fg0ftkaqz5g

ELEKTRICITET. http://www.youtube.com/watch?v=fg0ftkaqz5g ELEKTRICITET ELEKTRICITET http://www.youtube.com/watch?v=fg0ftkaqz5g ELEKTRICITET Är något vi använder dagligen.! Med elektricitet kan man flytta energi från en plats till en annan. (Energi produceras

Läs mer

Repetitionsuppgifter. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Repetitionsuppgifter. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Repetitionsuppgifter Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL

Läs mer

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar Kapitel: 25 Ström, motstånd och emf (Nu lämnar vi elektrostatiken) Visa under vilka villkor det kan finnas E-fält i ledare Införa begreppet emf (electromotoric force) Beskriva laddningars rörelse i ledare

Läs mer

16. Spridning av elektromagnetisk strålning

16. Spridning av elektromagnetisk strålning 16. Spridning av elektromagnetisk strålning [Jakson 9.6-] Med spridning avses mest allmänt proessen där strålning (antingen av partikel- eller vågnatur) växelverkar med något objekt så att dess fortskridningsriktning

Läs mer

Tentamen i Fysik för K1, 000818

Tentamen i Fysik för K1, 000818 Tentamen i Fysik för K1, 000818 TID: 8.00-13.00. HJÄLPMEDEL: LÄROBÖCKER (3 ST), RÄKNETABELL, GODKÄND RÄKNARE. ANTAL UPPGIFTER: VÅGLÄRA OCH OPTIK: 5 ST, ELLÄRA: 3 ST. LÖSNINGAR: LÖSNINGARNA SKA VARA MOTIVERADE

Läs mer

Biobränsle. Biogas. Biomassa. Effekt. Elektricitet

Biobränsle. Biogas. Biomassa. Effekt. Elektricitet Biobränsle Bränslen som har organiskt ursprung och kommer från de växter som finns på vår jord just nu. Exempelvis ved, rapsolja, biogas, men även från organiskt avfall. Biogas Gas, huvudsakligen metan,

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden

Läs mer

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.

NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges. 1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,

Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum

Läs mer

3.7 Energiprincipen i elfältet

3.7 Energiprincipen i elfältet 3.7 Energiprincipen i elfältet En laddning som flyttas från en punkt med lägre potential till en punkt med högre potential får även större potentialenergi. Formel (14) gav oss sambandet mellan ändring

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity

Läs mer

PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN

PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN Enheten för Pedagogiska Mätningar PBFyB 02-05 Umeå universitet PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN Del II: Kortsvars- och flervalsfrågor. Uppgift 1-5 Del III: Långsvarsfrågor. Uppgift 6-15 Anvisningar

Läs mer

Tentamen Fysikaliska principer

Tentamen Fysikaliska principer Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består

Läs mer

r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 C Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.

Atomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen. Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

PLANCKS KONSTANT. www.zenitlaromedel.se

PLANCKS KONSTANT. www.zenitlaromedel.se PLANCKS KONSTANT Uppgift: Materiel: Att undersöka hur fotoelektronernas maximala kinetiska energi beror av frekvensen hos det ljus som träffar fotocellen. Att bestämma ett värde på Plancks konstant genom

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se. Elektromagnetisk strålning

ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se. Elektromagnetisk strålning ANDREAS REJBRAND NV1A 2004-06-09 Fysik http://www.rejbrand.se Elektromagnetisk strålning Innehållsförteckning ELEKTROMAGNETISK STRÅLNING... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 SPEKTRET... 3 Gammastrålning...

Läs mer

ENKEL Kemi 2. Atomer och molekyler. Art nr 515. Atomer. Grundämnen. Atomens historia

ENKEL Kemi 2. Atomer och molekyler. Art nr 515. Atomer. Grundämnen. Atomens historia ENKEL Kemi 2 Atomer och molekyler atomkärna elektron Atomer Allting runt omkring oss är uppbyggt av atomer. En atom är otroligt liten. Den går inte att se för blotta ögat. Ett sandkorn rymmer ungefär hundra

Läs mer

Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822

Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822 OMTENTAMEN DEL 2 Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103 Examinator: Anna-Carin Larsson Tentamens datum 060822 Jourhavande lärare: Anna-Carin Larsson 070-2699141 Skrivtid 9-14 Resultat meddelas senast:

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2 Föreläsning 13 Kärnfysik 2 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen

Läs mer

Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse

Två typer av strålning. Vad är strålning. Två typer av strålning. James Clerk Maxwell. Två typer av vågrörelse Vad är strålning Två typer av strålning Partikelstrålning Elektromagnetisk strålning Föreläsning, 27/1 Marica Ericson Två typer av strålning James Clerk Maxwell Partikelstrålning Radioaktiva kärnpartiklar

Läs mer

Kärnenergi. Kärnkraft

Kärnenergi. Kärnkraft Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,

Läs mer

Vi är beroende av ljuset för att kunna leva. Allt liv på jorden skulle ta slut och jordytan skulle bli öde och tyst om vi inte hade haft ljus.

Vi är beroende av ljuset för att kunna leva. Allt liv på jorden skulle ta slut och jordytan skulle bli öde och tyst om vi inte hade haft ljus. Källa: Fysik - Kunskapsträdet Vi är beroende av ljuset för att kunna leva. Allt liv på jorden skulle ta slut och jordytan skulle bli öde och tyst om vi inte hade haft ljus. Ljusets natur Ljusets inverkan

Läs mer

ETE331 Framtidens miljöteknik

ETE331 Framtidens miljöteknik ETE331 Framtidens miljöteknik VT2018 Linköpings universitet Mikael Syväjärvi Vad går kursen ut på? Miljö/klimat-frågor högaktuella Miljöteknik minskar problemet Översikt och exempel Miljöteknik (aktuella

Läs mer

ETE331 Framtidens miljöteknik

ETE331 Framtidens miljöteknik ETE331 Framtidens miljöteknik VT2017 Linköpings universitet Mikael Syväjärvi Vad går kursen ut på? Miljö/klimat-frågor högaktuella Miljöteknik minskar problemet Översikt och exempel Miljöteknik (aktuella

Läs mer