Ny information om urvalsosäkerhet i kvalitetsdeklarationen för KPI

Relevanta dokument
Detaljerat underlag för variansskattning

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Module 6: Integrals and applications

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Consumer attitudes regarding durability and labelling

Isolda Purchase - EDI

Eternal Employment Financial Feasibility Study

Klimatpåverkan och de stora osäkerheterna - I Pathways bör CO2-reduktion/mål hanteras inom ett osäkerhetsintervall

Webbregistrering pa kurs och termin

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Aborter i Sverige 2008 januari juni

Chapter 2: Random Variables

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

Measuring child participation in immunization registries: two national surveys, 2001

The Municipality of Ystad

Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.

Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

NORDIC GRID DISTURBANCE STATISTICS 2012

State Examinations Commission

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Webbreg öppen: 26/ /

Den framtida redovisningstillsynen

SAMMANFATTNING AV SUMMARY OF

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

Documentation SN 3102

Här kan du sova. Sleep here with a good conscience

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Beslut om bolaget skall gå i likvidation eller driva verksamheten vidare.

Båtbranschstatistik. Boating Industry Statistics SWEDISH MARINE INDUSTRIES FEDERATION

SVENSK STANDARD SS :2010

Preschool Kindergarten

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Signatursida följer/signature page follows

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Mätosäkerhet och kundlaster

Turnover and inventory statistics for the service sector third quarter 2004

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Item 6 - Resolution for preferential rights issue.

I korta drag Handelsnettot för september högre än väntat

IKSU-kort Ordinarie avtal

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Läkemedelsverkets Farmakovigilansdag

Agreement EXTRA. Real wage increases, expanded part-time pensions and a low-wage effort in the unions joint agreement demands.

SVENSK STANDARD SS

Bridging the gap - state-of-the-art testing research, Explanea, and why you should care

20284 REDWOOD RD. TRIMARK

Styrteknik: Binära tal, talsystem och koder D3:1

Uttagning för D21E och H21E

Protected areas in Sweden - a Barents perspective

Juli månads handelsnetto i nivå med förväntningarna. Handelsnettot för januari-juli 2004 gav ett överskott på 110,6 miljarder kronor

Översikt. Data under detektionsgränsen. Terminologi. Terminologi

TRA Q NORDIC RELEASE - OCTOBER 2013

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Second handbook of research on mathematics teaching and learning (NCTM)

Isometries of the plane

English Version. Number of sold cakes Number of days

Könsfördelningen inom kataraktkirurgin. Mats Lundström

Byggdokument Angivning av status. Construction documents Indication of status SWEDISH STANDARDS INSTITUTE

Manhour analys EASA STI #17214

Utfärdad av Compiled by Tjst Dept. Telefon Telephone Datum Date Utg nr Edition No. Dokumentnummer Document No.

Beijer Electronics AB 2000, MA00336A,

Swedish framework for qualification

- den bredaste guiden om Mallorca på svenska! -

KPMG Stockholm, 2 juni 2016

Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen")

Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON

Sara Skärhem Martin Jansson Dalarna Science Park

Arbetstillfällen

COPENHAGEN Environmentally Committed Accountants

Samverkan på departementsnivå om Agenda 2030 och minskade hälsoklyftor

Hur fattar samhället beslut när forskarna är oeniga?

TAKE A CLOSER LOOK AT COPAXONE (glatiramer acetate)

The Swedish system of Contract Archaeology

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

Make a speech. How to make the perfect speech. söndag 6 oktober 13

Introduktion till vetenskaplig metodik. Johan Åberg

Maria Fransson. Handledare: Daniel Jönsson, Odont. Dr

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson

Försöket med trängselskatt i siffror

Tentamen i Matematik 2: M0030M.


Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method

Skyddande av frågebanken

Surfaces for sports areas Determination of vertical deformation. Golvmaterial Sportbeläggningar Bestämning av vertikal deformation

Lönestatistisk årsbok 2002

Hållbar utveckling i kurser lå 16-17

Transkript:

PCA/MFFM Anders Norberg Pm till nämnden för KPI 1(6) 2012-11-26 Ny information om urvalsosäkerhet i kvalitetsdeklarationen för KPI För information Enheten för prisstatistik avser att förbättra informationen till användarna om den statistiska kvaliteten i KPI:s viktigaste delserier. I den nya texten redovisas skattning av 95 procentiga konfidensintervall för månatlig prisförändring, inflationstakt och månatlig förändring av inflationstakt. Beskrivning av statistiken SCB dokumenterar och sprider information om statistikens kvalitet i s.k. Beskrivning av statistiken på SCB:s hemsida. Mallen för dessa dokument har två avdelningar: A. Administrativa uppgifter B. Kvalitetsdeklaration I avdelning A finns bl.a. kortfattade uppgifter statistikens användning och undersökningarnas uppläggning. Kvalitetsdeklarationen i del B följer SCB:s felmodell: 1. Innehåll (relevans) 2. Tillförlitlighet 3. Aktualitet 4. Jämförbarhet och samanvändbarhet 5. Tillgänglighet och förståelighet. Tillförlitlighet har osäkerhetskällorna: 2.1 Urval 2.2 Ramtäckning 2.3 Mätning 2.4 Svarsbortfall 2.5 Bearbetning 2.6 Modellantaganden SCB anlitar för närvarande de internationella experterna Paul Biemer och Dennis Trewin i ett program för att ta fram s.k. kvalitetsindikatorer som ett led i att bl.a. förbättra informationen om statistikens kvalitet till användarna. I deras modell riskbedöms varje felkälla för att avgöra felkällans potentiella inverkan på statistikens kvalitet. Varje felkälla

2(6) värderas med hjälp av fem generella kriterier och produkten betygssätts efter varje kriterium enligt en femgradig skala - från "svag" till "excellent". Sammantaget görs det mellan 30-40 enskilda bedömningar per statistikprodukt. Kriterierna är: a. Kännedom om risker avseende datakvalitet b. Kommunikation till statistikanvändare om dessa c. Tillgång till expertis för att minska riskerna d. Efterlevnad av standarder och best practices inom området e. Insatser som finns på plats för att minska riskerna De föreslår ytterligare två osäkerhetskällor inom tillförlitlighet; Specifikation och Revideringar. Med specifikation avses avvikelse mellan det som undersökningen ska mäta och det som faktiskt mäts, ej att förväxla med mätfel. Slutsatser baserade på den skattade målstorheten kan därför vara felaktiga. Under Revideringar anges förväntat avstånd /relativt avstånd mellan preliminär och slutlig statistik som ett mått på osäkerheten i den preliminära statistiken. Eventuell revideringspolicy bör kommenteras. Ny deklaration av osäkerhetskällan Urval Inspirerad av arbetet med kvalitetsindikatorerna har ett nytt innehåll i deklarationen av osäkerhetskällan Urval tagits fram för Beskrivning av statistiken. Texten finns fortfarande endast på engelska. Följande dokument har används som underlag för att skapa en samlad bedömning av osäkerheten i tre av KPIs statistikserier: Dalén, J. and Ohlsson, E. (1995): Variance Estimation in the Swedish Consumer Price Index. Journal of Business and Economic Statistics, Vol. 13, No. 3, 347 356 Dalén, J. (2001): Urvalsosäkerheter för olika tidshorisonter i KPI. SCB, arbetspapper Norberg, A. (2004). Comparison of Variance Estimators for the Consumer Price Index 8th Ottawa Group Meeting - Helsinki - 23-25 August 2004 Nilsson, H., Ribe, M. and Norberg, A. (2008) Variansberäkningar KPI Projektrapport, SCB, 2008-04-10. Den nya texten omfattar fyra sidor i det följande.

3(6) 2.2.1. Sampling Three types of sampling in the CPI The three types of sampling processes applied in the CPI are the following: 1) A sample of retail outlets (shops, hypermarkets, restaurants etc.) in the CPI is drawn annually in May with a so-called rotated sequential Poisson sampling with sample probabilities proportional to size (orderly PPS samples). Approximately 20% of the outlets are replaced annually and another 10% are replaced due to changes in the population, 70% remain in the sample for the following year. The sample is drawn within the frame for the coordinated sampling system for economic statistics, called SAMU, which is set from Statistics Sweden s Business Register The retail outlets in the local price collection in the CPI are divided into some 40 strata by type of industry according to the current standard for Swedish industrial classification (SNI 2007). Samples for many centrally collected prices, for example electricity, health care and entertainment, are renewed to a minor degree annually. 2) Prices for pre-packed products of food, detergents and other daily necessities are collected from about 40 retail outlets in three groups of store chains. Three different samples of 400 precisely specified representative products in approximately 80 product groups are utilised, one for each group of store chains. The samples are drawn from statistics from the chain's cash register data systems. The samples are chosen randomly using sample probabilities proportional to sales values. Samples of products for price measurement at pharmacies (not pharmaceuticals, which are measured in a different survey), tobacco shops and health food stores are also selected using the same method. Samples of representative products are updated annually. These samples are changed more slowly than outlets however. Generic product specifications are established centrally for a large share of the remaining local price collection; thus, judgemental samples are applied here. Sources for these samples include information from the household budget surveys. The person collecting the data (the interviewer) is then instructed to choose the best selling product (by volume) in the selected retail outlets in terms of the specification. 3) The third sampling process is the selection of specific product varieties within the sampled outlets. For 30% of the new outlets all products varieties are of course new in the sample but varieties must also be replaced continuously when they are out of stock. The samples of outlets and products in the central price collection are drawn partly by using PPS samples and partly by a variant of quota or cutoff principle. For certain products, total surveys (census) are applied, that is, all products within the specific area are included in the sample.

4(6) The CPI basket weights for product groups and industries are also updated annually. These weight are based on several sources of information, most of which are sample surveys. The household budget survey, HBS, is one important source. Due to large error margins, several years of HBS data are aggregated. The errors in weight imply errors in the CPI statistics, this contributions have not been estimated. Complexity in the CPI affects sampling error In statistics, sampling error or estimation error is the amount of inaccuracy in estimating some value caused by only measuring a portion of a population (i.e. a sample) rather than the whole population. This amount of inaccuracy is commonly referred to as sampling error and expressed as confidence intervals. The complexity of the CPI statistics implies complex structure of the sampling error. Dalén & Ohlsson (1995) states that the independent sampling of outlets and products yield a two-dimensional, cross-classified sample. A design based variance formula is derived by exploiting the general theory for cross-classified sampling. This can be applied to the annual link from the base period (December year, y-1) to each month in the current year (year, y, and month, m). The sampling errors due to sampling of outlets and products have a constant impact on one calendar year at a time. Norberg (2004) finds that the third sampling process of product varieties generally contributes most to the total sampling error. This sampling error is also found to be least correlated over time. Some of the most important CPI-statistics involve several annual links, for example the inflation rate which is computed as the change from year, y-1, and month, m, to year, y, and month, m. The sampling error for the change statistics involve sampling errors for two samples (for two years). Estimation of sampling error in the CPI Dalén & Ohlsson (1995) proposes an analytic approach for estimation of variance in a cross-classified sample design of outlets and products. This can be applied to the annual link from base period (December year, y-1) to each month in current year (year, y, and month, m). Dalén (2001) uses approximations and reasoning to motivate the best estimates of sampling errors for various reported measures of CPI changes that comprise more than one annual link. Norberg (2004) studies the character of variation in price changes using analysis of variance models. Variance estimators in analytical forms are compared to estimators based on re-sampling procedures and models. All three methods result in estimates of roughly the same magnitude. Resampling procedures make it possible to estimate the variance for complex functions of index links such as the inflation rate and change of inflation rate without extra assumptions.

5(6) Nilsson, H. et. al. (2008) produces new estimates of sampling errors for the centrally collected product groups. These correspond to 46% of consumer expenditure. Estimates of sampling error Based on the four papers above, the sampling errors of the CPI-measures have been assessed and are given for the last years in the table below: Table Estimated sampling errors, lengths of 95% confidence intervals 2012 Statistics Estimated length of 95% confidence interval Comment Monthly change 0.15-0.2 0.15 in April, May, June, November and 0.2 other months Annual change (inflation rate) 0.3 Somewhat lower in December 1 Monthly change of inflation rate 0.2-0.25 0.2 in April, May, June, November, December and 0.25 other months Diagram 1 Inflation rate 2008-2011. 95% confidence interval 5,0 4,0 3,0 2,0 1,0 0,0-1,0-2,0-3,0 2008 2009 2010 2011 1 The annual change from December to December is based on one and the same sample.

6(6) Diagram 2 Monthly change of inflation rate 2008-2011. 95% confidence interval 2,0 1,5 1,0 0,5 0,0-0,5-1,0-1,5-2,0 2008 2009 2010 2011 During 2011 the inflation rate change was statistically significant in March (up), April (up), October (down) and December (down). The inflation rate was +2.3 0.3% in December 2010 as well as in December 2011. How sampling errors can be reduced The general way to reduce sampling errors is to increase sample sizes. Statistics Sweden is making progress in using large amounts of cash register data (scanner data) received from retail chains. By using these data the sampling error for the area in question can be reduced as well as the costs for manual collection. For most other product groups more funding is needed to increase sample sizes.