Physics at the LHC Lecture 4: Higgs Physics at the LHC. Klaus Mönig, Sven Moch

Relevanta dokument
12.6 Heat equation, Wave equation

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Lisa Randall, Harvard University

Chapter 2: Random Variables

Module 6: Integrals and applications

Krävs för att kunna förklara varför W och Z bosoner har massor.

Higgspartikeln. och materiens minsta beståndsdelar. Johan Rathsman Teoretisk Partikelfysik Lunds Universitet. NMT-dagar i Lund

The Arctic boundary layer

Phenomenology, Theoretical interpretation Heavy Scalar octet. m s 1.45 GeV Glueballs spectra

Uppsala University. Department of Physics and Astronomy. Master s Degree Project 30hp

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

MOLECULAR SHAPES MOLECULAR SHAPES

A study of the performance

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Isometries of the plane

Module 1: Functions, Limits, Continuity

Hur fattar samhället beslut när forskarna är oeniga?

Resultat av den utökade första planeringsövningen inför RRC september 2005

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Om Particle Data Group och om Higgs bosonens moder : sigma mesonen

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Adding active and blended learning to an introductory mechanics course

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Grafisk teknik. Sasan Gooran (HT 2006)

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

Maja Tylmad. Search for Weakly Produced Supersymmetric Particles in the ATLAS Experiment

Gradientbaserad Optimering,

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Mönster. Ulf Cederling Växjö University Slide 1

TN LR TT mg/l N b) 2,6-Dimethylphenole

Boiler with heatpump / Värmepumpsberedare

Characterization of the Spin of Dark Matter at the LHC.

Measurement of the charge asymmetry in top quark pair decay in dilepton (e,µ) channel in pp collision data at s = 7 TeV using the ATLAS detector

Service och bemötande. Torbjörn Johansson, GAF Pär Magnusson, Öjestrand GC

Solutions to exam in SF1811 Optimization, June 3, 2014

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Styrteknik: Binära tal, talsystem och koder D3:1

säkerhetsutrustning / SAFETY EQUIPMENT

Uttagning för D21E och H21E

IE1206 Embedded Electronics

Consumer attitudes regarding durability and labelling

Dokumentnamn Order and safety regulations for Hässleholms Kretsloppscenter. Godkänd/ansvarig Gunilla Holmberg. Kretsloppscenter

Discovery FSQ, IAA Utgåva/Edition 11. SE Habo. Klass 2 IAA FSQ-I 26W. 4 mm c c mm N L

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Kristina Säfsten. Kristina Säfsten JTH

Documentation SN 3102

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

A QUEST FOR MISSING PULSARS

Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems. Martin Wiström, Ramboll RST

Fatigue Properties in Additive manufactured Titanium & Inconell

Alias 1.0 Rollbaserad inloggning

NMR Nuclear Magnetic Resonance = Kärnmagnetisk resonans

Övning 5 ETS052 Datorkommuniktion Routing och Networking

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

WindPRO version feb SHADOW - Main Result. Calculation: inkl Halmstad SWT 2.3. Assumptions for shadow calculations. Shadow receptor-input

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Tunga metaller / Heavy metals ICH Q3d & Farmakope. Rolf Arndt Cambrex Karlskoga

Preschool Kindergarten

LHC Vad händer? Christophe Clément. Elementarpartikelfysik Stockholms universitet. Fysikdagarna i Karlstad,

Självkörande bilar. Alvin Karlsson TE14A 9/3-2015

Rev No. Magnetic gripper 3

FORTA M315. Installation. 218 mm.

Country report: Sweden

Theory 1. Summer Term 2010

Arctic. Design by Rolf Fransson

Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325

SF1911: Statistik för bioteknik

PFC and EMI filtering

Robust och energieffektiv styrning av tågtrafik

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

VHDL Basics. Component model Code model Entity Architecture Identifiers and objects Operations for relations. Bengt Oelmann -- copyright


Isolda Purchase - EDI

Tentamen i Matematik 2: M0030M.

Laser Diffraction System Verification

SHP / SHP-T Standard and Basic PLUS

Klyvklingor / Ripping Blades.

Tentamen MMG610 Diskret Matematik, GU

S0005M, Föreläsning 2

Affärsmodellernas förändring inom handeln

Föreläsning 8 Elementarpartiklar, bara kvarkar och leptoner

D-RAIL AB. All Rights Reserved.

PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs

Mekanik FK2002m. Kraft och rörelse I

Accomodations at Anfasteröd Gårdsvik, Ljungskile

This manual should be saved! EcoFlush Manual

Second handbook of research on mathematics teaching and learning (NCTM)

- den bredaste guiden om Mallorca på svenska! -

Transkript:

Physics at the LHC Lecture 4: Higgs Physics at the LHC Klaus Mönig, Sven Moch (klaus.moenig@desy.de, sven-olaf.moch@desy.de) Wintersemester 2009/2010 Physics at the LHC Lecture 4-1 Klaus Mönig

Physics at the LHC Lecture 4-2 Klaus Mönig Reminder: Higgs mechanism in the Standard Model ( ) Φ1 + iφ One complex Higgs doublet Φ = 2 with vacuum expectation value, v = 246 GeV. ( ) H + iφ 3 0 v Higgs potential V (Φ) = λ(φ Φ v 2 /2) 2 Gauge couplings of Higgs doublet give gauge boson masses: m 2 W = g2 v 2 m 2 4 Z = g2 v 2 4 cos 2 θ W Φ i get absorbed in longitudinal d.o.f. of W,Z One Higgs particle H remains from fluctuations around v Higgs couplings to gauge bosons fixed by gauge boson mass Higgs mass m 2 H = 2λv2 free parameter

Physics at the LHC Lecture 4-3 Klaus Mönig Higgs couplings to fermions: c f [ Fl (Φ + v)f r + f r (Φ + v)f l ] Higgs coupling mass Partial widths: Γ(H ff) = N(f) c G µ 4 2π m2 f (m H)m H (1 + δ (f) QCD ) Γ(H V V ) = 3G2 µm 4 Z 16π 3 m HR V (m 2 V /m2 H ) 2Gµ 2(1) 32π m3 H [V = W(Z)] Higgs couplings to photons and gluons via loops

ÏÏ Physics at the LHC Lecture 4-4 Klaus Mönig Partial and total widths of a Standard Model Higgs ½ ½¼¼¼ Àµ Î ½¼¼ Ø Ø ¼º½ ½¼ Ê Àµ ¼º¼½ ½ ¼º½ ¼º¼¼½ ¼º¼½ ¼º¼¼¼½ ¼º¼¼½ ¼¼ ¼¼ ½¼¼¼ ¼¼ ¼¼ ¼¼ ½ ¼ ½¼¼ ½¼¼¼ ¼¼ ½¼¼ ½ ¼ Å À Î Light Higgs: b b is dominant Heavy Higgs: Mostly WW and ZZ Higgs width large above WW threshold Å À Î

How the Higgs creates mass Physics at the LHC Lecture 4-5 Klaus Mönig

Physics at the LHC Lecture 4-6 Klaus Mönig

and how it creates itself Physics at the LHC Lecture 4-7 Klaus Mönig

Physics at the LHC Lecture 4-8 Klaus Mönig

Physics at the LHC Lecture 4-9 Klaus Mönig Theory: Limits on m H No useful lower limit Upper limit from WW scattering: Polarisation vector for longitudinally polarised particles p 2 WW scattering without Higgs violates unitarity at 1.2 TeV W Z,γ W W Z,γ W W W W W Cross section gets regularised by the Higgs m H < 1 TeV

Perturbativity and vacuum stability give Higgs-mass limit as a function of the cutoff parameter If the SM is the final theory up to the Planck scale Λ 10 19 GeV m H 120 180 GeV Physics at the LHC Lecture 4-10 Klaus Mönig

Physics at the LHC Lecture 4-11 Klaus Mönig Experimental: CL s Direct searches at LEP exclude a Higgs below 114 GeV This limit is valid for couplings significantly smaller than in the SM 1 10-1 10-2 10-3 10-4 10-5 10-6 Observed Expected for background LEP 114.4 115.3 100 102 104 106 108 110 112 114 116 118 120 m H (GeV/c 2 ) Analyses of electroweak precision data suggest m H < 200 GeV These analyses are only valid in the Standard Model without additional particles coupling to the gauge bosons χ 2 10 9 8 7 6 5 4 3 2 1 0 LEP exclusion at 95% CL G fitter SM Theory uncertainty Fit including theory errors Fit excluding theory errors 50 100 150 200 250 [GeV] M H Aug 08 3σ 2σ 1σ

Physics at the LHC Lecture 4-12 Klaus Mönig Higgs production at hadron colliders g g t H q q W,Z H gg fusion W,Z Bremsstrahlung t g H q W,Z H g t q W,Z tt fusion WW, ZZ fusion gg fusion produces a Higgs and nothing else in the detector All other graphs have associated particles that help in the tagging

Physics at the LHC Lecture 4-13 Klaus Mönig σ (pb) 10 1 10-1 10-2 10-3 10-4 M. Spira et al. NLO QCD gg H qq' HW Higgs production cross section LHC gg,qq Hbb qq Hqq gg,qq Htt qq HZ 0 200 400 600 800 1000 M H (GeV) σ(pp H+X) s = 14 TeV m t = 175 GeV CTEQ4M gg fusion dominates in both cases At LHC WW-fusion significant, rest small 10 7 10 6 10 5 10 4 10 3 10 2 events for 10 5 pb -1 10 2 10 1 10-1 10-2 10-3 10-4 gg h SM qq h SM qq gg,qq _ h SM tt _ gg,qq _ h SM bb _ Tevatron bb _ h SM M h [GeV] SM σ(pp _ h SM +X) [pb] s = 2 TeV M t = 175 GeV CTEQ4M qq _ h SM W qq _ h SM Z 80 100 120 140 160 180 200 At Tevatron WW-fusion and W,Z Bremsstrahlung relevant Total cross section large at LHC, factor 100 smaller at Tevatron

Physics at the LHC Lecture 4-14 Klaus Mönig How to discover a signal? Assume background is known from somewhere Number of events follows a Poisson distribution variance σ for mean value n: σ = n For a given mass expect n t = n s + n b events Require that signal is > 5σ above background (corresponds to a probability of 10 7 for a background fluctuation) need significance S = n s / n b > 5 Influence of detector resolution: Gaussian signal with variance σ D over linear background: S 1/ σ D Dependence on Luminosity: S L

Physics at the LHC Lecture 4-15 Klaus Mönig Higgs searches at the Tevatron Light Higgs: Main decay to b b Main channel gg H b b hopeless Possible channels WH lνb b, ZH llb b, ZH ννb b, Medium Higgs gg WW lνlν becomes accessible In addition some signal from WH lνlν +... Heavy Higgs (m H > 200 GeV) No chance because cross section too low

Physics at the LHC Lecture 4-16 Klaus Mönig Search for gg WW lνlν Many variables with low separation power E.g. leptons correlated because of Higgs spin (=0) Combined with multivariate techniques, here NN Small signal under huge bg, WW and Drell-Yan dominant R for lepton pairs 2-1 0 Jets HWW M = 160 GeV/c L = 3.0 fb H 2 10 All S/B ggh W+jets Wγ tt WZ ZZ 10 DY WW Data 3 10 2 10 10 CDF Run II Preliminary Neural Net output 2 All Jets HWW M H = 165 GeV/c -1 L = 3.0 fb Total Wj Wγ tt WZ ZZ DY WW HWW Data 1 1 10-1 10-1 10-2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 R(ll) -1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 NN Output

Physics at the LHC Lecture 4-17 Klaus Mönig Results Low mass region dominated by WH lνb b and WH,ZH MET b b Higher masses only H lνlν Exclusion at low masses still around 2 3σ(SM) At 160 GeV < m H < 170 GeV SM-Higgs excluded! CDF limit for the different channels 95% CL Limit/SM 10 2 10 LEP Excl. CDF Run II Preliminary, L=2.0-3.0 fb -1 WWW 2.7 fb -1 Obs WWW 2.7 fb -1 Exp H ττ 2.0 fb -1 Obs H ττ 2.0 fb -1 Exp ZH llbb 2.7 fb -1 Obs ZH llbb 2.7 fb -1 Exp WH+ZH bbmet 2.1 fb -1 Obs WH+ZH bbmet 2.1 fb -1 Exp WH lνbb 2.7 fb -1 Obs WH lνbb 2.7 fb -1 Exp H WW 3.0 fb -1 Obs H WW 3.0 fb -1 Exp Combined Obs Combined Exp 95% CL Limit/SM 10 Tevatron combined limit Tevatron Run II Preliminary, L=0.9-4.2 fb -1 LEP Exclusion Expected Observed ±1σ Expected ±2σ Expected Tevatron Exclusion SM 1 January 16, 2009 100 110 120 130 140 150 160 170 180 190 200 m H (GeV/c 2 ) 1 SM March 5, 2009 100 110 120 130 140 150 160 170 180 190 200 m H (GeV/c 2 )

Physics at the LHC Lecture 4-18 Klaus Mönig Higgs search at the LHC Easiest channel: H ZZ l + l l + l σ BR 10 fb for m H = 130 GeV Largest background t t WbW b lν lνclν lνc: σ BR = 1300 fb Best handle: lepton isolation and b-tagging Dominant background after selection: ZZ Channel can be used for discovery for 130 GeV < m H < 600 GeV

Physics at the LHC Lecture 4-19 Klaus Mönig Discovery channel for light Higgs: H γγ Main backgrounds: reducible irreducible Start with S/B = 10 6 need to reduce background by at least a factor 1000 Strategy: Effective selection of isolated photons (calorimeter granularity) Very good mass resolution (calorimeter energy resolution)

Physics at the LHC Lecture 4-20 Klaus Mönig Complication: Experiments have 1 radiation length in from of tracker about 50% of photons convert before they reach calorimeter have to include converted photons to keep high efficiency The final signal is small, however visible with few fb 1 for a light Higgs

These two channels are sufficient to discover the Higgs over the fill mass range Physics at the LHC Lecture 4-21 Klaus Mönig

Physics at the LHC Lecture 4-22 Klaus Mönig q q W,Z W,Z WW, ZZ fusion The Higgs in the VV-fusion channel H Higgs is colour singlet W-propagator: with t = ( p p ) 2 4pp sin 2 θ 2 1 t m 2 W propagator constant as long as 2p sin θ 2 < m W forward jets should be visible in the detector colour connection between forward jet and proton remnant rapidity gaps between forward jets and Higgs-jets Tag jets Higgs decay products φ η

Physics at the LHC Lecture 4-23 Klaus Mönig Largest background is t t Rapidity of tag jet Rapidity separation top Higgs top Higgs Can be separated with rapidity cuts

Physics at the LHC Lecture 4-24 Klaus Mönig With transverse mass M T = (E T,ll + E T,miss ) 2 ( p T,ll p T,miss ) 2 a clean signal can be separated

Physics at the LHC Lecture 4-25 Klaus Mönig H ττ: τs have large energy Can assume that neutrinos go in direction of visible decay products τ energy can be reconstructed from kinematic constraints This allows H ττ reconstruction in the presence of tagging jets

With fusion channel the Higgs discovery will be assured in significantly more channels Physics at the LHC Lecture 4-26 Klaus Mönig

Minimum luminosity needed for a Higgs discovery/exclusion Physics at the LHC Lecture 4-27 Klaus Mönig

Physics at the LHC Lecture 4-28 Klaus Mönig Higgs properties LHC has discovered a particle compatible with a Higgs, what can be measured? Mass: Modes with complete Higgs reconstruction (H γγ, H ZZ 4l) allow mass measurement with 0.1% precision. Spin: Coupling Hvv forbidden if H has spin 1 and v is massless vector particle (e.g. g or γ) (angular momentum conservation and Pauli principle) visibility of H γγ or gg H excludes spin 1

Physics at the LHC Lecture 4-29 Klaus Mönig If H ZZ 4l is visible spin/cp can be obtained from decay angle distributions: Take H ZZ 2e2µ Add CP odd coupling to SM coupling with strength tanξ/m 2 V Most backgrounds can be suppressed by cuts Can distinguish the extreme cases

Physics at the LHC Lecture 4-30 Klaus Mönig The width of the Higgs For a light Higgs the width is much smaller than the detector resolution If m H > 2m W the width gets much larger and can be measured For m H > 200 GeV a precision < 10% is possible

Physics at the LHC Lecture 4-31 Klaus Mönig Higgs couplings σ BR Γ prodγ dec Γ H Ratios of production rates measure ratios of partial widths Can obtain ratios of decay widths with > 10% accuracy

Physics at the LHC Lecture 4-32 Klaus Mönig For absolute partial widths need additional assumptions. Precisions of couplings depend on assumptions Minimal assumption Γ V < Γ SM V V = W,Z Again precision > 10 20% Better precision with additional assumptions

Physics at the LHC Lecture 4-33 Klaus Mönig The Higgs in supersymmetric models SUSY needs at least two Higgs-doublets (H 1,H 2 ) to generate masses of down- and up-type particles Physical particles: h = H 2 cosα H 1 sinα H = H 2 sin α + H 1 cosα A CP odd charged Higgses H ± Define tanβ = v 2 v 1 = ratio of expectation values (v 2 1 + v2 2 = v2 SM )

Physics at the LHC Lecture 4-34 Klaus Mönig Born Formulae: m 2 h,h = 1 2 m h < m Z m H > m Z m 2 H ± = m 2 A + m2 W [ m 2 A + m2 Z (m 2 A + m2 Z) 2 4m 2 A m 2 Z cos2 2β ] tan 2α = tan 2β m2 A + m2 Z m 2 A m2 Z ( π 2 < α < 0 < β < π 2 ) Higgs sector described by two free parameters

Physics at the LHC Lecture 4-35 Klaus Mönig However large radiative corrections: shift of m h up to 130 GeV prediction gets dependent on other SUSY parameters, especially on mixing in stop sector strong dependence on top mass: m h / m t 1 Currently allowed region: m A (GeV/c 2 ) 160 140 120 100 80 60 40 20 0 (a) m h -max Theoretically Inaccessible Excluded by LEP 0 20 40 60 80 100 120 140 tanβ > 2 preferred! m h (GeV/c 2 ) tanβ 10 1 (b) m h -max Excluded by LEP Theoretically Inaccessible 0 20 40 60 80 100 120 140 m h (GeV/c 2 )

Physics at the LHC Lecture 4-36 Klaus Mönig If m A large: β α = π/2 m H m H ± m A Only one light Higgs can be seen Branching ratios: Γ(h V V ) = sin 2 (β α)γ SM (h V V ) Γ(h UU) = cos2 α sin 2 β Γ SM(h UU) Γ(h DD) = sin2 α cos 2 β Γ SM(h DD) For m A large the light Higgs becomes SM like

Physics at the LHC Lecture 4-37 Klaus Mönig Heavy Higgses at the LHC For small tanβ (disfavoured by LEP) gg H,A production gets enhanced due to stronger t th coupling H,A t t gets enhanced For large tanβ H,A production from b b-fusion gets enhanced Large branching ratio H ττ Medium tanβ Only SM-like h visible

Physics at the LHC Lecture 4-38 Klaus Mönig Visible SUSY-Higgs channels Visible SUSY-Higgses at the LHC H, H _+ h,h,a h,h,a, _+ H h, _+ H h(sm like) h,h h,h, _+ H _+ h,h,a, h, H _+ H At least a SM-like h can always be seen However there is a significant chance that the rest of the SUSY Higgs sector remains invisible This does not include decays into SUSY particles (strongly model dependent!)

Physics at the LHC Lecture 4-39 Klaus Mönig Invisible Higgs E.g. in SUSY models it is possible that the Higgs decays into invisible particles (e.g. the LSP) The properties of the VV-fusion process allows even in this case to separate the Higgs from the background (arbitrary) dσ j dp T (arbitrary) jj dσ dm -1 Signal 10 QCDjj Wjj Zjj 10-2 10-3 10-4 0 50 100 150 200 250 j P T [GeV/c] 10-1 Signal QCDjj Wjj Zjj 10-2 10-3 10-4 (arbitrary) dσ d η (arbitrary) dσ dp TMiss 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Signal QCDjj Wjj Zjj 0 0 1 2 3 4 5 6 7 8 9 10 η Signal 10-1 QCDjj Wjj 10-2 Zjj 10-3 10-4 10-5 10-5 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2 Mjj [GeV/c ] 10-6 0 20 40 60 80 100 120 140 160 180 200 P TMiss [GeV/c]

Physics at the LHC Lecture 4-40 Klaus Mönig This allows to set a limit on ξ 2 = BR(H inv)σ(qq qqh)/σ(qq qqh,sm)) in the 0.2-0.5 range 2 ξ 1 0.8-1 10 fb -1 30 fb 95% CL 0.6 0.4 0.2 0 100 150 200 250 300 350 400 M H [GeV/c 2 ] The Higgs thus cannot be missed because it decays invisible!

Physics at the LHC Lecture 4-41 Klaus Mönig Conclusions of lecture 4 A roughly SM like Higgs cannot be missed at the LHC A precise mass measurement is almost included in the discovery Spin and CP properties may be measured to some extend In SUSY the light h will be seen, the rest is questionable