A/D D/A omvandling. Johan Nilsson

Relevanta dokument
A/D D/A omvandling Mätteknik för F

A/D D/A omvandling. EEM007 - Mätteknik för F 2015 CHRISTIAN ANTFOLK

A/D D/A omvandling. Lars Wallman. Lunds Universitet / LTH / Institutionen för Mätteknik och Industriell Elektroteknik

A/D D/A omvandling. Lars Wallman. Lunds Universitet / LTH / Institutionen för Mätteknik och Industriell Elektroteknik

A/D D/A omvandling. EEM007 - Mätteknik för F 2016 CHRISTIAN ANTFOLK / LARS WALLMAN

SENSORER OCH MÄTTEKNIK

Innehåll forts. Mätosäkerhet Sampling Vikning (Aliasing) Principer för D/A omvandling Sammanfattning Lab-info Förberedelser och/eller övningar

Datorteknik. Tomas Nordström Föreläsning 12 Mer I/O. För utveckling av verksamhet, produkter och livskvalitet.

Ett urval D/A- och A/D-omvandlare

Elektronik Dataomvandlare

Elektronik Elektronik 2019

AD-DA-omvandlare. Mätteknik. Ville Jalkanen. 1

Elektronik. Dataomvandlare

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

Elektronik Dataomvandlare

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

Elektronik Elektronik 2017

Analogt och Digital. Viktor Öwall. Elektronik

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

Läsinstruktioner. Materiel

Elektronik. Viktor Öwall, Digital ASIC Group, Dept. of Electroscience, Lund University, Sweden-

AD-/DA-omvandlare. Digitala signaler, Sampling och Sample-Hold

Enchipsdatorns gränssnitt mot den analoga omvärlden

Analog till Digitalomvandling

Analogt och Digital. Viktor Öwall. Elektronik

Signalbehandling, förstärkare och filter F9, MF1016

Analogt och Digital. Viktor Öwall Bertil Larsson

Grundläggande A/D- och D/A-omvandling. 1 Inledning. 2 Digital/analog(D/A)-omvandling

A/D- och D/A- omvandlare

Analog till Digitalomvandling

Analoga och Digitala Signaler. Analogt och Digitalt. Analogt. Digitalt. Analogt få komponenter låg effektförbrukning

Tentamen i Elektronik - ETIA01

Mätteknik för F Laborationshandledning AD-/DA-omvandling. Institutionen för Biomedicinsk Teknik LTH

Komparatorn, AD/DA, överföringsfunktioner, bodediagram

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.

Operationsförstärkaren. Den inverterande förstärkaren. Integrerande A/D-omvandlare. Multimeter - blockschema. Integratorn. T ref *U x = -T x *U ref

Enchipsdatorns gränssnitt mot den analoga omvärlden

Digital elektronik. I Båda fallen gäller förstås att tidsförloppet måste bevaras.

Umeå universitet Tillämpad fysik och elektronik Ville Jalkanen mfl Laboration Tema OP. Analog elektronik för Elkraft 7.

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Att sända information mellan datorer. Information och binärdata

Mätteknik för F. AD-DA - omvandling. Avd f Biomedicinsk teknik/elektrisk mätteknik LTH

Elektro och Informationsteknik LTH. Laboration 6 A/D- och D/A-omvandling. Elektronik för D ETIA01

Spektrala Transformer

Tentamen i Elektronik, ESS010, del 2 den 6 mars 2006 SVAR

Kapitel 2 o 3. Att skicka signaler på en länk. (Maria Kihl)

Tentamen i Krets- och mätteknik, fk - ETEF15

5 OP-förstärkare och filter

Elektronik 2018 EITA35

Elektroteknikens grunder Laboration 3. OP-förstärkare

AD-/DA-omvandling 2015

Digitalt eller Analogt

Förstärkning Large Signal Voltage Gain A VOL här uttryckt som 8.0 V/μV. Lägg märke till att förstärkningen är beroende av belastningsresistans.

Laboration 4: Tidsplan, frekvensplan och impedanser. Lunds universitet / Fakultet / Institution / Enhet / Dokument / Datum

Spektrala Transformer

EITA35 Elektronik Laboration 6: A/D och D/A omvandlare

D/A- och A/D-omvandlarmodul MOD687-31

Mätteknik Digitala oscilloskop

Moment 1 - Analog elektronik. Föreläsning 4 Operationsförstärkare

Frekvensplanet och Bode-diagram. Frekvensanalys

Tentamen i Elektronik, ESS010, del 2 den 16 dec 2008 klockan 8:00 13:00.

Figur 1 Konstant ström genom givaren R t.

2. Strömförstärkare: Både insignal och utsignal är strömmar. Förstärkarens inresistans

Tentamen i Krets- och mätteknik, fk, ETEF15. Exempeltentamen

Isolationsförstärkare

OP-förstärkaren, INV, ICKE INV Komparator och Schmitt-trigger

2E1112 Elektrisk mätteknik

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson

Mätteknik E-huset. Digitalt oscilloskop Vertikal inställning. Digitalt oscilloskop. Digitala oscilloskop. Lab-lokal 1309 o 1310

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson

- Digitala ingångar och framförallt utgångar o elektrisk modell

IDE-sektionen. Laboration 5 Växelströmsmätningar

Laborationsrapport. Kurs Elektroteknik grundkurs ET1002. Lab nr 5. Laborationens namn Växelström. Kommentarer. Namn. Utförd den. Godkänd den.

Tentamen i Krets- och mätteknik, fk - ETEF15

Laboration 1: Aktiva Filter ( tid: ca 4 tim)

Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson

OP-förstärkare. Idealiska OP-förstärkare

DEL-LINJÄRA DIAGRAM I

Konvertering. (Conversion chapter 3, Watkinson) Sebastian Olsson Anders Stenberg Mattias Stridsman Antonios Vakaloudis Henrik Wrangel

Grundlande A/D- och D/A-omvandling. 1 Inledning. 2 Digital/analog(D/A)-omvandling

Förstärkare. Mätteknik. Ulrik Söderström, TFE, UmU. 1

Digital elektronik CL0090

Laboration 5. Temperaturmätning med analog givare. Tekniska gränssnitt 7,5 p. Förutsättningar: Uppgift: Temperatur:+22 C

Tentamen i Krets- och mätteknik, fk - ETEF15

Elektronik grundkurs Laboration 5 Växelström

Laboration - Va xelstro mskretsar

Sammanfattning. ETIA01 Elektronik för D

Operationsfo rsta rkarens parametrar

Multimeter och räknare

Experiment med schmittrigger

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle

OLOP II Obligatorisk LAB operationsförstärkare Analog elektronik 2

Elektronik 2018 EITA35

Elektronik grundkurs Laboration 6: Logikkretsar

Poler och nollställen, motkoppling och loopstabilitet. Skrivet av: Hans Beijner

Laboration 1: Styrning av lysdioder med en spänning

Operationsförstärkare (OP-förstärkare) Kapitel , 8.5 (översiktligt), 15.5 (t.o.m. "The Schmitt Trigger )

Tentamen i Elektronik fk 5hp

Kihl & Andersson: , 3.1-2, (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2

Transkript:

A/D D/A omvandling Johan Nilsson Innehåll Repetition binära tal Operationsförstärkare Principer för A/D omvandling Parallellomvandlare (Flash) Tvåstegsomvandlare Integrerande (Integrating Dual Slope) Deltapulsmodulation (Delta Pulse Modulation) Delta-Sigma omvandlare Approximerande (Successive Approximation) Spänning/frekvensomvandling (VFC)

Innehåll forts. Mätosäkerhet Sampling Vikning (Aliasing) Principer för D/A omvandling Sammanfattning Lab-info Förberedelser och/eller övningar Begrepp att känna till Olika metoder för analog till digital-omvandling Mätprincip i en digital voltmeter Princip för digital till analog-omvandling R/2R-stegen Samplingsteoremet (Samplingsfrekvens Vikning/Aliasing) Överföringsfunktion och fel hos AD-omvandlare Kvantiseringsfel Förstärkningsfel Offsetfel Linjäritetsfel Sample-and-hold -funktionen Prestanda (T ex snabbhet, upplösning, momentan/medelvärde) för olika AD-omvandlare.

Läsanvisningar Kap. 3.4 A/D-omvandling (sid. 138-147) Kap. 3.5 D/A-omvandling (sid. 148-150) Kap. 3.10 Mätosäkerhet vid likspänningsmätning (sid. 173-179) Kap. 6.2 Vikningsdistorsion (sid. 354) Kap. 8.3 Vikning (sid. 444-445) Uppgifter 3:4-3:7 3:24-3:25 6:4-6:6 Förberedelseuppgifter i labbhandledning

AD/DA omvandling 1 0 1 1 0 1 Ljud och tal Musik på CD, komprimerat mp3 Telefon Video Digital TV DVD Mätvärden från sensorer Industri (ex. temperatur, tryck, töjning) Medicin (ultraljud, MR-kamera, tomografi) Internet of things Varför digital signalbehandling 1 0 1 1 0 1 Digitalisering.. Lättare att hantera information Mindre störningskänslig Påverkas inte av omgivningen Lägre kostnad Lättare att konstruera stabila system Lättare att modifiera system Långtidsmätningar, lagring av data Komprimering av data

Tillämpningar, ex. Digitala oscilloskop 8 bitar och 200 MS/s -> 10 GS/s Audio CD 16 bitar och 44.1 ks/s Bilder, bildbehandling Ofta 8 bitar per färg (RGB-CMYK), i t ex medicinska sammanhang högre upplösning, kanske 16 bitar per färg Digital Telefoni Första systemen(gsm): 300 3400 Hz, 8 bitar, 8 khz Tredje generationen-> (3G->): 50 7000 Hz, 16 bitar, 16 khz samplingshastighet Repetition: Binära talsystem Basen är 2 Ex. 13 dec = 8+4+1 = 1101 bin Största decimaltalet man kan representera med 8 bitar (1 byte) är: 128+64+32+16+8+4+2+1 = 255 2 N -1 MSB LSB 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 128 64 32 16 8 4 2 1 0 0 0 0 1 1 0 1

Binära tal - Tal 0 15, 4 bitar 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111 Vid övergångar från t ex 1 -> 2 eller 3 -> 4 byter flera av bitarna tillstånd. Kan vara problem t ex vid tolkning av utsignal från rotationsgivare. 11 Binära tal - Gray-kod Gray-kod 0 0000 1 0001 2 0011 3 0010 4 0110 5 0111 6 0101 7 0100 8 1100 9 1101 10 1111 11 1110 12 1010 13 1011 14 1001 15 1000 Genom att använda graykodning så undviker man att mer än en bit byter tillstånd vid varje övergång. Ger säkrare tolkning av utsignalen. 12

AD-omvandlare - Kvantisering Operationsförstärkaren Icke-inverterande ingång + - Vout = ( V -V ) G Inverterande ingång Ideal Operationsförstärkare: Oändlig förstärkning (G) Oändlig bandbredd (oändligt snabb) Oändlig inresistans (ingen ström genom + och -) Ingen utresistans (kan driva ström)

Komparatorn De flesta AD omvandlare använder sig av en komparator som en del i omvandlingsprocessen En komparator jämför två spänningsnivåer A och B Om A > B è ger komparatorn logisk hög signal, tex 1 Om A < B è ger komparatorn logisk låg signal, tex 0 En komparator kan implementeras med en enkel OP-förstärkare utan återkoppling. analogue input reference voltage A B + - Den inverterande förstärkaren V out = ( V G = Vout = V G + - V = V + + -V -V - - ) G = 0 V + = V - (eftersom V + i detta fall är kopplat till jord fås en virtuell jord vid V - ) I IN = 0 (oändlig inresistans, ingen ström flyter in i operationsförstärkaren)=> I 1 = I 2 V R in 2 V in = I 1 R1, I 1 =, Vout = - I 2 R2, Vout = - 1 1 R R V in

Integratorn I några AD-omvandlare används en integrator Utsignalen från en integrator beror på tiden och insignalen En integrator kan implementeras med en OP-förstärkare och en kondensator Spänningen över kondensatorn kommer att vara lika med utspänningen + Generellt för en kondensator gäller V C = 1 C t ò 0 i( t) dt - V out = ( V -V ) G V out = - 1 RC t ò 0 V in dt Sample and Hold (S/H) krets Används för att spänningen konstant på ingången till SAR konvertern

A/D omvandling Flash omvandlare (parallell) Tvåstegsomvandlare Integrerande omvandlare Deltapulsmodulation Spänning/frekvensomvandlare Successiv approximation (SAR) Finns en uppsjö av andra tekniker men dessa behandlas inte i denna kurs Flash omvandlare (parallell) V IN jämförs med noggranna spänningsnivåer uppdelade i jämna steg Komparatorernas utgångar bildar en termometer kod som i grindnätet omvandlas till binärkod Snabb men dyr (om högre upplösning) Ex. MAX104 från maxim-ic. ±5V, 1Gsps, 8-Bit ADC with On-Chip 2.2GHz Track/Hold Amplifier

Flash omvandlare - Tvåstegs Omvandlingen sker i två steg En Sample-and-hold-krets håller signalen konstant under omvandlingen Först en grov omvandling, som i exemplet ovan ger de 4 mest signifikanta bitarna (MSB). Sedan subtraheras denna via en DA-omvandlare från insignalen innan en fin-omvandling görs som ger de 8 minst signifikanta bitarna (LSB), totalt 12 bitar, med en 8-bitars omvandlare. Integrerande omvandlare (Dual slope) 1 RC T Ux T x 1 UXdt = - U RC ò RE F ò 0 REF = -U REF T dt UREF Ux = - Tx TREF 1.000 Ux = - 345 = 345mV 1000 x T 0 REF Kondensatorn laddas upp under en bestämd tid T REF som bestäms av klockpulsgeneratorn U REF används för att ladda ur kondensatorn och tiden T x mäts i en räknarkrets U REF, T X och T REF används sedan för att räkna ut U X Ex. TLC7135 4 1/2-Digit Precision Analog-to-Digital Converters från Analog Devices Används i digitala voltmetrar (DVM)

Deltapulsmodulation Mätning av tidskvoten mellan uppoch urladdning av kondensatorn Ux är kvoten mellan Tin/T Delta-Sigma omvandlare En 1-bit bitström skapas med en modulator med betydligt högre frekvens, f S, än den slutliga digitala utsignalen, f D (översampling) Bitströmmen behandlas i ett filter och decimeras så att den digitala utsignalen blir en n-bitars digital signal med frekvensen f D Relativt enkel, billig, kan ge hög upplösning, hyfsat snabb www.ti.com/aaj - How delta-sigma ADCs work

Spännings/frekvensomvandlare Omvandlar en analog inspänning till ett pulståg med en frekvens som är direkt proportionell mot inspänningens värde VFC Voltage-Frequency Converter Successiv approximation (SAR) Successiv intervallhalvering Antalet approximationer motsvarar bitlängden för A/D omvandlaren

Jämförelse Felkällor Kvantiseringsosäkerhet Nollpunktsosäkerhet Skalfaktorosäkerhet Lineariseringsosäkerhet Mätupplösning

Kvantiseringsosäkerhet +/- ½ LSB Ex. en 8-bitars omvandlare med 5 Volts mätområde ger en upplösning på 5/2 8 = 19.5 mv I en 8-bitars omvandlare måste spänningsförändringen i insignalen vara minst 19.5 mv för att märkas Obs, 3 bitar Nollpunktsosäkerhet Felaktig nollreferens (U 0 ) Drift i ingångssteget (t.ex. orsakad av temperaturändringar)

Skalfaktorosäkerhet Fel inställning av spänningsreferens (U REF ) Osäkerhet i komponentvärden i förstärkare eller resistanser Lineariseringsosäkerhet Differentiell olinearitet (DNL) Beror på det analoga ingångssteget Skillnaden mellan det teoretiska och det verkliga steget DNL ½ LSB

Mätupplösning, konventionell DVM 3½ - 5½ digit DVM HP3478 Dual Slope omvandling Skallängd 3000 300000 enheter, motsvarar 12 19 bitar Längre skallängd ger högre upplösning Kortare mättid ger lägre upplösning och lägre skallängd ½ digit 5 digit Sampling Samplingsteorem: Samplingsfrekvensen f s måste vara minst två gånger så stor som den största frekvenskomponent i signalen man samplar. fs ³ 2 f

Vikning (aliasing) fs < 2*f Vikning (aliasing) För att undvika vikning har man ett lågpassfilter på ingången till omvandlaren Filtrets brytfrekvens ska vara mindre än eller lika med fs/2

Vikning (aliasing) Om f in = N f s -> DC D/A omvandling Viktade resistorer R-2R stege

D/A omvandling med viktade resistorer R1 R2 R U R 2 UT = - UIN 1 Inverterande förstärkare Utgångstegens storlek beror på referenspänningen. Svårt att ha hög ordlängd pga att det är svårt att tillverka resistorer med väldigt hög precision C B A U UT 0 0 0 0 0 0 1 1 0 1 0 2 0 1 1 3 1 0 0 4 1 0 1 5 1 1 0 6 1 1 1 7 D/A omvandling med R-2R stege Endast ett resistorvärde behövs. 2R får genom att seriekoppla två resistorer

Sammanfattning Olika metoder för analog till digital omvandling Olika kategorier av fel som förekommer i AD (och DA) -omvandlare Sample and Hold kretsen Prestandakriterier (snabbhet, upplösning, momentan-/medelvärde) för olika AD-omvandlare Samplingsteoremet vikning aliasing Principer för digital till analog omvandling Labkortet