Finansiell statistik

Relevanta dokument
Korrelation och autokorrelation

Sveriges bruttonationalprodukt Årsdata. En kraftig trend.

Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012

Sveriges bruttonationalprodukt Årsdata. En kraftig trend.

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

Regressions- och Tidsserieanalys - F7

Stokastiska processer med diskret tid

Multipel Regressionsmodellen

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F19, (Multipel linjär regression forts) och F20, Chi-två test.

Stokastiska processer med diskret tid

Matematisk statistik för D, I, Π och Fysiker

Skriftlig Tentamen i Finansiell Statistik Grundnivå 7.5 hp, HT2012

Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi

FÖRELÄSNING 8:

732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Föreläsning G60 Statistiska metoder

Regressions- och Tidsserieanalys - F1

Föreläsning 12: Regression

Stockholms Universitet Statistiska institutionen Patrik Zetterberg

Finansiell statistik. Multipel regression. 4 maj 2011

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Regressions- och Tidsserieanalys - F1

Grundläggande matematisk statistik

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

Statistik 1 för biologer, logopeder och psykologer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva

SF1915 Sannolikhetsteori och statistik 6 hp. χ 2 -test

Tentamensgenomgång och återlämning: Måndagen 24/2 kl16.00 i B497. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Medicinsk statistik II

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Statistiska samband: regression och korrelation

Syfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen

Hur skriver man statistikavsnittet i en ansökan?

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Lektionsanteckningar 11-12: Normalfördelningen

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Analytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

Föreläsning 5. Kapitel 6, sid Inferens om en population

Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2

Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA

8 Inferens om väntevärdet (och variansen) av en fördelning

Föreläsning G60 Statistiska metoder

F11. Kvantitativa prognostekniker

Matematisk statistik, Föreläsning 5

Linjär regressionsanalys. Wieland Wermke

Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet

2. Test av hypotes rörande medianen i en population.

Föreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi

Matematisk statistik för B, K, N, BME och Kemister

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018

Föreläsning 12: Linjär regression

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 8. Kapitel 9 och 10 sid Samband mellan kvalitativa och kvantitativa variabler

Laboration 4: Hypotesprövning och styrkefunktion

F22, Icke-parametriska metoder.

π = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.

ÖVNINGSUPPGIFTER KAPITEL 7

EXAMINATION KVANTITATIV METOD vt-11 (110204)

Föreläsningsanteckningar till kapitel 9, del 2

Föreläsning 5: Hypotesprövningar

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant

Statistik och epidemiologi T5

EXAMINATION KVANTITATIV METOD vt-11 (110319)

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

F3 Introduktion Stickprov

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

STATISTISK POWER OCH STICKPROVSDIMENSIONERING

Föreläsning G60 Statistiska metoder

732G71 Statistik B. Föreläsning 9. Bertil Wegmann. December 1, IDA, Linköpings universitet

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan

1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)

Lösningsförslag till Matematisk statistik LKT325 Tentamen

Hur man tolkar statistiska resultat

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Tentamen i Dataanalys och statistik för I den 28 okt 2015

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Sänkningen av parasitnivåerna i blodet

Transkript:

Finansiell statistik Föreläsning 5 Tidsserier 4 maj 2011 14:26

Vad är tidsserier? En tidsserie är en mängd av observationer y t, där var och en har registrerats vid en specifik tidpunkt t. Vanligen görs mätningarna vid vissa tidpunkter och med samma avstånd mellan dem. T ex en gång i veckan, månaden eller året. Låt oss se på några exempel.

Sveriges bruttonationalprodukt 1861-1988 Årsdata. En kraftig trend.

Procentuella förändringar i BNP 1951-1982 Årsdata. Varför var det ca 6% tillväxttakt i ekonomin 1970 och ca 0% året efter? Förändringar p g a konjunktur.

Dödsorsak: olycksfall. USA 1973-1978. Månadsdata. Ett tydligt säsongsmönster.

Orsakerna till variationen i en tidsserie Byggstenarna eller komponenterna (med olika analogier) i en tidsserie är: 1 TREND Den allmänna utveckling som föreligger under en längre period. 2 KONJUNKTUR Kring den trend vi i stora drag kan urskilja finner vi kanske att värdena fluktuerar mer eller mindre regelbundet. 3 SÄSONG Periodiska mönster som återkommer varje år. 4 SLUMP De variationer som inte kan förklaras av ovan utan snarare av tillfälligheter.

Vad är prognoser? En förutsägelse angående framtida händelser eller tillstånd kallas en prognos (forecast). Olika metoder: kvalitativa och kvantitativa. Behövs dem? Människan måste göra prognoser. Prognoserna kan vara punktskattningar eller intervallskattningar.

Vad är prognoser?-kvalitativa metoder Experters åsikter. Historiska data saknas. Subjektiv kurvanpassning. S-kurvor. Delfi-metoden: (oraklet i Delfi) Rand Corporation; en grupp experter samlas; använts för att bedöma utvecklingen inom olika teknologiska områden. Teknologiska jämförelser.

Vad är prognoser?-kvantitativa metoder Univariata prognosmodeller använder uteslutande tidigare värden. Kausala prognosmodeller söker finna andra variabler som påverkar den variabel som skall prognosticeras.

När man gör en prognos kommer framtiden troligen visa att det inte var rätt tänkt Det observerade värdet i period t betecknas y t. Prognosen betecknas ŷ t. Prognosfelet(forecast error) för prognosen ŷ t definieras som e t = y t ŷ t. Utseendet kan avslöja brister i modellvalet.

Mått på prognosernas noggrannhet Vi definierar även det absoluta felet(absolute deviations) Absoluta felet = e t = y t ŷ t. Genom att bilda det aritmetiska medelvärdet av de absoluta felen erhåller vi den genomsnittliga absoluta avvikelsen(mean absolute deviation (MAD)) Genomsnittliga absoluta avvikelsen = 1 n n e t = 1 n t=1 n y t ŷ t. t=1

Mått på prognosernas noggrannhet Vi kvadrerar prognosfelen e 2 t = (y t ŷ t ) 2 och bildar det aritmetiska medelvärdet av de kvadrerade felen. Då erhåller vi medelkvadratavvikelsen(mean squared error(mse)) Medelkvadratavvikelsen = 1 n n et 2 = 1 n t=1 n (y t ŷ t ) 2. t=1

Mått på prognosernas noggrannhet Absoluta procentuella felet ges som APT t = e t y t (100) = y t ŷ t y t (100). Bildar aritmetiska medelvärdet. Då erhåller vi den genomsnittliga absoluta procentavvikelsen(mean absolute percentage error(mape)) Genomsnittliga absoluta procentavvikelsen = 1 n n t=1 y t ŷ t y t (100).

Korrelation och autokorrelation Låt oss begrunda uttrycket r = n i=1 (x i x) (y i y) n i=1 (x i x) 2 n. i=1 (y i y) 2 De kvadratsummor kring de aritmetiska medelvärdena som står i nämnaren är alltid positiva. I nämnaren har vi alltså ett positivt tal. Vilket tecken som r antar beror således på täljaren (x 1 x) (y 1 y) + (x 2 x) (y 2 y) + + (x n x) (y n y). Om denna summa av produkter skall bli positiv eller negativ beror på om de ingående termerna är positiva eller negativa, samt förstås på deras storlek. Följande figur är oftast till hjälp för att gissa storlek och tecken på korrelationskoefficienten.

Korrelation och autokorrelation Y (y i y) > 0 (y i y) > 0 (x i x) < 0 (x i x) > 0 y (x i x) (y i y) < 0 (x i x) (y i y) > 0 (y i y) < 0 (y i y) < 0 (x i x) < 0 (x i x) > 0 (x i x) (y i y) > 0 (x i x) (y i y) < 0 x X

Korrelation och autokorrelation För 8 individer har ålder och längd uppmätts: Barn A B C D E F G H x 1 2 3 3 4 4 5 6 y 68 91 102 107 105 114 115 127 Vi bildar de ordnade paren och plottar dem: (1, 68), (2, 91),..., (6, 127)

Korrelation och autokorrelation Korrelationen är r = 0.94130.

Korrelation och autokorrelation Nu vet vi hur två variabler korrelerar med varandra. Nu påstår jag att en tidsserie y t kan korrelera med sig själv! Hur då? Vi skapar en ny variabel utav den gamla så att vi uppfyller tanken om två variabler som korrelerar med varandra. I varje tidpunkt låter vi den nya variabeln vara lika med y t :s värde i den förra tidpunkten. t y t y t 1 1 13 2 8 13 3 15 8 4 4 15 5 4 4

Korrelation och autokorrelation Vi har tio observationer på denna tidsserie. t y t y t 1 1 13 2 8 13 3 15 8 4 4 15 5 4 4 6 12 4 7 11 12 8 7 11 9 14 7 10 12 14 Summa 100 Korrelerar variablerna y t och y t 1? Vi börjar med ett spridningsdiagram.

Korrelation och autokorrelation Vi har den laggade variabeln y t 1 på y-axeln och den ursprungliga y t på x-axeln. Alltså är det första paret i tabellen är (8, 13). Längst till vänster ser vi de två paren (4, 4) och (4, 15). (y = 10)

Korrelation och autokorrelation Med inspiration av definitionen ovan av korrelation mellan två variabler, söker vi nu något liknande mellan y t och y t 1. Om vi har en tidsserie y 1, y 2,..., y n, så definieras stickprovets autokorrelationsfunktion i laggen 1 som r 1 = n t=2 (y t y) (y t 1 y) n t=1 (y t y) 2. (1) Vi har n = 10 observationer. Summan av observationerna är etthundra, så medelvärdet för y t är tio.

Korrelation och autokorrelation För att beräkna täljaren i (1) fyller vi på tabellen nedan t y t y t 1 y t 10 y t 1 10 (y t 10)(y t 1 10) 1 13 3 2 8 13-2 3-6 3 15 8 5-2 -10 4 4 15-6 5-30 5 4 4-6 -6 36 6 12 4 2-6 -12 7 11 12 1 2 2 8 7 11-3 1-3 9 14 7 4-3 -12 10 12 14 2 4 8 Summa -27

Korrelation och autokorrelation Ur kolumn 4 i tabellen kan vi även beräkna nämnaren i (1). Den blir 3 2 + ( 2) 2 + + 2 2 = 144. Alltså blir r 1 = 27 144 = 0.1875. Med detta värde är vi inte så långt från att y t och y t 1 är okorrelerade. Tecknet kunde anas utav plotten ovan. Storleken mycket svår att se.

Korrelation och autokorrelation Allt som sagts ovan om korrelationen hos en tidserie mellan observationerna på ett stegs tidsavstånd kan generaliseras till två stegs avstånd, tre steg o s v. För att kunna gissa vad korrelationen är på två stegs avstånd, så kan man plotta y t mot y t 2. Genom formeln n t=3 r 2 = (y t y) (y t 2 y) n t=1 (y t y) 2. definieras stickprovets autokorrelationsfunktion i laggen 2. I vårt exempel kan man visa att r 2 = 0.201389. Ämnet återkommer i samband med ARIMA-modeller.

Om minstakvadratmetodens förutsättningar Feltermerna skall vara oberoende stokastiska variabler. Residualerna y t ŷ skattar feltermerna. Residualerna skall bevara oberoendet. Tyvärr är detta ett för kraftigt antagande när vi använder regressionsmetoder på tidsseriedata. Vi tittar på några exempel för feltermerna.

Vi måste ha en specifik typ av korrelation mellan feltermerna! Föreställ er att på ett stegs avstånd mellan feltermerna ε t och ε t 1 så har vi korrelationen φ. två stegs avstånd mellan feltermerna ε t och ε t 2 så har vi korrelationen φ 2. tre stegs avstånd mellan feltermerna ε t och ε t 3 så har vi korrelationen φ 3. till slut på k stegs avstånd mellan feltermerna ε t och ε t k så har vi korrelationen φ k. Korrelationerna på de olika tidsavstånden utgör alltså en talföljd φ, φ 2, φ 3,..., φ k.

AR(1)-modellen En modell med en sådan korrelationsstruktur är ε t = φε t 1 + a t, 1 < φ < 1, (2) där de stokastiska variablerna a t är nya feltermer med vanligt beteende. (E(a t ) = 0; Var(a t ) = σ 2 a och Cov(a t, a t+k ) = 0. Ibland även normalfördelning med dessa moment.) Modellen (2) kallas för en autoregressiv modell av första ordningen, vanligen förkortad AR(1). Studiet av sådana modeller återkommer i den senare delen av kursen.

Durbin-Watsons test: nollhypotesen Om φ = 0 i ekvation (2) ovan, så blir ε t = a t och feltermerna är som vanligt igen. Om φ > 0, så har vi en geometriskt fallande talföljd av uttrycket φ k vars samtliga medlemmar är positiva. (Se Sydsæter/Hammond, sidan 248 för talföljder). Låt oss därför testa H 0 : φ = 0 mot alternativet H a : φ > 0. Vi kan även uttrycka dessa hypoteser som mot alternativet H 0 : feltermerna är ej autokorrelerade H a : feltermerna är positivt autokorrelerade.

Durbin-Watsons test: testvariabeln Durbin-Watsons testvariabel ges som d = n t=2 (e t e t 1 ) 2 n, t=1 e2 t där e 1, e 2,..., e n är residualerna. Om vi använder den andra kvadreringsregeln i täljaren får vi n (e t e t 1 ) 2 = t=2 n et 2 + t=2 n et 1 2 2 t=2 n e t e t 1. Summan i mitten skriver vi från 1 till n 1 istället för som den står nu från 2 till n. t=2

Durbin-Watsons test: testvariabeln Då kan vi skriva Durbin-Watsons testvariabel som d n t=2 e2 t n t=1 e2 t + n 1 t=1 e2 t n t=1 e2 t 2 n t=2 e te t 1 n. t=1 e2 t De första två termerna torde bli mycket nära ett om antalet observationer n inte är för litet, så då har vi n t=2 d 1 + 1 2 e te t 1 n. (3) t=1 e2 t

Durbin-Watsons test: testvariabeln Lår oss skriva upp stickprovets autokorrelationsfunktion i laggen 1 för residualerna e 1, e 2,..., e n. Då har vi r 1 = n t=2 (e t e) (e t 1 e) n t=1 (e t e) 2. Nu är ju summan av residualerna noll, så e = 0, vilket ger r 1 = n t=2 e te t 1 n. t=1 e2 t Detta känner vi igen från (3) ovan, som alltså kan skrivas d 1 + 1 2r 1 = 2 2r 1 = 2(1 r 1 ).

Durbin-Watsons test: testvariabeln En approximation av testvariabeln är alltså d 2(1 r 1 ). Om nollhypotesen (ingen autokorrelation) är sann, så bör r 1 bli mycket nära noll och således d 2. Om vi har allvarlig positiv autokorrelation i feltermerna, blir r 1 > 0, så 1 r 1 < 1 och d < 2.

Durbin-Watsons test: testvariabeln För alla korrelationer gäller att 1 korrelationen 1. Då kan vi bestämma variationsområdet för d. Vi har att 1 r 1 1 r 1 2 1 r 0 4 2(1 r) 0. Alltså ligger d approximativt mellan 0 och 4.

Durbin-Watsons test: gränserna Låt d α vara det tal sådant att, om nollhypotesen är sann, så P (d < d α ) = α. Alltså är α sannolikheten att begå ett fel av första slaget, d v s att förkasta en sann nollhypotes. Testvariabelns fördelning är utomordentligt komplicerad. Den beror av de oberoende variablerna X i regressionen. Omöjligt att åstadkomma en tabell som tar hänsyn till alla möjliga värden som de oberoende variablerna kan anta. För att rädda situationen åstadkom Durbin och Watson två tal sådana att d L,α < d α < d U,α.

Durbin-Watsons test: gränserna De bägge gränserna d L,α och d U,α finns i tabell 12 på sidorna 872-73 i sjunde upplagan (876-77 i sjätte). Tabellerna ger rätt värden på d L,α och d U,α för olika värden på den valda signifikansnivån α; antalet oberoende variabler i modellen som betecknas k; stickprovsstorleken n. Sidan 872 behandlar fallet då α = 0.05 och sidan 873 fallet då α = 0.01. Stickprovsstorleken går n = 15 till n = 100. Antalet oberoende variabler går från k = 1 till k = 5.

Durbin-Watsons test Ställ upp hypoteserna mot alternativet H 0 : feltermerna är ej autokorrelerade H a : feltermerna är positivt autokorrelerade (eller H 0 : φ = 0 mot alternativet H a : φ > 0 i modellen ε t = φε t 1 + a t för feltermerna) Testet är då följande: 1 Om d < d L,α, så förkastar vi H 0. 2 Om d > d U,α, så förkastar vi inte H 0. 3 Om d L,α d d U,α, så kan ingen slutsats dragas.

Durbin-Watsons test:alternativ mothypotes Sätt upp hypoteserna mot alternativet H 0 : feltermerna är ej autokorrelerade H a : feltermerna är negativt autokorrelerade (eller H 0 : φ = 0 mot alternativet H a : φ < 0 i modellen ε t = φε t 1 + a t för feltermerna) Testet är då följande: 1 Om 4 d < d L,α, så förkastar vi H 0. (Detta händer om d är stor, större än 3) 2 Om 4 d > d U,α, så förkastar vi inte H 0. 3 Om d L,α 4 d d U,α, så kan ingen slutsats dragas.