LiU-ITN-TEK-G--10/071--SE Värmeförlust genom platta på mark - en jämförelse av kantbalkar Johanna Haglund 2010-08-27 Department of Science and Technology Linköping University SE-601 74 Norrköping, Sweden Institutionen för teknik och naturvetenskap Linköpings Universitet 601 74 Norrköping
LiU-ITN-TEK-G--10/071--SE Värmeförlust genom platta på mark - en jämförelse av kantbalkar Examensarbete utfört i byggteknik vid Tekniska Högskolan vid Linköpings universitet Johanna Haglund Handledare Anders Berggren Examinator Gudmund Israelsson Norrköping 2010-08-27
Upphovsrätt Detta dokument hålls tillgängligt på Internet eller dess framtida ersättare under en längre tid från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances. The online availability of the document implies a permanent permission for anyone to read, to download, to print out single copies for your own use and to use it unchanged for any non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional on the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its WWW home page: http://www.ep.liu.se/ Johanna Haglund
SAMMANFATTNING Av den värme som tillförs i en genomsnittlig villa i Sverige försvinner cirka 15 % av värmen ut genom grunden och ner i marken. Grundkonstruktionens uppgift är bland annat att utgöra ett stadigt underlag för huset samtidigt som den ska hålla kvar värmen i huset. Detta examensarbete behandlar grundkonstruktionen platta på mark där fokus främst ligger på att jämföra tre olika typer av kantbalkar med avseende på köldbryggor och energiförbrukning. Arbetet har utförts i samarbete med Fiskarhedenvillan som är en av Sveriges största husleverantörer. Fiskarhedenvillan jobbar ständigt med att minska energiförbrukningen hos deras villor och önskar nu att få en bättre inblick i hur valet av kantelement vid platta på mark kan påverka detta. För att få en bättre förståelse för hur värmetransport fungerar börjar rapporten med en teoretisk del. Där behandlas hur värmeledning, strålning och konvektion fungerar. Den teoretiska delen tar även upp grundläggning, köldbryggor, platta på mark och kantbalkar i allmänhet. De kantbalkslösningar som behandlas i rapporten är: U min grund energieffektiv Leca kantelement Dorocell, L element Med hjälp av dataprogrammet HEAT2 har en simulering av kantbalkarna gjorts för att få fram olika värden på köldbryggor. Dessa värden har sedan använts för att få fram hur den totala energiförbrukningen i en villa påverkas av de olika kantbalkarna.
ABSTRACT Of all the heat that is supplied in an average house in Sweden, about 15% of the heat leaks out through the foundation and the ground. A foundations task is to provide a solid base for a house while it should also keep the heat in the house. This report deals with the foundation concrete slab, where the focus is largely on comparing three different types of edge beams with respect to thermal bridges and energy consumption. This work has been performed in collaboration with Fiskarhedenvillan which is one of the largest house suppliers in Sweden. Fiskarhedenvillan are constantly working with reducing the energy consumption in their houses and now wish to obtain a better insight into how the choice of edge elements in the slab can affect this. To get a better understanding of how heat transfer works the report begins with a theoretical part. It deals with how heat conduction, radiation and convection works. The theoretical part also deals with foundations, thermal bridges, concrete slab and edge beams in general. The edge beam solutions mentioned in the report are: U min grund, energy efficient Leca edge element Dorocell, L element Using the computer program HEAT2, a simulation of the edge beams has been made to obtain different values of thermal bridges. These values were then used to calculate how the choices of the edge beams affect the total energy consumption in a house
INNEHÅLLSFÖRTECKNING 1. Inledning... 1 1.1 Syfte och Frågeställning... 1 1.2 Avgränsningar... 1 1.3 Metod och källor... 1 1.4 Struktur... 1 2. Värmetransport... 2 2.1 Värmeledning... 2 2.1.1 Påverkan av fukt... 2 2.2 Strålning... 3 2.3 Konvektion... 3 2.4 Värmekonduktivitet λ... 3 2.5 Värmemotstånd R... 3 2.6 Värmegenomgångskoefficient U... 4 3. Köldbryggor... 4 3.1 Uppkomst... 4 3.2 Köldbryggors påverkan på en byggnad... 4 3.2.1 Problem... 5 3.2.2 Termisk komfort... 5 4. Allmänt om grundkonstruktioner... 5 4.1 Grundkonstruktionens uppgifter... 6 5. Platta på mark... 6 5.1 Historik... 6 6. Grundläggning... 7 6.1 Markförhållande... 7 6.1.1 Fast, stödd och flytande grund... 7 6.2 Dränering och kapillärbrytning... 7 6.3 Värmeisolering och täthet... 8 6.4 Tjäle... 9 6.4.1 Uppkomst... 9 6.4.2 Isolering mot tjäle... 9 7. Kantbalkar vid platta på mark... 10 8. HEAT2... 10 8.1 Indata för HEAT2... 11
8.1.1 Randvillkor... 11 8.2 Beräkning av köldbryggor... 11 9. Simulering av kantbalkarna i heat2... 12 9.1 Anslutande konstruktionsdelar... 12 9.1.1 Yttervägg... 12 9.1.2 Betongplatta... 13 9.1.3 Invändiga ostörda värmeflöden... 13 9.3 Modell 1, Dorocell L element... 13 9.3.1 Utforming... 14 9.3.2 Resultat av HEAT2 simulering för modell 1... 14 9.4 Modell 2, U min grund, Energieffektiv... 15 9.4.1 Utformning... 15 9.4.2 Resultat av HEAT2 simulering för modell 2... 16 9.5 Modell 3, Leca Kantelement... 17 9.5.1 Utformning... 17 9.5.2 Resultat av HEAT2 simulering för modell 3... 17 9.6 Sammanfattning av köldbryggor... 18 9.7 Kantbalkarnas påverkan på den totala energiförbrukningen... 18 10. Resultat och utvärdering... 19 10.1 Del 1 Teori... 19 10.2 Del 2 Analys och utvärdering... 19 11. Diskussion... 20 Källor... 21 FIGURFÖRTECKNING Figur 1 Genomsnittliga värmeflöden i en villa... 5 Figur 2 Grundläggningsmetoder vid platta på mark... 7 Figur 3 Dränering och kapillärbrytning vid platta på mark... 8 Figur 4 Fuktfördelning med rep. utan underliggande isolering... 8 Figur 5 Tjäle i mark... 9 Figur 6 Klimatzoner i Sverige... 9 Figur 7 Utkragningslängd utifrån klimatzon... 9 Figur 8 Utkragande isolering... 9 Figur 9 Simulering av kantbalk vid platta på mark... 10 Figur 10 Konstruktionsdel uppritad av rektangulära element... 11 Figur 11 Fiskarhedenvillans standardvägg... 12 Figur 12 Betongplatta... 13 Figur 13 Modell 1, Dorocell L element... 13
Figur 14 Dorocell L element... 14 Figur 15 Temperaturprofil för modell 1... 14 Figur 16 Modell 2, Umin grund, energieffektiv... 15 Figur 17 Utformning av U min grund, energieffektiv... 15 Figur 18 Specialbyggd låda under dörrar och fönsterpartier... 16 Figur 19 Temperaturprofil för modell 2... 16 Figur 20 Modell 3, Leca kantelement... 17 Figur 21 Temperaturprofil för modell 3... 17 Figur 22 Lärkan... 18 TABELLFÖRTECKNING Tabell 1 Köldbryggor för de olika kantbalkarna... 18 Tabell 2 Energiförbrukning för huset "Lärkan" med de olika kantbalkarna... 18 Tabell 3 Resultat för de olika kantbalkarna... 19 BILAGOR Bilaga 1 Värmemotstånd, R, och U värdesberäkning Bilaga 2 Simulering av köldbryggor
1. INLEDNING Detta arbete tas fram i samarbete med Fiskarhedenvillan i Borlänge. Fiskarhedenvillan är en av Sveriges största husleverantörer och levererar cirka 500 villor per år. De arbetar ständigt med att förbättra villorna, bl. a. genom att minska deras energiförbrukning. Av all den värme som tillförs i ett hus försvinner ca 15 % ut genom golv och källare. I dagsläget är det kunden som väljer vilken slags grundkonstruktion de ska ha till sitt hus utifrån sina egna förutsättningar. Nu önskar Fiskarhedenvillan att få en bättre inblick i hur valet av kantelement vid platta på mark kan påverka den totala energiförbrukningen i ett småhus. 1.1 SYFTE OCH FRÅGESTÄLLNING Syftet med detta examensarbete är att jämföra olika slags grundkonstruktioner gällande platta på mark för småhus med avseende på energiförbrukning och köldbryggor. Fokus kommer att ligga på tre olika typer av kantbalkslösningar vid platta på mark. Detta kommer i slutändan att sättas in i husets totala förbrukning för att visa hur stor påverkan valet av kantbalk har. Följande frågor har legat till grund för undersökningen: Är skillnaderna stora mellan de olika kantbalkslösningarna gällande egenskaper som påverkar energiförbrukningen? Hur stor påverkan har valet av kantbalkar för den totala energiförbrukningen i småhus? 1.2 AVGRÄNSNINGAR Arbetets omfattning bör enligt riktlinjer vara omkring 20 sidor. Arbetet kommer endast att omfatta platta på mark för småhus. Endast tre olika kantbalkslösningar kommer att behandlas. Arbetet kommer inte ta upp inverkan av golvvärme. 1.3 METOD OCH KÄLLOR Examensarbetet kommer främst att grundas på litteraturstudier samt information från kantbalkstillverkarnas hemsidor och teoretiska beräkningar. Även en simulering av de olika kantbalkarna kommer att genomföras. De källor som har använts i arbetet anses vara tillförlitliga. 1.4 STRUKTUR Rapporten är uppdelad i två delar: Del 1 Teori Del 2 Analys och Utvärdering Del 1 behandlar viktigt bakgrundsfakta som ger läsaren en bättre förståelse för del 2 som är den analyserande och utvärderande delen. 1
DEL 1 TEORI 2. VÄRMETRANSPORT Värmetransport i material och konstruktioner sker från ytor med högre temperatur till ytor med lägre temperatur [1]. Värmetransporten kan ske på olika sätt och delas upp i tre olika delar; ledning strålning konvektion 2.1 VÄRMELEDNING Värmetransport i fasta homogena material utan porer sker via ledning [1]. Värmeledningen beror på flera olika faktorer som materialets värmekonduktivitet, temperaturskillnad över materialet och materialets tjocklek i riktning för värmeströmningen. I material med både fast material och porer med gaser eller vätskor tillkommer värmetransport genom strålning och konvektion. Vid beräkning av värmeledning finns olika typer av formler [1]. Den enklaste ekvationen (1) är för endimensionell värmeströmning med stationära förhållanden och beskrivs som följande: λ TT (W/m 2 ). (1) Där q= värmeflödestäthet (W/m 2 ) λ= värmekonduktitivet (W/m C) d= tjocklek (m) T 2 = Den högre temperaturen ( C) T 1 = Den lägre temperaturen( C) Ekvationen belyser de endimensionella och stationära förhållanden utan att ta hänsyn till materialets värmekapacitet och kan tillämpas vid enklare beräkningar av en byggnads klimatskal med stationär värmeströmning, dvs. att ute och innetemperaturen är konstant [1,2]. Vid icke stationär värmeledning tas hänsyn till varierade ute och innetemperaturer under en viss tid som motsvarar verkliga förhållanden [2]. Det finns dessutom ekvationer som tar hänsyn till två och tredimensionell värmeledning och tillämpas där byggnadsdelar möts, till exempel vid hörn. Grundekvationen (2) för tredimensionell värmeledning med icke stationära förhållanden är: T K T T.(2) Dessa beräkningsfall blir dock ofta komplicerade och kräver oftast hjälp av datorprogram [2]. 2.1.1 PÅVERKAN AV FUKT Då fuktinnehållet i ett material ökar fås en högre värmeledningsförmåga [2]. Vatten som tränger in i porösa material som till exempel värmeisolering gör att materialets värmeledningsförmåga ökar. Detta beror på att vatten har en högre värmeledningsförmåga (1,6 W/m C) och ersätter en del av luften i materialet. I det fuktiga materialet sker sedan en energitransport i porerna då vattnet avdunstar från den varma porväggen 2
och kondenserar på den kalla porväggen. Det kondenserade vattnet transporteras sedan tillbaka till den varma sidan vilket resulterar i en energitransport. Värmeledningsförmågan för vattnet ligger på 1,6 W/m C i flytande form och då det är fryst uppgår värmeledningsförmågan istället till 2,3 W/m C. Om vatten tränger in i betong och fryser ökar därför betongens värmeledningsförmåga från 1,7 W/m C till 2,3 W/m C [2]. 2.2 STRÅLNING Mellan glasrutor i ett fönster och mellan ytor i en luftspalt i väggar sker värmeöverföring genom strålning från den varma ytan till den kallare [1]. Strålning förkommer som värmestrålning och solstrålning. Värmestrålning sker genom långvågig strålning medans solstrålning är en kortvågig strålning. Strålningen påverkar dock en byggnads temperatur och värmebalans oavsett strålningstyp. När ett material blir utsatt för strålning kommer en del av strålningen att absorberas i materialet, en del kommer att reflekteras av materialytan och en del kommer att transmitteras genom materialet [1]. Summan av dessa delar är lika stor som den infallande strålningen mot ytan. Transmissionen i de flesta ogenomskinliga byggnadsmaterial är lika med noll vilket innebär att strålningen reflekteras eller absorberas. Glas släpper däremot igenom kortvågig solstrålning men inte långvågig värmestrålning. 2.3 KONVEKTION Värmetransport genom konvektion sker då luft rör sig och för med sig värme [1]. Konvektion kan förekomma som naturlig/egen konvektion eller påtvingad konvektion. Naturlig konvektion uppkommer då luften rör sig på grund av densitetsskillnader som följd av temperaturdifferenser. Vid påtvingad konvektion beror luftrörelsen av en yttre påverkan som till exempel fläktar. Storleken på naturlig konvektion i en sluten luftspalt beror på temperaturdifferens, luftspaltens fria höjd, avstånd mellan luftspaltens ytor samt luftspaltens orientering [1]. Storleken på värmekonvektion vid ytor är dock svårt att ta fram teoretiskt och får baseras på försöksresultat. 2.4 VÄRMEKONDUKTIVITET λ Med värmekonduktivitet menas den mängd värme som per sekund passerar genom 1 m² av ett material med en tjocklek på en meter då temperaturdifferensen är en grad [1]. Det som påverkar värmekonduktiviteten är materialets densitet, fuktighet, temperatur samt porositet som har den största inverkan på värmeisoleringsförmågan. 2.5 VÄRMEMOTSTÅND R För att få fram motståndet mot värmetransport i ett skikt beräknas värmemotståndet R [2]. Värmemotståndet tas fram från materialskiktets tjocklek, d, och värmekonduktivitet, λ, se ekvation (3). (m2 C /W).(3) Värmeisolering som är ett poröst material har större värmemotstånd än till exempel betong, se bilaga 1 [1]. 3
2.6 VÄRMEGENOMGÅNGSKOEFFICIENT U Med värmegenomgångskoefficient eller U värde menas den värmemängd som per tidsenhet passerar 1 m² av konstruktionen då skillnaden i lufttemperaturen på var sida om konstruktionen är en grad [2]. I rapporten kommer värmegenomgångskoefficienten, U, fortsättningsvis att benämnas som U värde. Vid beräkning av U värde för en byggnadsdel används byggnadsdelens värmemotstånd samt övergångsmotstånd vid fria ytor eller mot jord [2]. U värdet för byggnadsdelen är inversen av värmemotståndet inklusive övergångsmotstånd, se ekvation 4. För exempel av U värdesberäkning se bilaga 1 [1]. W /m 2 C.(4) Där R si = 0,13 m 2 C /W, Övergångsmotstånd för insida, R se = 0,04 m 2 C /W, Övergångsmotstånd för utsida Värmegenomgångskoefficienten för linjära köldbryggor betecknad med Ψ (uttalas psi) och har enheten W/m C [A1]. I rapporten kommer värmegenomgångskoefficienten för linjära köldbryggor, Ψ, fortsättningsvis att benämnas som Psi värde. 3. KÖLDBRYGGOR I en homogen jämntjock skiva är värmeflödet lika överallt vid en given total temperaturdifferens [2]. Om en del av skivan har ett sämre värmemotstånd än i övrigt ökar värmeflödet i denna del och det uppstår en köldbrygga. Namnet är dock missvisande då det inte är kyla utan värme som strömmar genom köldbryggan. I många andra länder heter det istället värmebryggor, till exempel thermal bridges på engelska. En köldbrygga har lägre värmemotstånd än det omkringliggande materialet och tillåter mer värme och energi att passera genom den delen av konstruktionen än genom de övriga delarna [2]. Köldbryggan är tvådimensionell där två byggnadsdelar möts samt tredimensionell där tre byggnadsdelar möts exempelvis vid hörn. Exempel på köldbryggor är kantbalk vid platta på mark, anslutning vid bjälklag och utfackningsvägg samt kramlor i mur [2]. 3.1 UPPKOMST En köldbrygga kan uppstå genom geometrisk eller konstruktiv utformning [2]. Geometriskt uppkomna köldbryggor kan till exempel vara utåtgående hörn i ytterväggar som medför en ökad värmetransport. Det är byggnadens utformning som ligger till grund för de geometriskt uppkomna köldbryggorna. Köldbryggor som uppkommer på grund av geometrisk utformning kan oftast förhindras i dagsläget då kunskapen om detta är välkänt. Köldbryggor som uppkommer på grund av konstruktiv utformning är dock vanligare då de uppstår i byggnadsdelar med försämrade värmeisoleringsförmåga och är svårare att förhindra. 3.2 KÖLDBRYGGORS PÅVERKAN PÅ EN BYGGNAD Köldbryggor påverkar en byggnad genom värmeförluster och genom att sänka byggnadens totala värmeisoleringsförmåga [2]. Hur stor påverkan köldbryggor har beror dock på de omgivande materialen i konstruktionen. I en byggnad som har bra värmeisolerande förmåga i de omgivande materialen kommer köldbryggorna utgöra en stor del av värmeförlusterna. I en byggnad med sämre värmeisolerande förmåga på omgivande material har köldbryggorna istället mindre betydelse då det inte är lika stor del av värmeförlusten 4
som beror på dessa. Värmeförlusterna genom en köldbrygga påverkas också av dess placering och utsträckning, två eller tredimensionell värmeledning, ytskiktets värmeövergångsmotstånd med mera. 3.2.1 PROBLEM Ett av problemen som köldbryggor för med sig är en ökad energiförbrukning i byggnader [2]. Köldbryggorna läcker ut mer värme än den övriga konstruktionen vilket medför att extra energi till uppvärmning måste tillföras för att behålla den önskade temperaturen inomhus. Då det sker värmetransport genom en köldbrygga minskar yttemperaturen på köldbryggans insida och ökar på konstruktionens utsida. Detta kan leda till att ytkondens uppkommer på köldbryggans insida vilket i sin tur kan leda till fuktproblem med mögel och dåligt luft som följd. 3.2.2 TERMISK KOMFORT Köldbryggor påverkar även inomhusklimatet i byggnader [2]. Lufttemperatur, luftrörelser och värmestrålningsförhållanden är några faktorer som påverkas av köldbryggor. Strålning sker från en varmare yta till en kallare och detta kan i byggnader med köldbryggor påverka människans komfort. När värme strålar från en person till en kallare yta, till exempel köldbryggor, uppfattas värmeförlusten som att det strålar kall luft från köldbryggan. Luftrörelser som uppkommer på grund av köldbryggor, uppstår då luften som kommer i kontakt med en köldbrygga kyls av [2]. Det som för människan uppfattas som drag är egentligen kall luft som sjunker mot golvet och trycker undan den varma luften som sedan stiger uppåt. 4. ALLMÄNT OM GRUNDKONSTRUKTIONER Grundkonstruktionen på ett hus utger en del av husets klimatskal som ska stå emot yttre påfrestningar som fukt och kyla samt ge en låg driftskostnad och energiförbrukning [7]. En viktig del i klimatskalet är isolering som gör att värmeförlusterna kan minskas. Tätskiktet är också viktigt i en grund då otäthet kan ge upphov till värmeförluster och fuktproblem. Av den värme som tillförs i ett hus försvinner i genomsnitt 15 % ut genom grundkonstruktionen, se figur 1. [8]. Figur 1 Genomsnittliga värmeflöden i en villa [8] De tre vanligaste grundkonstruktionerna i Sverige är platta på mark, kryprum och källare [1]. 5
4.1 GRUNDKONSTRUKTIONENS UPPGIFTER En grundkonstruktion till en villa har fem uppgifter som den ska uppfylla [4]; 1. Grunden ska fungera som ett stadigt underlag för husets stomme. Detta innebär att den ska klara av tjälskjutning och sättningar i marken. 2. Grunden ska vara tät och inte släppa igenom fukt. Om fukt tränger in i ett hus kan det uppstå mögel och röta samt skador som förstörda golvbeläggningar med mera. 3. Grunden ska hålla kvar värmen i huset genom att vara välisolerad. 4. Grunden ska motverka att radon trängs in från marken. 5. Grunden påverkar resten av huset vad gäller utseende och funktion och ska därför anpassas därefter. 5. PLATTA PÅ MARK En vanlig grundläggningsform för småhus idag är platta på mark vilket är en konstruktion som har direkt kontakt med marken [1]. Plattan gjuts i betong och har kantbalkar under ytterväggar samt balkar vid bärande innerväggar. 5.1 HISTORIK Det första huset med platta på mark i Sverige byggdes i slutet på 1940 talet [5]. Metoden kom från USA där det redan hade använts i ca tio år. Plattan var då utformad med en membranisolering på plattans undersida som bestod av asfaltimpregnerad papp med mellanliggande strykning av varmasfalt. Konstruktionen vilade på en minst 4 cm tjock bädd av makadam eller välpackat grovt grus. Den omgivande marken lutade ifrån byggnaden och det färdiga golvet låg minst 25 cm över marken. Under 1950 och 1960 talet utfördes platta på mark med ett uppreglat trägolv ovanpå plattan då man ansåg att konstruktionen blev ventilerad [5]. Detta var dock inte sant och gav konstruktionen ett dåligt rykte då det uppstod många fukt och mögelskador. Värmeisolering började sedan placeras mellan reglarna vilket gjorde att möjligheten till bortventileringen av uppträngande fukt stoppades helt. Under 1970 talet prövades konstruktionen med värmeisolering på betongplattans undersida [5]. Isoleringen utfördes då med hårda mineralullsskivor och tjockleken begränsades till 50 millimeter. Isoleringstjockleken ökades senare på till 100 millimeter. Då mineralullen hade låg bärförmåga började den ersättas med expanderad polystyrencellplast (EPS). EPS isolering har högre tryckhållfasthet än mineralull vilket ger en bättre bärförmåga. Det var dock inte detta som gjorde att mineralullen byttes ut. Det främsta argumentet var priset som var lägre för EPS isolering än för mineralullsskivorna. Ett misstag som gjordes i konstruktionen under 70 talet var att fuktspärren på plattans undersida undveks då man ansåg att byggfukten i plattan fick torka ut mot marken. Det som skulle vara en fuktsäker konstruktion resulterade istället i nya fuktskador. På 1990 talet ökades isoleringstjockleken från 100 till 200 millimeter och mineralullen var helt utbytt till EPS isolering [5]. Plattan kompletterades även med en folie som skyddar mot uppträngande markfukt. Problemet med byggfukt minskade då plattan fick torka ut ordentligt innan golvbeläggningen monterades. 6
I slutet på 1990 talet började isoleringstjocklekar på 300 millimeter att dyka upp, oftast på grund av ingjutna golvvärmeslingor [5]. Detta är i dagsläget den vanligaste isoleringstjockleken oavsett om byggnaden är ett passivhus eller ett vanligt hus. 6. GRUNDLÄGGNING 6.1 MARKFÖRHÅLLANDE Vid grundläggning av en byggnad anpassas grundläggningsdjupet efter markens bärighet, tjälfarlighet och terrängens höjdförhållanden[3]. Tidigare byggdes grunder i första hand på marker av grusåsar eller moränområden då de har god bärighet [6]. Markområden med berg som har den bästa bärigheten användes också men där fick byggnaderna anpassas till terrängens höjdförhållanden då det var kostsamt att spränga. Andra markområden med silt och lerjordar har låg bärighet och lämpade sig därför inte lika bra till grundläggning. 6.1.1 FAST, STÖDD OCH FLYTANDE GRUND I dagsläget har markförhållandena inte lika stor betydelse som förr tack vare utvecklad tekniken [4]. De metoder som används kallas för fast, stödd och flytande grund, se figur 2. Vid fast grundläggning är huset grundlagt på en fast botten som berg och sammanpackat jordmaterial. Dessa marktyper utgör ett bra underlag och rör sig inte på grund av dålig bärighet och tjäle. Figur 2 Grundläggningsmetoder vid platta på mark [4] Vid lös lera tillämpas stödd grundläggning[4]. Detta innebär att grunden får stöd av pålar eller plintar som förs ner till berg eller fastare marklager. Pålning används dock inte på grund av ekonomiska skäl förrän den fasta marken ligger längre ner än två meter. När grundläggning sker på en något fastare mark som lerig mo, silt och fast lera tillämpas flytande grundläggning[4]. Denna grundläggning gör att huset följer markens rörelser och kräver därför en styv husgrund. Vid flytande grundläggning är platta på mark att föredra då husets last fördelas på en stor yta. 6.2 DRÄNERING OCH KAPILLÄRBRYTNING För att undvika skador på en byggnad på grund av vatten som sipprar ner vid grunden, är det viktigt med en avledande dränering [3]. Vid dränering beaktar man grundvattenytans läge och marklagrens genomsläpplighet. Det är även viktigt att tänka på eventuella översvämningar och att stopp i vattenledningar kan ske. Marken invid byggnaden ska ha en lutning på 1:20 inom tre meter från byggnaden så att dagvatten rinner av. Som material till dränering används oftast tvättat singel eller makadam som läggs invid och under 7
grundkonstruktionen [3]. Detta fungerar även som ett kapillärbrytande skikt. Till dräneringslagren ansluts en dräneringsledning som leder bort vatten från byggnaden, se figur 3. Ledningarna är tillverkade av plast och är perforerade för att släppa in vatten. De har en diameter på 70 100 mm och läggs i lutning 1:200. Figur 3 Dränering och kapillärbrytning vid platta på mark [20] För att hindra markfukt från att transporteras från marken till grundkonstruktionen krävs ett kapillärbrytande skikt [3]. Förutom tvättad singel eller makadam som kapillärbrytande skikt används även värmeisolering. För att hindra markfukten från att sprida sig till övriga konstruktioner från grunden används grundisoleringspapp, plastfolie, gummilister etc. 6.3 VÄRMEISOLERING OCH TÄTHET Platta på mark är en del av klimatskärmen som skyddar huset mot yttre påfrestningar [3]. Förutom ett bra markarbete med kapillärbrytande skikt är det viktigt med en välisolerad grundplatta. Plattan isoleras oftast på undersidan av betongen då det är det mest fuktsäkra [3]. Om isoleringen placeras ovanpå grundplattan eller undviks helt kommer den relativa fuktigheten i betongen ligga nära 100 % vilket är lika mycket som i marken, se figur 4. En sådan konstruktion kan i kombination med byggfukt ge svåra fuktskador på anslutande delar till grundplattan. Figur 4 Fuktfördelning med rep. utan underliggande isolering [3] 8
I figurens högra del (figur 4) blir den beräknade ånghalten 16,7 g/m 3 vilket motsvarar en relativ fukthalt (RF) på 98 % [3]. Detta ger en stor skaderisk då det inte sker någon uttorkning av betongplattan. I figurens vänstra del (med underliggande isolering) ligger den beräknade ånghalten på 13,5 g/m 3 vilket motsvarar en relativ fukthalt på 79 %. Detta anses som riskfritt då betongplattan blir varm av värmen inifrån vilket gör att byggfukt i betongplattan har möjlighet att torka ut. 6.4 TJÄLE Förutom bärigheten i jordar är det viktigt att ha kunskap om dess tjälfarlighet [6]. Tjäldjupet i tjälfarliga jordar varierar mycket i Sverige, från 1,1 m till 2,5 m. För att undvika tjällyftning kan byggnaden grundläggas på sådant djup att tjälfarliga marklager under byggnaden inte kan frysa. Då värme tillförs till marken lokalt från byggnader och ledningar kan tjäldjupet reduceras. Tjälen kan även hindras från att tränga ner i marken med hjälp av markisolering. 6.4.1 UPPKOMST Tjäle bildas i marken då vatten fryser och ökar i volym [9]. I tjälfarliga jordar ökar effekten då vatten tillförs genom kapillärsugning. Då vattnet ökar i volym när den fryser sker markhöjning som kan påverka byggnader, se figur 5. Figur 5 Tjäle i mark [9] 6.4.2 ISOLERING MOT TJÄLE Grundläggningsdjupet för platta på mark begränsas till 0,35 m då det sker en konstant värmetillförsel till marken som bygger upp en värmekudde under plattan [9]. När isoleringstjockleken vid platta på mark ökar, minskar dock mängden värme som läcker ut vilket gör att marken inte värms upp lika mycket. För att hindra kylan från att tränga ner i marken under byggnaden används tjälisolering [10]. Isoleringen placeras runt grunden 0,4 1,0 meter ner under marken och kallas för utkragande isolering se figur 8. Isoleringstjockleken och utkragningslängden är beroende av i vilken klimatzon grunden ligger, se figur 6 och 7. Figur 6 Klimatzoner i Sverige [10] Figur 8 Utkragande isolering [10] Figur 7 Utkragningslängd utifrån klimatzon [10] 9
7. KANTBALKAR VID PLATTA PÅ MARK Kantbalkar är en konstruktion som ska klara av flera olika krav samtidigt [5]. Kantbalken ska: Ha hög bärförmåga. Bryta eventuella köldbryggor. Samverka med husets grundkonstruktion för att undvika sättningsskillnader. Vara enkel att arbeta med inte skapa onödigt höga byggkostnader. Gärna ha hög sockelhöjd då det förbättrar fuktskyddet av fasaden. Kantbalkarnas utseende vid platta på mark kan variera beroende på vilket fabrikat som väljs men det är viktigt att de är bra isolerade [1]. Vid anslutningen mellan yttervägg och platta på mark uppstår det ofta köldbryggor och otätheter vilket kan ge värmeförluster och låga golvtemperaturer på insidan av ytterväggen. För att minimera otätheter mellan yttervägg och kantbalk används ofta en tätningslist som är lufttätande och kapillärbrytande [6]. Den bör även ha ett värmeisolerande skikt för att förhindra köldbryggor. DEL 2 ANALYS OCH UTVÄRDERING 8. HEAT2 HEAT2 är ett windowsbaserat PC program som utför beräkningar av tvådimensionella värmeflödesproblem [2, 11]. Beräkningar går att utföra för både stationära och icke stationära förhållanden. Skillnaden är att de icke stationära beräkningarna tar längre tid att simulera då randvillkor och värmekapacitet för material varierar över tiden. Programmet kan tillämpas för olika slags undersökningar som att ta fram allmänna värmeledningsproblem, köldbryggor, U värden, yttemperaturer med mera. Tack vare randvillkoren är det möjligt att endast undersöka vissa delar av en byggnads klimatskal för att ta fram till exempel köldbryggor och värmeflöden, se figur 9. Figur 9 Simulering av kantbalk vid platta på mark [11] 10
8.1 INDATA FÖR HEAT2 Konstruktionerna som simuleras i programmet ritas upp med hjälp av rektangulära element [21]. Dessa utgör tillsammans den totala beräkningsmodellen, se figur 10. Till varje rektangel anges sedan materialdata som innehåller det specifika materialets värmekonduktivitet och värmekapacitet. Konstruktionen delas dessutom in i ett rutnät där varje ruta står för en cell med en viss temperatur (visas ej i figuren nedan). Fler rutor ger större noggrannhet. Figur 10 Konstruktionsdel uppritad av rektangulära element [11] Vid angivning av randvillkor till en beräkningsmodell finns det två olika typer att välja mellan [21]: Given temperatur T, ( C) med givet övergångsmotstånd R, (m 2 C /W) Givet värmeflöde Q, (W/m 2 ) Vid icke stationära beräkningar kan dessa parametrar sättas som en funktion av tiden [21]. I denna rapport kommer endast stationära beräkningar att genomföras vilket gör att randvillkoren sätts som konstanta. 8.1.1 RANDVILLKOR De randvillkor som har använts i simuleringen av kantbalkarna är [21]: Temperatur inomhus: +20 C Temperatur utomhus: 10 C Marktemperatur: 5 C R si : 0,13 m 2 K/W R su :0,04 m 2 K/W 8.2 BERÄKNING AV KÖLDBRYGGOR Vid simulering av olika kantbalkarna görs först en beräkning av konstruktionen med kantbalken, 1,5 meter av grundplattan och 1,5 meter av väggen [21]. Det värmeflöde som då tas fram är värmeflödet för den totala konstruktionen dvs. genom väggen, plattan och för eventuella köldbryggor i kantbalken, se ekvation (5). Då det är köldbryggan som är det intressanta i detta fall görs även en beräkning med endast 1,5 meter grundplatta och 1,5 meter vägg, så kallat ostört referensfall, se ekvation (6). Utifrån dessa värden beräknas sedan det extra värmeflödet på grund av köldbryggor, se ekvation (7). Psi värdet för köldbryggan tas sedan fram med hjälp av temperaturdifferensen, se ekvation (8). Totalt värmeflöde ut från konstruktionen q tot =q platta + q köldbrygga + q vägg.(5) Totalt värmeflöde ut från konstruktionen utan köldbryggor q= q platta + q vägg.(6) Extra värmeflöde på grund av köldbryggor q köldbrygga = q tot q.(7) Psi värde för köldbryggor Ψ= q köldbrygga /ΔT.(8) 11
Både de invändiga och utvändiga kölbryggorna har beräknats för de olika kantbalkarna i simuleringen i HEAT2 [21]. Även fast värdena mellan de invändiga och utvändiga kölbryggorna skiljer sig mot varandra (för en kantbalk) visar de samma typ av köldbrygga. I denna rapport kommer endast värdena för de invändiga köldbryggorna att användas. 9. SIMULERING AV KANTBALKARNA I HEAT2 Simuleringen av kantbalkarna gjordes med hjälp av Christofer Tapper på Tyréns. För fullständig rapport på simuleringen samt beräkningar se bilaga 3. 9.1 ANSLUTANDE KONSTRUKTIONSDELAR 9.1.1 YTTERVÄGG För de tre olika beräkningsmodellerna används Fiskarhedenvillans standardyttervägg, se figur 11. Väggen är en träregelvägg med totalt 260 mm isolering [12]. För att förenkla beräkningarna i HEAT2 valdes dock den yttre luftspalten och panelen bort, samt den inre luftspalten [21]. Detta ger ingen större betydelse för resultatet då samma vägg används i alla fallen och det är jämförelsen mellan de olika kantbalkarna som är intressant. Figur 11 Fiskarhedenvillans standardvägg [F] För att få fram ytterväggens invändiga värmeflöde behövs det ostörda U värdet för väggen [21]. Det invändiga värmeflödet, q vägg, beräknas sedan med hjälp av ekvation (9): q vägg = U vägg *l invändigt *ΔT. (9) där U vägg = Ytterväggens U värde l invändigt = Ytterväggen invändiga längd ΔT = Temperaturdifferrens Väggens ostörda U värdet, U vägg =0,161 W/m 2 C Ytterväggens invändiga flöde, q vägg = 7,245 W/m 12
9.1.2 BETONGPLATTA Som betongplatta i de tre olika beräkningsmodellerna användes en konstruktion med totalt 300 mm cellplast samt 100 mm betong se figur 12. Figur 12 Betongplatta Precis som för ytterväggen räknas det invändiga värmeflödet i betongplattan ut med hjälp av det ostörda U värdet, se ekvation (9). Betongplattans ostörda U värde, U platta = 0,117 W/m 2 C Betongplattans invändiga flöde, q platta = 2,63 W/m 9.1.3 INVÄNDIGA OSTÖRDA VÄRMEFLÖDEN De totala invändiga värmeflödena för de anslutande konstruktionsdelarna tas fram genom att addera värmeflödet genom ytterväggen och betongplattan, se ekvation (6). q =7,245 + 2,63 = 9,875 W/m. 9.3 MODELL 1, DOROCELL L ELEMENT Figuren nedan (figur 13) visar anslutningen mellan kantbalk, grundplatta och yttervägg för modell 1. Figur 13 Modell 1, Dorocell L element 13
9.3.1 UTFORMING Dorocell L element är en kantbalk som består av expanderad polystyrencellplast, EPS, och har ett yttre skyddande skikt av betong, se figur 14 [13]. Kantbalken är utformad som ett L och gjuts samtidigt som resten av betongplattan [13]. Figur 14 Dorocell L element [14] 9.3.2 RESULTAT AV HEAT2 SIMULERING FÖR MODELL 1 I figuren nedan (figur 15) kan man se resultatet av simulering där de olika temperaturskikten redovisas i en så kallad temperaturprofil. Figur 15 Temperaturprofil för modell 1 Det invändiga totala värmeflödet för modell 1 inklusive kölbrygga kunde i simuleringen avläsas till: q tot =17,233 W/m Extra värmeflöde som tillkommer på grund av köldbrygga samt Psi värde, beräknade enligt ekvation (7) och (8): q köldbrygga =17,233 9,875 = 7,358 W/m Ψ= 0,245 W/m C. 14
9.4 MODELL 2, U MIN GRUND, ENERGIEFFEKTIV Figuren nedan (figur 16) visar anslutningen mellan kantbalk, grundplatta och yttervägg för modell 2. Figur 16 Modell 2, Umin grund, energieffektiv 9.4.1 UTFORMNING U min grund energieffektiv är ett u format kantelement från Supergrund som tillverkas av cellplast EPS300 [15]. Armeringen i kantbalken består av 4 stycken 12 mm armeringsjärn uppdelat på två nivåer, två stycken i underkant och två stycken i överkant. se figur 17 [16]. De övre armeringsjärnen vilar på U sinus järn som sammanfogar plattan och balken. När gjutningen av platta och balk är klar och betongen har härdat tas det yttre cellplastlagret samt släppduken bort från kantelementet, se figur 17. Figur 17 Utformning av U min grund, energieffektiv [16] Vid grundläggning med U min grundenergieffektiv är det viktigt att tänka på var dörrar och fönsterpartier som går ner till golvet placeras [22]. Då dörrar och fönster oftast livar med ytterväggens utsida men inte insida krävs det en specialbyggd låda under dessa som förskjuter den inre cellplasten, se figur 18. 15
Figur 18 Specialbyggd låda under dörrar och fönsterpartier [22] 9.4.2 RESULTAT AV HEAT2 SIMULERING FÖR MODELL 2 I figuren nedan (figur 19) kan man se resultatet av simulering där de olika temperaturskikten redovisas. Figur 19 Temperaturprofil för modell 2 Det invändiga värmeflödet för modell 2 inklusive kölbryggan kunde i simuleringen avläsas till: q tot =13,011 W/m Extra värmeflöde som tillkommer på grund av köldbrygga samt Psi värde, beräknade enligt ekvation (7) och (8): q köldbrygga =13,011 9,875 = 3,136 W/m Ψ= 0,1045 W/m C. 16
9.5 MODELL 3, LECA KANTELEMENT Figuren nedan (figur 20) visar anslutningen mellan kantbalk, grundplatta och yttervägg för modell 3. Figur 20 Modell 3, Leca kantelement 9.5.1 UTFORMNING Leca Kantelement är ett prefabricerat kantelement från Weber och består av cementbunden leca lättklinker [18]. Kantelementen fungerar både som kantbalk och kantisolering och är försedd med armering som sammanfogas med plattan och dess armeringsnät [17]. Materialet i kantelementet består av en kalkfattig och finkornig lera. Leran torkas, expanderas och bränns i roterande ungar vilket ger ett hårt keramiskt skal med ett poröst inre med luftfyllda celler. Den utvändiga synliga delen av elementet består av lättklinkerbetong och elementets ovansida tätas med cementbruk vid gjutning [18]. 9.5.2 RESULTAT AV HEAT2 SIMULERING FÖR MODELL 3 I figuren nedan (figur 21) kan man se resultatet av simulering där de olika temperaturskikten redovisas. Figur 21 Temperaturprofil för modell 3 17
Det invändiga värmeflödet för modell 3 inklusive kölbryggan kunde i simuleringen avläsas till: q tot =14,785 W/m Extra värmeflöde som tillkommer på grund av köldbrygga samt Psi värde, beräknade enligt ekvation (7) och (8): q köldbrygga =14,785 9,875 = 4,91 W/m Ψ= 0,1045 W/m C. 9.6 SAMMANFATTNING AV KÖLDBRYGGOR I tabellen nedan (tabell 1) redovisas Psi värdet för de olika kantbalkarna utifrån simuleringen i HEAT2. Kantbalk Köldbrygga ψ (W/m C) Dorocell L element 0,245 U min grund energieffektiv 0,1045 Leca 0,164 Tabell 1 Köldbryggor för de olika kantbalkarna 9.7 KANTBALKARNAS PÅVERKAN PÅ DEN TOTALA ENERGIFÖRBRUKNINGEN Med hjälp av Daniel Engvall på ÅF har beräkningar gjorts på hur valet av kantbalk påverkar den totala energiförbrukningen i en villa. Då ÅF tidigare har gjort energiberäkningar på Fiskarhedenvillans villor användes en utav dessa beräkningar som mall [23]. Som typhus i beräkningen användes en enplansvilla kallad Lärkan, se figur 22. Figur 22 Lärkan [19] Det dataprogram som användes i beräkningen heter TMF 2,1 [23]. Alla beräkningar hänvisas till Daniel Engvall på ÅF och kommer ej att redovisas i denna rapport. Resultatet av beräkningarna redovisas i tabell 2. Tabell 2 Energiförbrukning för huset "Lärkan" med de olika kantbalkarna Kantbalk Energiförbrukning (kwh/år) Energiförbrukning/m 2 (kwh/m 2,år) Dorocell L element 14 431 113,45 Umin grund energieffektiv 14 190 111,56 Leca kantelement 14 292 112,36 18
10. RESULTAT OCH UTVÄRDERING 10.1 DEL 1 TEORI Materialet i denna rapport har gett en fördjupad kunskap inom värmetransport, köldbryggor samt grundkonstruktioner. Värmetransport i material och konstruktioner kan ske på många olika sätt och är därför ofta svåra att beräkna. Tack vare att tekniken utvecklas kan man idag med datorernas hjälp ta fram dessa värden genom olika beräknings och simuleringsprogram. Även vid beräkning av köldbryggor är datorn till stor hjälp då man kan få fram värmeflöden, temperaturer med mera. Köldbryggor kan uppstå på flera olika ställen i en byggnad och orsaka värmeförluster. Hur stor del av en byggnads totala värmeförluster som köldbryggorna står för kan variera från hus till hus beroende på husets storlek, övrig isolering med mera. I denna rapport har fokus legat på köldbryggor som uppkommer vid kantbalken, men det är viktigt att tänka på att de även kan uppkomma på andra ställen i en byggnad. Grundkonstruktionen för ett hus ska uppfylla flera olika krav och samtidigt anpassas till den tomt där huset ska stå. Det är viktigt att dränering och de kapillärbrytande skikten fungerar som de ska för att undvika fuktskador på huset. Dessutom ska de isolerande lagren ligga på plattans undersida och inte på översidan. Då isoleringstjockleken i plattan ökar är det viktigt att tjälisolera för att hindra tjäle från att krypa ner under konstruktionen. 10.2 DEL 2 ANALYS OCH UTVÄRDERING Tabell 3 Resultat för de olika kantbalkarna Kantbalk Köldbrygga ψ (W/m C) Energiförbrukning (kwh/år) Dorocell L element 0,245 14 431 Umin grund energieffektiv 0,1045 14 190 Leca kantelement 0,164 14 292 Den kantbalk som fick det bästa resultatet i jämförelsen är U min grund energieffektiv, där psi värde för köldbryggan ligger på 0,1045 W/m C och energiförbrukningen på 14 190 kwh/år, se tabell 3. Den största skillnaden mellan kantbalkarna är för Dorocell L element och U min grund energieffektiv. Skillnaden mellan dessa kantbalkar i energiförbrukning är 241 kwh/år. För Leca kantelement och U min grund energieffektiv ligger skillnaden istället på 102 kwh/år. I de temperaturprofiler som redovisats för de olika kantbalkarna (figur 15, 19 och 21) kan man tydligt se att en större del av grunden värms upp med Dorocell L element jämfört med Umin grund, energieffektiv och Leca kantelement. Detta är inte att föredra då det går åt mer energi att värma upp samt att det ger en större omslutande yta där värme kan läcka ut. De värden som redovisas i tabellen är endast förenklade värden och tar ej hänsyns till exempelvis temperaturvariationer under ett år. Man bör därför endast använda värdena som en jämförelse mellan kantbalkarna och inte använda dem som enskilda värden. Hur stor påverkan valet av kantbalk har för den totala energiförbrukningen i en villa är svårt att säga då det är flera faktorer som spelar in. Valet av kantbalk har till exempel större betydelse för en välisolerad villa då kantbalkens köldbrygga då utgör en stor del av de värmeförluster som sker. Vid en dåligt isolerad villa utgör istället köldbryggan en mindre del av värmeförlusterna och har inte lika stor betydelse. Resultat som redovisas i tabell 3 visar dock att den finns en skillnad mellan kantbalkarna och att man hellre ska välja Umin grund energieffektiv och Leca kantelement än Dorocell L element med avseende på energiförbrukning. Vid 19
val av kantbalk bör man även väga in andra aspekter som till exempel kostnad, bärförmåga samt vad det krävs för arbetsinsats vid montering. 11. DISKUSSION Då arbetets omfattning begränsades till 20 sidor har även innehållet i rapporten begränsats. Om rapporten inte hade begränsats hade det varit intressant att ta med andra aspekter i min jämförelse mellan kantbalkarna som kostnad och arbetskraft/tid. Detta hade antagligen haft betydelse i min rapport då modell 2, U min grund energieffektiv kräver extra arbete vid montering då den yttre isoleringsdelen ska rivas bort efter gjutning. Det hade även varit intressant att intervjua grundläggare och få ta del av deras erfarenheter av de olika kantbalkarna. Till andra studenter som ska skriva ett examensarbete kan en idé vara att utveckla jämförelsen genom titta på andra aspekter. När arbetet inleddes var jag inte helt säker på hur jämförelsen mellan kantbalkarna skulle gå till. Efter att jag fördjupade mig inom ämnet stod det sedan klart att jag behövde använda mig av något slags beräknings eller simuleringsprogram. Då jag inte hade kunskapen och tillgång till något simuleringsprogram valde jag och Fiskarhedenvillan att ta hjälp av någon utomstående med detta. Innan vi fick kontakt med Christoffer Tapper på Tyréns gick väldigt många timmar åt till att försöka få tag i någon som kunde hjälpa oss, då programmet inte är så vanligt. Nu i efterhand känner jag att allt för mycket tid gick åt till detta som jag hade kunnat använda till annat. Det har dock varit mycket spännande att få tagit del av hur en simulering av köldbryggor går till och jag känner att jag har fördjupat min kunskap inom området. Dessutom känner jag att simuleringen var ett bra hjälpmedel för att kunna genomföra jämförelsen. Vad gäller själva simuleringen av kantbalkarna känner jag att vi har fått fram bra jämförbara värden som är viktiga att ta del av vid val av kantbalkar. Man kanske inte kan lita helt på de enskilda värdena (bland annat på grund av att vi inte har tagit hänsyn till temperaturskillnader över ett helt år) men som en jämförelse mellan de olika kantbalkarna får man en bra uppfattning om hur de skiljer sig åt. Arbetet med denna rapport har varit väldigt intressant och jag känner att jag har fått fram de resultat som både jag och Fiskarhedenvillan önskade. 20
KÄLLOR TRYCKTA KÄLLOR [1] Petersson, Bengt Åke (2009). Byggfysik inkl ljud och brand i ämnet byggteknik, Studentlitteratur, ISBN/ISSN: 91 44 04886 4 [2] Isakson, Magnus & Palm, Ingrid (2001). Värmeförlust genom grundplatta minimering av köldbryggor, Lunds Tekniska Högskola [3] Björk, Folke m.fl., Avdelningen för byggnadsteknik (1994). Byggnadsteknikens grunder, 1994, Kungliga tekniska högskolan, Stockholm [4] Hemgren, Per (1998). Bygga Grund, Ica Förlaget AB, ISBN 91 534 3307 1 [5] Wetterlund, Hans m.fl., Mark kant värmeförlust. Bygg & Teknik (2010) Nr. 2, s. 44 46. [6] Hansson, Tore & Gross, Holger (1991). Träbyggnadshandbok 5, Grunder, Träinformation & Trätekinstitutet för träteknisk forskning ELEKTRONISKA KÄLLOR [7] Energimyndigheten, Klimatskal http://energimyndigheten.se/sv/hushall/bygga nytt hus/klimatskal/ Hämtat: 2010 08 04 [8] Energimyndigheten, Din uppvärmning http://energimyndigheten.se/sv/hushall/din uppvarmning/ Hämtat: 2010 08 04 [9] KGB Lågenergikoncept http://www.kgbse.se/ Hämtat: 2010 04 13 [10] Isover, Tjälisolera hemma http://www.isover.se/files/isover_se/om_isover/kontakta_oss/broschyrer_bygg/dow_konsument _2006.pdf Hämtat: 2010 04 13 [11] Buildingphysics, HEAT2 http://www.buildingphysics.com/index filer/heat2.htm Hämtat: 2010 07 27 [12] Fiskarhedenvillan, Energihus & Energisnåla hus http://fiskarhedenvillan.se/bygg_med_oss/var vagg/ Hämtat: 2010 07 27 [13] Dorocell, Thermogrund http://www.dorocell.se/dav/7f87efcf87.pdf Hämtat: 2010 07 29 21
[14] Dorocell, Dorocell Dorotherm http://www.dorocell.se/eway/default.aspx?pid=273&trg=mainpage_5980&mainpage_5980=6419: 0:10,1990 Hämtat: 2010 07 29 [15] Supergrund, Energieffektiva grunder http://www.supergrund.se/supergrund.aspx?pages=products&subs=energieffektiva%20grunder Hämtat: 2010 04 06 [16] Supergrund, Monteringsanvisning http://194.22.19.65/supergrund/files/document/byggbskrivning1.pdf Hämtat: 2010 04 06 [17] Weber, Leca Platta på mark http://www.maxit.se/?id=2163 Hämtat: 2010 04 06 [18] Weber, Leca kantelement http://www.weber.se/media/22/pdf/leca/grunder/leca_kantelement.pdf Hämtat: 2010 04 06 [19] Fiskarhedenvillan, Lärkan http://fiskarhedenvillan.se/vara_hus/1 plan/larkan/# Hämtat: 2010 08 16 [20] SP Sveriges Tekniska Forskningsinstitut, Fuktsäkra konstruktioner http://www.sp.se/sv/index/services/moist/constr/sidor/default.aspx Hämtat: 2010 08 31 MUNTLIGA KÄLLOR [20] Christofer Tapper, Tyréns [21] Jesper Danielsson, Supergrund, VD [22] Daniel Engvall, ÅF 22
Bilaga 1 BILAGA 1, BERÄKNING AV VÄRMEMOTSTÅND, R OCH U VÄRDE 1, VAD BLIR VÄRMEMOTSTÅNDET, R, VÄRMEISOLERING RESPEKTIVE BETONG DÄR D= 0,1 M? λ 0,04 / C λ 1,7 / C 0,1 0,1 λ 0,1 0,04 2,5 C/W λ 0,1 1,7 0,0588 C/W Svar: Värmemotståndet för isolering och betong är 2,5 m 2 C/W samt 0,0588 m 2 C/W Detta visar att isoleringen har bättre värmemotstånd än betong. (2,5>0,0588 m 2 C/W) 2, VAD BLIR U VÄRDET FÖR 0,1 M VÄRMEISOLERING OCH 0,12 M FASADTEGEL? λ 0,04 / C λ 0,6 / C 0,1 0,12 0,13 C/ 0,04 C/ 0,13,,,, 0,04 2,87 C/ 0,35, / C Svar: U värdet är 0,35 W/m 2 C
Bilaga 2 Simulering av köldbryggor 2010-08-09 Beställare: Fiskarhedenvillan Simulering av köldbryggor Uppdragsnummer: 226096 Christofer Tapper Granskad av Simone Kreutzer
Bilaga 2 Simulering av köldbryggor 2 (8) Christofer Tapper 08-566 414 41 2010-08-09 1 Bakgrund Anslutningen mellan en yttervägg och tre olika grunder har analyserats för att bedöma storleken på invändiga och utvändiga köldbryggor. De konstruktiva och geometriska köldbryggorna har simulerats i programmet HEAT 2D v2.71. 2 Förutsättningar & Antagande. Temperatur utomhus -10 C Temperatur inomhus 20 C Marktemperatur 5 C Följande tre grundtyper har analyserats Figur 1: Sektion av anslutning mellan yttervägg och Supergrund u-mingrund energieffektiv Beställare: Fiskarhedenvillan Simulering av köldbryggor, Uppdragsnummer: 226096 c:\documents and settings\cta\desktop\köldbryggor.doc
Bilaga 2 Simulering av köldbryggor 3 (8) Christofer Tapper 08-566 414 41 2010-08-09 Figur 2: Sektion av anslutning mellan yttervägg och Leca kantelement Figur 3: Sektion av anslutning mellan yttervägg och Dorocell L-element Beställare: Fiskarhedenvillan Simulering av köldbryggor, Uppdragsnummer: 226096 c:\documents and settings\cta\desktop\köldbryggor.doc