Chalmers tekniska högskola och April Fysik och teknisk fysik Christian Karlsson

Storlek: px
Starta visningen från sidan:

Download "Chalmers tekniska högskola och April 2001. Fysik och teknisk fysik Christian Karlsson"

Transkript

1 Tom sida. Lab-PM börjar på nästa sida. 1

2 Chalmers tekniska högskola och April 2001 Göteborgs universitet 11 sidor Fysik och teknisk fysik Christian Karlsson O9 Optik för Basåret En CD-spelare innehåller mycket fysik (figuren visar hur läshuvudet på en CD-spelare är uppbyggt). Hur fokuseras ljuset som läser informationen och hur är informationen lagrad? Varför rymmer DVD-skivor mer än CD-skivor? Varför ser man ibland färger när man tittar på en CD-skiva? Varför är CDskivor relativt okänsliga för damm och fingeravtryck? (Figur från L. Jacobsson och G. Ohlén, Upptäck Fysik B, Gleerups, 1997.) Laborationens syfte är att du ska få en djupare förståelse för geometrisk optik och ljusets vågegenskaper. Du skall före laborationen läsa igenom detta lab-pm och tillhörande avsnitt i kursboken. Hemuppgifterna 1 11 på sidan 6 skall arbetas igenom före laborationstillfället (om laborationen utförs vid två tillfällen skall 1 5 göras inför första tillfället och 6 11 inför andra tillfället).

3 1 Inledning Den här laborationen handlar om ljus och den klassiska beskrivningen av ljus som en elektromagnetisk vågrörelse. Laborationen är uppdelad i två delar och utförs vanligtvis under två tillfällen. Del 1 (teoriavsnitt 2, hemuppgifter 1 6, labuppgift 1) behandlar geometrisk optik som är den enklaste modellen för att beskriva ljus. I geometrisk optik bryr man sig inte om vad ljus egentligen är, utan bara hur det uppför sig. Man antar att ljus utbreder sig som strålar. Om ljus skall gå från en punkt A till B tar det den väg som tar kortast tid (Fermats princip) [1, 2]. I del 2 av laborationen (teoriavsnitt 3, hemuppgifter 7 11, labuppgifter 2 7) skall vi gå lite djupare och stifta bekanstskap med den elektromagnetiska beskrivningen av ljus (vågmodellen) för att förstå fenomen som ljusets böjning och interferens. I vågmodellen antar man att ljus är en elektromagnetisk vågrörelse. Ljus utbreder sig som en våg genom rummet. Om en våg skall utbreda sig måste något kunna svänga fram och tillbaka. I fallet med ljus är det elektriska och magnetiska fält som svänger. I optiken brukar man för enkelhets skull bortse från det magnetiska fältet och betraktar bara det elektriska fältet. Redan de gamla grekerna kan sägas ha hållit på med en tidig form av geometrisk optik. Som en av få grekiska experimentalister mätte exemplevis Klaudios Ptolemaios ( 100 e. Kr.) infalls- och brytningsvinklar då ljus gick från luft till vatten. Optikarvet fördes sedan vidare i det arabiska väldet och utvecklades av ibn al-haitham, även känd som Alhazen ( 1000 e. Kr.), som till exempel för första gången gav en riktig förklaring till seendet [3]. Alhazens verk översattes senare till latin och låg till grund för den medeltida optiken i Västeuropa. Optiken förde en något slumrande tillvaro under medeltiden, även om framsteg gjordes. Exempelvis finns det målningar från 1300-talet föreställande munkar i glasögon [3]. De första tankarna om att ljus var en vågrörelse dök upp på 1600-talet. En av pionjärerna var holländaren Christiaan Huygens, som också fått ge namn åt Huygens princip som är ett sätt att beskriva hur ljusvågor utbreder sig. Ungefär samtidigt kom Sir Isaac Newton att förespråka en slags partikelmodell för ljus. I sina senare skrifter ansåg Newton att ljus var en ström av korpuskler. Detta senare synsätt förblev förhärskande under 1700-talet. I början av 1800-talet började dock vågmodellen åter vinna mark. Den utvecklades alltmer och på 1860-talet kunde man lägga en solid teoretisk grund för en vågmodell av ljus. Då presenterade nämligen James Clerc Maxwell sina berömda ekvationer. Ur dessa Maxwells ekvationer kunde all dåvarande kunskap om ljus härledas, till exempel Huygens princip men också den geometriska optiken. I början av 1900-talet upptäckte man att ljus också hade partikelegenskaper. Den fotoelektriska effekten, det vill säga den process varvid elektroner frigörs från ett material som belyses med elektromagnetisk strålning, 1

4 upptäcktes av Heinrich Hertz 1887 och undersöktes vidare av Philipp Eduard Anton von Lenard och Wilhelm Hallwachs. En del aspekter av fenomenet kunde ej förstås utifrån den klassiska elektromagnetiska teorin för ljus [3]. Albert Einstein gav dock 1905 en förklaring där han utsträckte Max Plancks kvanthypotes från 1900 (som i korthet säger att stålningsenergi är kvantiserad). Einstein antog att den elektromagnetiska strålningen i sig är kvantiserad, det vill säga uppför sig som partiklar. Dessa ljuspartiklar kom senare att kallas fotoner [3]. Vi har alltså tre olika modeller för att beskriva hur ljus uppför sig i olika situationer: geometrisk optik, den elektromagnetiska vågmodellen och fotonmodellen. Var och en av dessa modeller gäller dock bara i vissa situationer. Under 1900-talet har en kraftfull men komplicerad teori för hur ljus uppför sig och växelverkar med materia, QED (kvantelektrodynamik), utvecklats [4]. I QED förenas våg- och fotonmodellen till en teori. De tre modellerna vi nämnt ovan kan ses som approximationer till QED, som var och en gäller under särskilda förutsättningar [1]. Kan man då använda böjning (diffraktion) och interferens till något? Ja, även om den här laborationen mest tar upp grundläggande fenomen så är inte steget till tillämpningar så långt. Några blandade exempel: Optisk spektroskopi bygger på att man kan bestämma energin hos ljus och därigenom till exempel få detaljerad information om material på atomär nivå [5]. Detta kan göras med hjälp av gitter i spektrometrar (man kan även använda prismaspektrometrar, Fabry-Perotinterferometrar eller fouriertransformtekniker). En av föregångarna inom spektroskopin var för övrigt Joseph Fraunhofer som tillverkade det första gittret I dagens laboratorium används lasrar och avancerad optik för att till exempel studera struktur och dynamik i glaser med hjälp av Ramanspektroskopi. Diffraktionstekniker används sedan början av 1900-talet för att bestämma strukturen på atomär nivå i olika kristallina material, från vanligt koksalt till biomolekyler i kristallin form [6]. Förutom röntgenstrålning, som är ljus med kort våglängd, kan elektroner och neutroner användas (partiklar har enligt kvantfysiken vågegenskaper). Typiska avstånd i mellan atomer i fasta material är av storleksordningen Å = m. De minsta objekt man kan se med vanliga ljusmikroskop är av storleksordningen µm. Diffraktion är alltså en väldigt kraftfull teknik. Med STM (sveptunnelmikroskop) kan man också se enskilda atomer, men bara då dessa sitter på ytor. Diffraktionsoptik är ett relativt nytt forskningsområde [7]. Med hjälp av datorer och mikrolitografi kan små, avancerade gitter framställas, så kallade kinoformer. Kinoformer kan användas för att manipulera 2

5 laserljus. Tillämpningsområden finns inom optoelektroniken och laseroptiken. Kinoformer kan till exempel komma till användning i extremt snabba A/D-omvandlare (se Ny Teknik 2000:24). Upplösningsförmågan i optiska instrument, till exempel våra ögon, är begränsad av diffraktion (även linsfel begränsar upplösningsförmågan). Titta på denna text genom ett litet hål i en bit papper, så kommer du att se att upplösningen försämras. Upplösningsförmågan är relaterad till strålningens våglängd (Rayleighs upplösningskriterium). Detta är anledningen till att man med elektronmikroskop kan se mycket mindre föremål ( nm) än i vanliga ljusmikroskop ( µm). Elektroner med hög energi har nämligen mycket kortare våglängd än synligt ljus. I följande två avsnitt presenteras en sammanfattning av den teori som behövs för att förstå laborationen. För en fullständigare behandling hänvisas till läroboken. Sedan följer hemuppgifter (skall göras i förväg) och laborationsuppgifter. 1 2 Geometrisk optik Brytningsindex n för ett material anger hur mycket långsammare ljuset utbreder sig i materialet än i vakuum, alltså n = c v, (1) där v är ljushastigheten i materialet och c ljushastigheten i vakuum. Med denna definition av av n kan man visa att då ett en ljusstråle går från ett material till ett annat gäller att [1, 2] n 1 sin β 1 = n 2 sin β 2, (2) med beteckningar enligt figur 1. Detta är brytningslagen (även kallad Snells lag efter Willebrord Snell som upptäckte sambandet 1621). Brytningsindex är inte konstant i ett och samma material utan beror av ljusets våglängd, n = n(λ). Detta kallas dispersion. Det är brytningsindex våglängdsberoende som ger upphov till färguppdelning i exempelvis ett prisma. En lins är oftast en bit genomskinligt material som är slipat så att man får ljusstrålar att gå på ett visst sätt. Hur linser fungerar kan förstås med hjälp av brytningslagen. En lins karakteriseras av dess fokallängd f. Om f > 0 sägs linsen vara positiv eller konvex. Om f < 0 sägs linsen vara negativ eller konkav. Fokalpunkten för en positiv lins är den punkt på optiska 1 Har du synpunkter på laborationen eller detta lab-pm kan du höra av dig till Olabblaget@fy.chalmers.se 3

6 β 1 n 1 β 2 n 2 Figur 1: Ljus som går från ett medium 1 till ett medium 2 med annat brytningsindex bryts. fokalplan O optisk axel (OA) f fokalpunkt a f b B O B f a f b Figur 2: Till vänster visas hur parallella strålar bryts i en positiv (överst) och en negativ lins (underst). Till höger visas hur ett objekt avbildas. axeln (OA) där strålar parallella med OA bryts ihop. För en negativ lins är fokalpunkten den punkt på OA från vilken strålar parallella med OA verkar komma (figur 2). När man skall följa strålar genom en positiv lins gäller följande regler: 1. Stråle genom linsens mittpunkt bryts ej. 2. Parallella strålar bryts ihop i en och samma punkt i fokalplanet. För en negativ lins blir regel 2 lite annorlunda: 1. Stråle genom linsens mittpunkt bryts ej. 2. Parallella strålar bryts så att de ser ut att kommit från en och samma punkt i fokalplanet. Linser kan användas för att avbilda objekt (figur 2). Vid avbildning gäller linsformeln 1 f = 1 a + 1 b, (3) 4

7 där a är avståndet mellan objekt och lins, b är avståndet mellan lins och bildplan och f är fokallängden. Vid användning av ekvation (3) måste man tänka på att använda följande teckenregler: positiv lins: f > 0 negativ lins: f < 0 reellt objekt (framför linsen): a > 0 virtuellt objekt (bakom linsen): a < 0 reell bild (bakom linsen ): b > 0 virtuell bild (framför linsen): b < 0 3 Vågoptik 3.1 Böjning i enkelspalt Om ljus passerar genom en smal spalt kommer en del av ljuset att böjas av åt sidorna. För att förklara detta räcker det inte med geometrisk optik utan man måste ta till den elektromagnetiska beskrivningen av ljus och därmed se på ljus som en vågrörelse. Detta görs enklast med Huygens princip. Huygens princip kan användas för att kvalitativt förstå vad som händer till exempel när ljus böjs av i en spalt. Man kan visa att ljusintensiteten bakom en spalt med spaltbredd a som belyses bakifrån med parallellt ljus med våglängden λ som infaller vinkelrät mot spalten (som i figur 3) har minima i intensiteten då a sin α = mλ, m = ±1, ±2,... (4) där α är vinkeln till minimum av ordning m. Vi ser ur ekvation (4) att då spaltbredden blir liten så blir vinkeln till första minimum stor. Vi kan då tänka oss spaltöppningen som en punktkälla som strålar lika intensivt i alla (framåt-) riktningar. 3.2 Interferens i dubbelspalt Om man har en dubbelspalt med två smala spaltöppningar med avståndet d mellan sig och belyser med parallellt ljus bakifrån kommer spaltöppningarna att fungera som punktkällor. Man kan då observera ett interferensmönster bestående av mörka och ljusa områden på en skärm bakom dubbelspalten. Intensitetsmaxima erhålls då villkoret d sin α = mλ, m = 0, ±1, ±2,... (5) är uppfyllt (samma geometri som i figur 3). 5

8 Mönster på skärmen Skärm Laser Enkelspalt α Intensitetsfördelning a α I Centralmaximum Maxima Minima α Figur 3: En enkelspalt med spaltbredd a belyses med parallellt strålknippe från en laser. Strålknippet träffar spalten vinkelrätt. På skärmen syns ett böjningsmönster liknande det uppe till höger i figuren. Nere till höger visas hur man kan åskådliggöra böjningsmönstret genom att rita en intensitetsfördelning. 3.3 Gitter Ett gitter består av ett antal smala spaltöppningar med avståndet d (gitterkonstanten) mellan sig. Om spaltöppningarna är smala kan vi tänka oss att dessa fungerar som punktkällor som svänger i takt. I vissa riktningar kommer ljuset från alla öppningar att svänga i fas och därigenom bli förstärkt. Man får då intensitetsmaxima. Vinklarna α till dessa riktningar ges av d sin α = mλ, m = 0, ±1, ±2,... (6) Det är viktigt att inte blanda ihop ekvationerna (4) (gäller för minima i böjningsmönster) och (5) samt (6) (gäller för maxima i interferensmönster). 4 Hemuppgifter Uppgifterna 1 11 nedan skall göras före laborationstillfället (-ena). Svar till alla uppgifter går inte att finna direkt i detta lab-pm. Dock hittar du svar i din lärobok. 1. Formulera brytningslagen. 2. Beskriv fenomenet totalreflektion. 3. Varför delas vitt ljus upp i färger när det passerar ett prisma? 4. Gör en egen bildkonstruktion på ett rutat papper. Välj själv fokallängd och objektstorlek. Rita i skala och tag reda på var bilden hamnar samt hur många gånger större än objektet bilden blir. 6

9 5. Formulera linsformeln. Verifiera att den gäller för din bildkonstruktion i uppgift 5 ovan. 6. Redogör för Huygens princip. 7. Beskriv fenomenet böjning av ljus som passerar genom en spalt. 8. Beskriv hur, och varför, ett interferensmönster uppstår när en våg passerar genom två smala öppningar. 9. Härled, på ett par rader, villkoret för intensitetsmaxima från en dubbelspalt, ekvation (5) (rita figur). 10. Beskriv hur ett gitter fungerar. 11. Härled, på ett par rader, villkoret för intensitetsmaxima från ett gitter, ekvation (6). 5 Laborationsuppgifter Uppgift 1: Geometrisk optik Uppgiften görs på stationer A-C. a) (A) Studera ljusbrytning i halvcirkelformat glasblock. Bestäm glasets brytningsindex genom att mäta upp totalreflektionsvinkeln. Studera transmission av laserljus genom plexiglasstavar och en enkel optisk fiber. Vad händer om fibern böjs? Förklara. b) (B) Studera dispersion med hjälp av ett prisma. Förklara hur en regnbåge uppkommer. c) (C) Studera avbildning i en lins. Verifiera till exempel att linsformeln gäller. Uppgift 2: Enkelspalt Låt ljus från en laser infalla vinkelrät mot olika enkelspalter och studera böjningsmönstret på en skärm bakom enkelspalten. a) Rita en tydlig figur över försöksuppställningen. b) Skissa intensitetsfördelningarna från enkelspalter med spaltbredderna 0.04 mm och 0.08 mm. Rita i samma skala. Kommentera eventuella skillnader. c) Använd enkelspalt med a = 0.08 mm och mät vinkeln till de tre första minimumen. Jämför med teoretiska värden. 7

10 Uppgift 3: Dubbelspalt Studera interferens genom att titta på hur ljus beter sig vid passage genom en dubbelspalt. a) Skissa intensitetsfördelningen från en dubbelspalt. b) Bestäm spaltavståndet d. Verkar resultatet rimligt? Hur kan man göra mätningen så noggrann som möjligt? Uppgift 4: Gitter I förra uppgiften tittade vi på en dubbelspalt. Nu skall vi se vad som händer när antalet spalter ökar. a) Skissa intensitetsfördelningarna från gitter med 20, 40 och 80 linjer/mm. b) Vad händer med vinkeln mellan två maxima om gitterkonstanten d halveras? c) Undersök vad som händer med vinkeln mellan två maxima då våglängden varieras. Använd röd och grön laser. Stämmer de senaste observationerna med ekvation (6)? Uppgift 5: Synliga spektrat Bygg en enkel spektrometer på en optisk bänk med vars hjälp du kan bestämma omfånget av det synliga våglängdsområdet. Som ljuskälla använder du en vitljuslampa. a) Rita en tydlig figur av försöksuppställningen inkluderande strålgången. b) Bestäm omfånget av det synliga våglängdsområdet. Jämför med tabellvärden. Uppgift 6: Spårvidd på en CD-skiva En CD-skiva fungerar som ett reflektionsgitter. Om ljus infaller vinkelrätt mot ett reflektionsgitter gäller fortfarande ekvation (6). a) Bestäm spårvidden på en CD-skiva. Rita tydlig figur. 8

11 Extrauppgifter 1. Bygg något optiskt instrument, till exempel ett enkelt mikroskop eller en kikare. 2. Bestäm tjockleken av ett hårstrå genom att använda en laser. (Ett hårstrå med diameter t ger samma böjningsmönster som en spalt med spaltbredd t.) 3. Tolka ett röntgendiffraktogram som du får av labassistenten. 4. Bestäm våglängderna för de synliga Hg-linjerna. 5. Studera Newtons ringar. 6. Studera Fresnels fläck. 7. Studera diffraktionsmönster från tvådimensionella gitter. 8. Undersök på något vis Rayleighs upplösningskriterium. 9. Ta upp spektrum för Hg, He eller Na med hjälp av den digitala spektrometern. Referenser [1] R. P. Feynman, R. B. Leighton, and M. Sands. Lectures on Physics. Addison-Wesley, Reading, Massachusetts, En något okonventionell men mycket läsvärd universitetsgrundkurs i fysik. Flera för denna laboration relevanta kapitel återfinns i volym I och II. [2] H.-U. Bengtsson. Nalle Puh och atomens existens. Rabén Prisma, Populärvetenskapliga essayer om modern fysik. [3] E. Hecht. Optics. Addison-Wesley, Reading, Massachusetts, third edition, Kursbok i optik på universitetsnivå. [4] R. P. Feynman. QED The strange theory of light and matter. Penguin Books, Harmondsworth, Populärvetenskaplig men seriös bok om QED (kvantelektrodynamik), den bästa modell som finns idag för att beskriva hur ljus och materia uppför sig och växelverkar. Skriven av en av männen bakom QED. [5] S. Svanberg. Atomic and molecular spectroscopy. Springer, Berlin, Introduktion till spektroskopi på universitetsnivå. [6] L. Bragg. Scientific American, page 58, July [7] J. Bengtsson. Diffractive optics design. PhD thesis, CTH,

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Diffraktion och interferens

Diffraktion och interferens Göteborgs universitet Februari 2016 Chalmers tekniska högskola 10 sidor + bilaga Jan Swenson 1994 Christian Karlsson 2002 Mats Halvarsson 2015 Nils Odebo Länk 2016 O2 Diffraktion och interferens Interferens

Läs mer

Diffraktion och interferens

Diffraktion och interferens Institutionen för Fysik 005-10-17 Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det

Läs mer

Diffraktion och interferens

Diffraktion och interferens Göteborgs universitet Januari 2015 Chalmers tekniska högskola 11 sidor + bilaga Jan Swenson 1994 Christian Karlsson 2002 Mats Halvarsson 2015 O2 Diffraktion och interferens Interferens med C 60-molekyler.

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

för gymnasiet Polarisation

för gymnasiet Polarisation Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget

Läs mer

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)

Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att

Läs mer

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så

Läs mer

Kapitel 36, diffraktion

Kapitel 36, diffraktion Kapitel 36, diffraktion Diffraktionsbegreppet, en variant av interferens Hitta min värden för enkelspalt med vidden a Intensitet för enkelspalt med vidden a Två spalter med vidd a och separation d Många

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska

Läs mer

Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur.

Diffraktion... Diffraktion (Kap. 36) Diffraktion... Enkel spalt. Parallellt monokromatiskt ljus gör att skuggan av rakbladet uppvisar en bandstruktur. Diffraktion (Kap. 36) Diffraktion... Fjärilens (Blå Morpho) vingar har en ytstruktur som gör att endast vissa färger (blå) blir synligt under vissa vinklar genom diffraktionseffekter: idag försöker forskare

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens Ljusets böjning & interferens Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter 3 Appendix Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen

Läs mer

Ljusets interferens. Sammanfattning

Ljusets interferens. Sammanfattning HERMODS DISTANSGYMNASIUM Naturvetenskapsprogrammet Emilia Dunfelt Fysik 2 2017-05-06 Ljusets interferens Sammanfattning I försöket undersöks ljusets vågegenskaper med hjälp av gitterekvationen. Två olika

Läs mer

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt

Läs mer

Studieanvisning i Optik, Fysik A enligt boken Quanta A

Studieanvisning i Optik, Fysik A enligt boken Quanta A Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande

Läs mer

Optik. Läran om ljuset

Optik. Läran om ljuset Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

LABORATION 1 AVBILDNING OCH FÖRSTORING

LABORATION 1 AVBILDNING OCH FÖRSTORING LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se

Läs mer

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016 Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med

Läs mer

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla

Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Laboration 1 Fysik

Laboration 1 Fysik Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Vågrörelselära & Kvantfysik, FK2002 1 december 2011

Vågrörelselära & Kvantfysik, FK2002 1 december 2011 Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel

Läs mer

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1 Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition

Läs mer

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260 Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion

Läs mer

Föreläsning 2 (kap , 2.6 i Optics)

Föreläsning 2 (kap , 2.6 i Optics) 5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen

Läs mer

OPTIK läran om ljuset

OPTIK läran om ljuset OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte

Läs mer

Vågfysik. Ljus: våg- och partikelbeteende

Vågfysik. Ljus: våg- och partikelbeteende Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

Repetition Ljus - Fy2!!

Repetition Ljus - Fy2!! Repetition Ljus - Fy2 Egenskaper ör : Ljus är inte en mekanisk vågrörelse. Den tar sig ram utan problem även i vakuum och behöver alltså inget medium. Exakt vilken typ av vågrörelse är återkommer vi till

Läs mer

Diffraktion och interferens Kapitel 35-36

Diffraktion och interferens Kapitel 35-36 Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2014 Kontakt: olga. b ylund@ysik.su.se Instruktioner ör redogörelse ör laboration 1: Laboration 1 innehåller em experiment. Varje experiment bör presenteras

Läs mer

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor

Tillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? 1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat

Läs mer

Optik. Innehåll: I - Elektromagnetiska vågor radio och ljus. II - Reflexion och brytning. III - Ljusvågor. MNXA11 / Lund University

Optik. Innehåll: I - Elektromagnetiska vågor radio och ljus. II - Reflexion och brytning. III - Ljusvågor. MNXA11 / Lund University Optik Innehåll: I - Elektromagnetiska vågor radio och ljus II - Reflexion och brytning III - Ljusvågor Kom ihåg Definition Amplitud, Våglängd, Frekvens, Våghastighet Mekaniska eller Elektromagnetiska vågor

Läs mer

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00

Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för

Läs mer

Tentamen i Fotonik , kl

Tentamen i Fotonik , kl FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003

Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för teknik och naturvetenskap Campus Norrköping Igor Zozoulenko Laborationer i OPTIK och AKUSTIK (NMK10) Augusti 2003 Laboration 1: Ljudhastigheten i luft;

Läs mer

Vad skall vi gå igenom under denna period?

Vad skall vi gå igenom under denna period? Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

Optik Samverkan mellan atomer/molekyler och ljus elektroner atomkärna Föreläsning 7/3 200 Elektronmolnet svänger i takt med ljuset och skickar ut nytt ljus Ljustransmission i material Absorption elektroner

Läs mer

ett uttryck för en våg som beskrivs av Jonesvektorn: 2

ett uttryck för en våg som beskrivs av Jonesvektorn: 2 Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består

Läs mer

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt

Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt Presentationsmaterial Ljus som vågrörelse - Fysik B Interferens i ubbelspalt gitter tunna skikt Syfte och omfattning Detta material behanlar på intet sätt fullstänigt såant som kan ingå i avsnitt me innebören

Läs mer

Ljusets böjning och interferens

Ljusets böjning och interferens Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska du studera två centrala vågfenomen: interferens och böjning. Du kommer bl.a. att studera hur ljusvågor böjs när de passerar

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

Chalmers tekniska högskola och Oktober 2007 V1, V2. Projektlaborationer

Chalmers tekniska högskola och Oktober 2007 V1, V2. Projektlaborationer Chalmers tekniska högskola och Oktober 2007 Göteborgs universitet 10 sidor E. Eriksson, J. Bäckström, C. Karlsson, F. Svedberg, C. Tengroth, K. Stiller, H. Riedl och D. Hanstorp V1, V2 Projektlaborationer

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00

Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:

Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska

Läs mer

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):

Parbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ): Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa

Läs mer

Instuderingsfrågor extra allt

Instuderingsfrågor extra allt Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken

Läs mer

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.

Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook. CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

Optisk bänk En Virtuell Applet Laboration

Optisk bänk En Virtuell Applet Laboration Optisk bänk En Virtuell Applet Laboration Bildkonstruktion med linser. Generell Applet Information: 1. Öppna en internet läsare och öppna Optisk Bänk -sidan (adress). 2. Använd FULL SCREEN. 3. När applet:en

Läs mer

Handledning laboration 1

Handledning laboration 1 : Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen

Läs mer

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00

Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25-2014-08-26 Tentamen i Fotonik - 2014-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

3. Ljus. 3.1 Det elektromagnetiska spektret

3. Ljus. 3.1 Det elektromagnetiska spektret 3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

1. Elektromagnetisk strålning

1. Elektromagnetisk strålning 1. Elektromagnetisk strålning Kursens första del behandlar olika aspekter av den elektromagnetiska strålningen. James Clerk Maxwell formulerade lagarnas som beskriver strålningen år 1864. 1.1 Uppkomst

Läs mer

Geometrisk optik. Laboration

Geometrisk optik. Laboration ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Geometrisk optik Linser och optiska instrument Avsikten med laborationen är att du ska få träning i att bygga upp avbildande optiska

Läs mer

FAFF Johan Mauritsson 1. Föreläsningar. Våglära och optik. Världens minsta film. Projekten

FAFF Johan Mauritsson 1. Föreläsningar. Våglära och optik. Världens minsta film. Projekten Våglära och optik FAFF30 JOHAN MAURITSSON Föreläsningar F10 Fraunhoferdiffraktion F11 Diffraktionsgitter F12 Fresneldiffraktion F13 Matrisrepresentation av polariserat ljus F14 Polariserat ljus F15 Repetition

Läs mer

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare

Läs mer

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv Avbildningskvalitet Föreläsning 1 2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från

Läs mer

Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - tentamen Torsdagen den 27:e maj 2010, kl 08:00 12:00 Fysik del B2 för

Läs mer

Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h. TentamensKod: Tentamensdatum: Tid: 09:00 13:00

Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h. TentamensKod: Tentamensdatum: Tid: 09:00 13:00 Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST16h KBASX16h 9 högskolepoäng TentamensKod: Tentamensdatum: 2017-05-29 Tid: 09:00 13:00 Hjälpmedel: Grafritande miniräknare, linjal, gradskiva, gymnasieformelsamling,

Läs mer

Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens

Hur funkar 3D bio? Laborationsrapporter. Räknestuga. Förra veckan kapitel 16 och 17 Böjning och interferens Hur funkar 3D bio? Lunds Universitet 2016 Laborationsrapporter Lunds Universitet 2016 Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

v = v = c = 2 = E m E2 cµ 0 rms = 1 2 cε 0E 2 rms (33-26) I =

v = v = c = 2 = E m E2 cµ 0 rms = 1 2 cε 0E 2 rms (33-26) I = Kap. 33 Elektromagnetiska vågor Den klassiska beskrivningen av EM-vågorna, går tillbaka till mitten av 1800-talet, då Maxwell formulerade samband mellan elektriska och magnetiska fält (Maxwells ekvationer).

Läs mer

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.

SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och

Läs mer

1.5 Våg partikeldualism

1.5 Våg partikeldualism 1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

Lösningarna inlämnas renskrivna vid laborationens början till handledaren

Lösningarna inlämnas renskrivna vid laborationens början till handledaren Geometrisk optik Förberedelser Läs i vågläraboken om avbildning med linser (sid 227 241), ögat (sid 278 281), färg och färgseende (sid 281 285), glasögon (sid 287 290), kameran (sid 291 299), vinkelförstoring

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2011 Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och relektionslagen 2 4 Linser 2 4.1 Att rita strålgångar........................

Läs mer

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi

Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi 1 Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus kan ses so elektroagnetiska vågor so rör sig fraåt. När vi ritar strålar

Läs mer

Fotoelektriska effekten

Fotoelektriska effekten Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar

Läs mer

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010

Tentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 11. juni 2010 Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv

Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från

Läs mer

Föreläsning 7: Antireflexbehandling

Föreläsning 7: Antireflexbehandling 1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som

Läs mer

Polarisation en introduktion (för gymnasiet)

Polarisation en introduktion (för gymnasiet) Polarisation en introduktion 1 Polarisation en introduktion (för gymnasiet) 1 Ljusets polarisationsformer Låt oss för enkelhets skull studera en stråle med monokromatiskt ljus, dvs. ljus som bara innehåller

Läs mer

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40

Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40 Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40 Åsa Bengtsson: asa.bengtsson@fysik.lth.se Emma Persson: tfy15epe@student.lu.se Lärandemål I den här laborationen får Du experimentera med

Läs mer

Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och gradskiva

Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och gradskiva Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST17h KBASX17h 9 högskolepoäng Tentamensdatum: 2018-05-28 Tid: 09:00-13:00 Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och

Läs mer

3. Mekaniska vågor i 2 (eller 3) dimensioner

3. Mekaniska vågor i 2 (eller 3) dimensioner 3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar

Läs mer

Sammanfattning: Fysik A Del 2

Sammanfattning: Fysik A Del 2 Sammanfattning: Fysik A Del 2 Optik Reflektion Linser Syn Ellära Laddningar Elektriska kretsar Värme Optik Reflektionslagen Ljus utbreder sig rätlinjigt. En blank yta ger upphov till spegling eller reflektion.

Läs mer