1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

Relevanta dokument
6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,

Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= y(0) för vilka lim y(t) är ändligt.

Lösningar till tentamen i Transformmetoder okt 2007

1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y

1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3

(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel

dy dx = ex 2y 2x e y.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

y(0) = e + C e 1 = 1

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

Lösningsförslag, tentamen, Differentialekvationer och transformer II, del 1, för CTFYS2 och CMEDT3, SF1629, den 19 oktober 2011, kl. 8:00 13:00.

Fouriers metod, egenfunktionsutvecklingar.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Analys av jämviktslägen till differentialekvationer

BEGREPPSMÄSSIGA PROBLEM

1 x dx Eftersom integrationskonstanten i (3) är irrelevant, kan vi använda oss av 1/x som integrerande faktor. Låt oss beräkna

Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.

= = i K = 0, K =

Svar till övningar. Nanovetenskapliga tankeverktyg.

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

y + 1 y + x 1 = 2x 1 z 1 dy = ln z 1 = x 2 + c z 1 = e x2 +c z 1 = Ce x2 z = Ce x Bestäm den allmänna lösningen till differentialekvationen

Lösningsförslag till Tentamen, SF1629, Differentialekvationer och Transformer II (del 1) 24 oktober 2014 kl 8:00-13:00.

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.

, x > 0. = sinx. Integrera map x : x 3 y = cosx + C. 1 cosx x 3. = kn där k är. k = 1 22 ln 1 2 = 1 22 ln2, N(t) = N 0 e t. 2 t 32 N 1.

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Modeller för dynamiska förlopp

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Lösningsförslag, preliminär version 0.1, 23 januari 2018

1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.

Teori för linjära ordinära differentialkvationer med konstanta koefficienter

Del I. Modul 1. Betrakta differentialekvationen

(2xy + 1) dx + (3x 2 + 2x y ) dy = 0.

v0.2, Högskolan i Skövde Tentamen i matematik

Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=

Lösningar till tentamen i Matematik II, 5B1116, 5B1136 för Bio. E,I,K,ME, Media och OPEN, tisdagen den 13 april 2004.

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

y = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

IV, SF1636(5B1210,5B1230).

Olinjära system (11, 12.1)

(4 2) vilket ger t f. dy och X = 1 =

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Partiella differentialekvationer av första ordningen

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Mat Grundkurs i matematik 3-II

Sammanfattning av ordinära differentialekvationer

Mat Grundkurs i matematik 3-II

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

ÚÚ dxdy = ( 4 - x 2 - y 2 È Î

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),

Diagonalisering och linjära system ODE med konstanta koe cienter.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 18 december xy = y2 +1

Kryssproblem (redovisningsuppgifter).

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.

Egenvärdesproblem för matriser och differentialekvationer

) + γy = 0, y(0) = 1,

A dt = 5 2 da dt + A 100 =

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

Kurs 5B1200, Sammanfattningar av lektioner för M2 läsåret 1998/99. Björn Gustafsson

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen.

Veckans teman. Repetition av ordinära differentialekvationer ZC 1, 2.1-3, 4.1-6, 7.4-6, 8.1-3

Lektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II

TATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger.

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

dt = x 2 + 4y 1 typ(nod, sadelpunkt, spiral, centrum) och avgöra huruvida de är stabila eller instabila. Lösning.

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00

Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2

MATEMATIK Chalmers tekniska högskola Tentamen , kl och v 4 =

Stabilitet m.a.p. begynnelsedata

= x 2 - x, x (0) = x dt. dx dt = 1. x 0 - (x 0-1)e t och för t 0 = ln x 0

ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF Nyckelord och innehåll

Dugga 2 i Matematisk grundkurs

Tentamen i matematik. f(x) = ln(ln(x)),

} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),

x 1(t) = x 2 (t) x 2(t) = x 1 (t)

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx

Transkript:

. (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion av v(), k och t R. Låt (t)/ = v(t). Bestäm också den tillryggalagda sträckan x(t) som funktion av x(), v() och t. Ekvationen är separabel dv v = k så v(t) = + v()kt + kt = v() v() och vi får hastigheten v(t) = v() +v()kt. Detta ger sträckan x(t) = x() + v() t + v()kt = x() + k ln( + v()kt ).. (3 poäng) Bestäm jämviktspunkterna för differentialekvationen (t) = k ( α x(t) )( β x(t) ), där k och α > β är positiva konstanter och x :, ) R. Klassificera också jämviktspunkterna med avseende på stabilitet. Ekvationen behöver inte lösas. Ekvationen kan skrivas x (t) = g(x(t)) med g(x) = k(α x)(β x). Jämviktspunkterna bestäms av lösningarna till = g(x) vilket ger x = α och x = β. Vi har g (x) = k(β x) k(α x), så g (α) = k(β α) > och g (β) = k(α β) <. Därför är x = β en asymptotiskt stabil jämviktspunkt och x = α är en instabil jämviktspunkt. 3. (3 poäng) Betrakta funktioner x :, ) R och y :, ) R som löser systemet (t) = ɛx(t) y(t), dy(t) = x(t) + ɛy(t). Bestäm systemets jämviktspunkter och avgör deras karaktär som funktion av konstanten ɛ R. Systemet behöver inte lösas. Jämviktspunkterna löser = ɛx y, = x + ɛy,

vilket ger y = ɛx och x( + ɛ ) = vars lösning är x = y =. Jacobianen till högerledet är den konstanta matrisen ɛ ɛ dess egenvärden λ uppfyller ɛ λ = det ɛ λ = (ɛ λ) +, så λ = ɛ ± i. Om ɛ < är jämviktspunkten (, ) en asymptotiskt stabil spiral, om ɛ = är jämviktspunkten (, ) en stabil centrumpunkt och om ɛ > är jämviktspunkten (, ) en instabil spiral. 4. (3 poäng) Bestäm den allmänna lösningen x :, ) R och y :, ) R till systemet (t) = x(t) + ɛy(t), dy(t) = x(t) y(t), där ɛ (, ) är en konstant. Jacobianen till högerledet är den konstanta matrisen ɛ vars egenvärden λ uppfyller = det λ ɛ λ = ( + λ) ɛ, så λ = λ ± = ± ɛ. Ekvationen för en egenvektor = λ ɛ λ a b ger a = ɛb/( + λ ± ) = ±b ɛ. Egenvärdet λ + ger egenvektorn ɛ Vi får den allmänna lösningen x(t) = c y(t) + e ( + ɛ)t för goyckliga reella konstanter c ±. och egenvärdet λ ger egenvektorn ɛ + c e ( ɛ)t ɛ ɛ.

5. (3 poäng) Betrakta funktionerna x :, ) R och y :, ) R som löser systemet (t) = x(t) + ɛy(t), dy(t) = x(t) y(t), där ɛ = /9 och (x(), y()) = (, ). Bestäm y(t) med hjälp av Laplacetransformen. Låt Z(s) = x(t) e y(t) st vara Laplacetransformen av lösningen. Laplacetransformering av ekvationen ger och vi får Inverstransformering ger där ɛ = /9. sz(s) = ɛ Z(s) + s ɛ Z(s) = + s + s ɛ = (s + ) ɛ + s = s+ (s+) ɛ (s+) ɛ y(t) = L (s + ) ɛ. = ɛ / L ( (s + ) ɛ / (s + ) + ɛ / ) = ɛ / ( e ( +ɛ/ )t e ( ɛ/ )t ), 6a. (4 poäng) Temperaturen u :, R i en stav med diffusionsfunktion k :, (, ) uppfyller differentialekvationen d ( du(x) ) () k(x) =, < x < där temperaturen vid x = är u() = och värmeflödet vid x = uppfyller k()u () =. Bestäm temperaturen u(x) med ett uttryck beroende på k. 6b. (6 poäng) Antag att staven i uppgift 6a består av ett kompositmaterial med N skikt där { k = n x < x (n + k(x) = ) x, k = (n + ) x < x (n + ) x, 3

4 för n =,,,..., N och x = /N. Bestäm en konstant konduktivitet k så att u(n x) = u (n x) för n =,,,..., N, där u löser () och u (x) är temperaturen i en homogen stav med konstant diffusionsparameter k som uppfyller d ( du (x)) k =, < x <, u () =, du (x) k x= =. Integration av ekvationen () ger k(x)u (x) = C och randvillkoret vid x = medför C =, så u (x) = /k(x). En ytterligare integration och randvillkoret u() = visar att () u(x) = x dy k(y). Vi har som i uppgift 6a att k u = och u = /k så randvillkoret u () = ger u (x) = x/k. Uttrycket () ger n x u(n x) = k(x) = (n x + n x ) k k så villkoret u (n x) = u(n x) ger = k ( + ). k k Vi får k = k k k + k = 4 3. 7. Temperaturen u(x, t), i positionen x vid tiden t, i en homogen stav med konstant diffusionsparameter k uppfyller u(x, t) u(x, t) = k, t x < x <, t >, u(, t) =, x t >, u(, t) =, t >, u(x, ) = x( x ), < x <. 7a. (4 poäng) Bestäm u(x, t) som en Fourierserie. 7b. (3 poäng) Bestäm ett närmevärde till max x u(x, ) när k = ln.

5 och Variabelseparationsansatsen u(x, t) = T (t)x(x) insatt i ekvationen ger X(x)T (t) = k T (t)x (x) T (t) k T (t) = X (x) X(x). Eftersom högerledet beror bara på x och vänsterledet bara på t måste vänsterledet och högerledet vara en konstant λ. Vi får X = λx. Om λ = α < får vi med karakteristiska ekvationen lösningen X(x) = a cos(αx) + b sin(αx). Randvillkoren ger = a och = aα sin α + bα cos α vars lösning är α = π(n + /) för n =,,,.... På samma sätt ger λ endast X(x) = som lösning. Ekvationen för T blir T /(k T ) = α = π (n+/) och vi får lösningen T (t) = ce k π (n+/) t, vilket ger u(x, t) = b n e k π (n+/) t sin(π(n + /)x). Eftersom ekvationen är linjär är också summan u(x, t) = b n e k π (n+/) t sin(π(n + /)x) n= en lösning. Koefficienterna b n bestäms av begynnelsevillkoret x x / = u(x, ) = b n sin(π(n + /)x) och ortogonaliteten b n / = Vi får temperaturen n= (x x /) sin(π(n + /)x) = = (x x cos(π(n + /)x) /) + π(n + /) sin(π(n + /)x) = ( x) π (n + /) + = π 3 (n + /) 3 u(x, t) = n= ( x) (x x /) d sin(π(n + /)x) π (n + /) cos(π(n + /)x) π(n + /) π 3 (n + /) 3 e k π (n+/)t sin(π(n + /)x). cos(π(n + /)x) π(n + /) Låt t = och k = ln. Temperaturen u domineras av den första termen i summan som vid x = har sitt maximum 6 π 3 e ln π /4 = 6 /4 6 π 3 π 3 /4 = 3.9.

6 De resterande termerna kan uppskattas enligt följande. Vi har med hjälp av integraluppskattning av en avtagande funktion n= π 3 (n + /) 3 e k π (n+/)t sin(π(n + /)x) e k π (+/) t Den första termen i summan för u är π 3 e k π (+/) t = π 3 e k π (+/) t 4 π 3 (/) 3 e k π (/)t sin(π(/)x). π 3 (n + /) 3 n= (x + /) 3 Det relativa felet att ersätta u med första termen vid x = blir mindre än e k tπ 8/4 4 = π 4 < < 6. 8.(5 poäng) Låt u(x, t) vara utböjningen i positionen x vid tiden t av en sträng som uppfyller (3) u(x, t) = 9 u(x, t), < x <, t >, t x u(x, ) = + x, < x <, u(x, ) =, < x <. t Bestäm u(x, t) med hjälp av Fouriertransformen. Låt U(ω, t) := u(x, t)e iωx vara Fouriertransformen av u i x-led. Då ger Fouriertransformering i x-led av (3) U(ω, t) t = 9ω U(ω, t), t > för varje ω R. Denna ordinära differentialekvation har karakteristiska ekvationen m +9ω = som ger lösningen m = ±3ωi och Begynnelsevillkoret ger U(ω, t) = a(ω) sin(3ωt) + b(ω) cos(3ωt). U(ω, ) = b(ω), U(ω, ) t = = 3a(ω)ω,

7 så U(ω, t) = U(ω, )(e 3iωt + e 3iωt )/. Dess inverstransform med translation (se BETA) blir u(x, t) = F {U(ω, ) e3iωt + e 3iωt }(x) u(x + 3t, ) + u(x 3t, ) = = ( + (x + 3t) + ). + (x 3t) Alternativ uppgift 8.(5 poäng) Formulera och bevisa en sats om stabilitet för skalära differentialekvationer y (t) = g(y(t)) med g (y ) < i en jämviktspunkt y. se Sats.3. och Kapitel 4 i sidorna Eulers metod på kurswebbsidan.