1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens är ett typiskt vågfenomen. Den fotoelektriska effekten visade att ljus har partikelegenskaper; fotoner träffar elektroner och frigör dem. Comptoneffekten är ett fenomen, där röntgenstrålar träffar elektroner. Strålningen sprids och dess våglängd ökar beroende på spridningsvinklen. Röntgen fotonerna förlorar energi vid kollisionen. Comptoneffekten är alltså också ett bevis för att ljus har partikelegenskaper. Det visar sig att elektromagnetisk strålning kan beskrivas både med en vågmodell och en partikelmodell beroende på situationen. Detta kallas ljusets dualism. spridning 1
1.5.2 Materiens vågegenskaper Vi är vana att betrakta materia som partiklar. Louis de Broglie, en fransk prins, framlade år 1924 en hypotes där han menade att materia borde ha vågegenskaper, eftersom strålning har partikelegenskaper. Man kunde enligt de Broglie beskriva en partikel med en våg, vars våglängd beror på partikelns rörelsemängd enligt (5) Det visade sig stämma, Davisson och Thomson fick nobelpriset för att ha visat materiens vågegenskaper genom interferens av partikelstrålar. Vågegenskaperna visar sig generellt först då avstånden mellan partiklarna är i samma storleksordning som partiklarnas våglängd det gör att vi i vardagen inte observerar vågegenskaperna. Ett elektronmikroskop grundar sig på att elektronernas våglängd är mycket mindre än våglängden för synligt ljus. Det går att reflektera elektronvågorna från mycket mindre objekt än med ljus, så man kan "se" mycket mindre föremål. De bästa vanliga mikroskopen kan urskilja föremål i storleksklassen 200 nm. Elektroninterferensmönster Virus (röda prickar) med d = 60 nm i elektronmikroskop. Både strålning och materia är dualistiska, de har både våg och partikelnatur. Vi kan alltså både för strålning och för materia använda uttrycken vi sett tidigare: och TTC Quantum 4 7:06 16:40 2
Ex. 4 Hur stor våglängd har en elektrons materievåg, om elektronen har den kinetiska energin 1000 ev? Läs sid. 32 37 Uppgifter: 1 38, 1 40, 1 41(Comptoneffekt, använd MAOL) 3
2. Materiens struktur Redan grekerna hade funderat på materiens uppbyggnad. Det var först i början på 1900 talet som man på allvar började förstå hur de minsta bitarna av materia är uppbyggda. 2.1 Rutherfords atommodell I början av 1900 talet hade man fastställt atomens existens, men inte dess struktur. J. Thomson hade, efter sin upptäckt av elektronen år 1897, föreslagit en "plommonpuddingsmodell" av positiv laddning med negativa elektroner inblandade. Ernest Rutherford bestämde sig för att testa materiens uppbyggnad. Efter ett experiment där guldatomer besköts med alfapartiklar kunde han konstatera att atomen måste ha en liten, positivt laddad kärna. Rutherford föreslog en ny "solsystemsmodell", där kärnan motsvarade solen och elektronerna motsvarades av planeterna. Problem med Rutherfords modell Problemet med solsystemsmodellen var att elektronerna hela tiden accelererar, eftersom de är i cirkelrörelse. Men; en accelererande laddning sänder ut elektromagnetisk strålning. Elektronerna skulle alltså förlora energi och falla in i kärnan, och atomen skulle förstöras. Dansken Niels Bohr presenterade en lösning; en kvantmekanisk modell av atomen. 4
2.2 Bohrs väteatommodell I Bohrs modell rör sig elektronerna i cirkelbanor kring kärnan. Beroende på elektronernas energi är de på olika, BESTÄMDA avstånd från kärnan. Avstånden, eller energitillstånden, anges med huvudkvanttalet n. Bohr löste Rutherfords problem genom att postulera att elektronerna inte KUNDE avge energi UTOM om de flyttade sig från ett längre avstånd till ett kortare avstånd från kärnan. I samband med förflyttningen utsände atomen energi i form av en foton. Fotonens energi motsvarade precis skillnaden i energi mellan två tillstånd. Bohr hade dock ingen bra förklaring till varför elektronbanorna (eller energierna) bara fick ha speciella värden. Hans förklaring hade ingen fysikalisk motivering. Några år senare gavs förklaringen i form av de Broglies materievågor. Den kvantmekaniska atommodellen Enligt materivågmodellen kunde elektronerna beskrivas som vågor med en viss våglängd. En viss elektronbanas omkrets skulle då motsvaras av en multipel av materievågens våglängd; en stående vågrörelse med en viss våglängd. Detta kan skrivas som Orbitaler Då materia betraktas som vågor måste man frångå den klassiska uppfattningen att ett föremåls position kan bestämmas med fullständig precision. Werner von Heisenberg presenterade 1927 sin osäkerhetsprincip; i korthet säger den att man aldrig kan bestämma både position och rörelsemängd exakt. Man måste helt enkelt börja använda sannolika positioner. För atommodellen innebar detta att de Broglies elektronvågor måste ses som sannolikhetsfunktioner; materievågen anger sannolikheten att hitta elektronen på ett visst avstånd från kärnan. Man kan alltså inte tala om banor med exakta radier, utan man måste tala om orbitaler de områden där elektronen sannolikast befinner sig. Schrödingers vågekvation För att kunna beräkna hur atomerna beter sig behövdes ett verktyg för att beskriva och behandla materivågorna. Den österrikiske fysikern Erwin Schrödinger lyckade ställla upp en ekvation som beskriver vågorna. Den ser ut så här, och ni behöver inte förstå den: 5
2.4 Standardmodellen Atomens uppbyggnad är känd för oss sedan tidigare. Det finns dock annan, mer exotisk materia i universum. Denna materia bygger inte upp strukturer som atomerna gör, men den kan dyka upp i vissa situationer. Standardmodellen är den teori som beskriver de minsta beståndsdelarna av materia i universum, samt de krafter som verkar mellan dem. Enligt modellen uppträder materia i tre familjer av partiklar; Elektron, Myon, och Tau. I varje familj finns två olika typer av partiklar, Kvarkar och Leptoner, med två partiklar av varje typ. Totalt finns det alltså 3*(2*2) = 12 partiklar. Dessutom existerar så kallad antimateria, vars egenskaper är exakt som vanlig materia, men laddningarna är motsatta. Standardmodellen är vår bästa modell av universum, men en viktig pusselbit saknas ännu, Higgspartikeln. Enligt modellen ger den massa åt all materia men man har ännu inte kunnat observera den. Man hoppas att LHCaccelereratorn kan hitta den. 6
2.5 Materiens växelverkan Universum byggs upp från extremt små till gigantiskt stora strukturer. Men hur hålls de ihop, och hur växelverkar de med varandra? 2.5.1 Fyra grundformer för växelverkan Det finns fyra grundformer för växelverkan. De är gravitationsväxelverkan, elektromagnetisk växelverkan, stark växelverkan och svag växelverkan. Av dem är de två första sådana som vi kan observera i vardagslivet. De två andra ser vi inte, men de är lika viktiga, eftersom de styr processer i atomkärnan. Gravitationsväxelverkan är attraktiv. Dess styrka beror på de växelverkande förmålens massa och avståndet mellan dem. Den verkar mellan alla föremål i universum som har massa. Den är dominerande mellan föremål i vår storleksklass och större, men minskar i betydelse jämfört med de övriga växelverkanstyperna då föremålen är i molekyl och atomstorlek. Gravitationen förmedlas via gravitoner. http://news.stanford.edu/news/2005/may11/gifs/gpb_geodetic.jpg Elektromagnetisk växelverkan är attraktiv eller repulsiv beroende på situationen. Alla elektriska och magnetiska fenomen styrs av den. De olika molekylbindingarna i kemin beror på denna växelverkan. Därmed styr den också all biologi, och livet självt! Den elektromagnetiska växelverkan förmedlas via fotoner. http://particleadventure.org/ http://www.atlantichive.com/3d/electromagnet.jpg http://www.hilaroad.com/camp/projects/electromagnetism/motor_running.jpg 7
Om elektromagnetism är repulsiv mellan likadana laddningar, hur hålls atomkärnarn ihop? Protonerna har ju alla positiv laddning! Stark växelverkan verkar attraktivt mellan nukleonerna (neutronerna och protonerna) i atomkärnan och håller ihop dem. Utan den skulle atomkärnan splittras p.g.a. den elektromagnetiska repulsionen mellan protonerna och ingen materia skulle finnas! Den starka växelverkan förmedlas via gluoner. Svag växelverkan styr växelverkan mellan kvarkarna i atomkärnans nukleoner och orsakar radioaktivitet. Den förmedlas via mellanbosonerna W +, Z 0 och W. The elegant universe, del 2 De fyra växelverkanstyperna: Gravitation, elektromagnetisk växelverkan, stark växelverkan och svag växelverkan. 8