Tallinjen kan ses både som en mental modell av talen och som ett didaktiskt

Storlek: px
Starta visningen från sidan:

Download "Tallinjen kan ses både som en mental modell av talen och som ett didaktiskt"

Transkript

1 Cecilia Kilhamn Tallinjen som ett didaktiskt redskap För att elever ska kunna dra verklig nytta av en tallinje i sitt matematiklärande behöver de få undervisning om hur den kan användas både som en modell av talen och som ett stöd för tänkande och matematiska resonemang. Tallinjen kan ses både som en mental modell av talen och som ett didaktiskt redskap för att utveckla taluppfattning, räknefärdigheter och förmåga att resonera med hjälp av en av matematikens uttrycksformer. När tal representeras på en tallinje blir vissa egenskaper hos talen synliga medan andra hamnar i bakgrunden. Tal som antal eller objekt i en mängd är den helt dominerande bilden av tal hos barn i skolans tidigare år. För att klara av en utvidgning av talområdet från naturliga tal till rationella tal (tal i bråk- och decimalform) och tal med tecken (positiva och negativa tal) behöver eleverna utvidga även sin inre bild av talen. I den här artikeln ska jag beskriva tallinjens egenskaper som modell av talen och hur den kan användas som modell för tänkande och matematiska resonemang. Under arbetet med min avhandling Making sense of negative numbers upptäckte jag att tallinjen hamnat i skymundan i den svenska skolmatematiken. Tallinjer lyste med sin frånvaro i läromedelsproducenternas kataloger och tallinjer användes inte av eleverna eller läraren i min studie. Lite har detta börjat förändras och vi är förhoppningsvis på väg att ta in tallinjen i skolmatematiken på allvar. I datainsamlingen till min avhandling intervjuade jag elever när de gick i åk 6, 7 och 8 om deras taluppfattning. I slutet av en 30 minuter lång intervju bad jag dem rita en tallinje. På bilderna ser du några exempel på vad eleverna ritade. Sean kom inte på något att rita i åk 6 och ritade sedan denna tallinje i åk 7. På första bilden från intervjun i åk 6 ritar Freddy ett talstreck som indikerar att någon talar i en dialog. På bilden från åk 7 skriver han en rad med tal i ordning, men i motsatt ordning som en konventionell tallinje. 17

2 I åk 6 ritar Viktor en gubbe som står på en linje och talar. I åk 7 har det blivit lite mer likt en matematisk tallinje. Enligt Axel i åk 6 är tallinjen den linje man drar under talen i en uppställning. I åk 6 ritar Petra en linje med tal på, i åk 7 en symmetrisk tallinje runt 0 men utan tecken på talen. Det är tydligt att för dessa elever är tallinjen inte ett mentalt redskap som de kan använda för att tänka på och resonera om tal och operationer. Tallinjen är inte ens en modell av talen, än mindre en modell för tänkandet. I åk 7 hade de flesta elever ritat en matematisk tallinje som på något sätt liknade den konventionella tallinjen och då bad jag dem visa enkla operationer på tallinjen. Endast 12 av 21 elever kunde visa 9 2 på tallinjen och endast 7 av 21 kunde visa 5 8. När vi talar om tal använder vi ofta tallinjen som metafor och ger talen egenskaper av lägen, sträckor och rörelser. Till exempel säger vi att 37 är långt från 370 men 4,9 ligger nära 5. Vi kan räkna upp alla jämna tal mellan 62 och 80 men hoppa över de udda. När vi multiplicerar med 5 gör vi 5-skutt. Vi räknar baklänges från 63. Talens egenskaper av ordning; sträcka eller avstånd; rörelse eller förändring, blir synliga om vi arbetar med tal på tallinjen. Dessa egenskaper är viktiga komplement till tal som antal. Tallinjen är starkt kopplad till mätning. På en tallinje behöver vi enbart erfara storlek och förändring i en dimension längd. Att reducera något komplicerat till värden på en skala är ett sätt att förenkla tillvaron. Därför överför vi många olika storheter till en tallinje när vi vill mäta och jämföra dem. På bilderna syns några exempel på tallinjer vi möter i vardagen och som på en linjär skala visar volym, temperatur och vikt. 18

3 Tallinjen som modell av talen Som vi såg på elevernas bilder är det inte självklart för alla hur tallinjen fungerar. Det blir ett viktigt undervisningsinnehåll att klargöra hur tallinjen fungerar som matematisk uttrycksform genom att belysa vilka egenskaper den har. Ska tallinjen fungera som ett sätt att kommunicera om tal måste vi alla ha en gemensam syn på hur den representerar tal. Skillnad mellan talrad och tallinje Uppräknandet och talramsan kan illustreras med en talrad. På en talrad kommer talen som kompakta enheter i form av diskreta tal. På bilderna ser du två olika talrader: Den övre talraden innehåller talen 1 9 med talbilder, den nedre innehåller talen 0 9 utan talbilder. Talraden illustrerar ordningsegenskapen (ordinaliteten) hos tal. Varje tal kommer i en bestämd ordning och har en bestämd efterföljare. Problemet med talraden är att talen inte är kontinuerliga. Det finns exempelvis ingenting mellan talen 3 och 4. Var på talraden ska jag placera ½ och 3,7? Vi kan tänka oss tallinjen som ett staket, byggt av lodräta pinnar och vågräta reglar. På staketet kan vi räkna såväl pinnarna som mellanrummen mellan pinnarna. Om jag talar om skillnaden mellan 2 och 6 är det kanske inte helt uppenbart att jag menar de fyra mellanrummen och inte de tre tal som finns mellan talen 2 och 6. På nästa bild visas talens egenskaper som mätetal och avstånd. Det är ett känt fenomen att barn ofta gör fel när de ska mäta en längd om de missar att utgå från 0. Kanske beror felet på att de inte fokuserar mellanrummen mellan talen utan enbart punkterna. En elev måste förstå att det är avståndet mellan punkten 6 och punkten 11 som är det mätetal som visar klämmans längd. På linjalen förekommer talen dels som punkter på tallinjen och dels som avstånd mellan punkterna. Vilken aspekt av talen som ska fokuseras i olika sammanhang är inte självklart för alla. Arbetar vi med att rita grafer i ett koordinatsystem är det punkterna som är intressanta, men gör vi ett stapeldiagram eller mäter med en linjal är det mellanrummen som blir betydelsefulla. 19

4 När eleverna i intervjustudien tillfrågades om de någonsin sett en tallinje, eller om de visste någon användning av en tallinje, svarade de flesta att de bara sett den i matteboken, aldrig någon annanstans. De få exempel som kom fram var termometern eller kalendern. Tidslinjer är lite speciella. Om vi gör en tidslinje över en timme eller ett dygn brukar vi göra den som en tallinje med en kontinuerlig skala. Klockan är en sådan tallinje. Vi kan mäta tiden kontinuerligt och se när den är nästan framme vid ett visst klockslag. En tidslinje som sträcker sig över en längre tid är däremot ofta diskret, egentligen en talrad. I månadskalendern har varje dag sin egen ruta, men vi skiljer inte på början och slutet av dagen och kan inte visa i kalendern när en halv dag har gått. Talraden visar alltså ordningen på talen, ingenting mer. Talet 4 på talraden ovan är det fjärde avståndet och det kommer efter det tredje. Men talet 4 ser ut att vara lika stort som talet 3 eller talet 1. Talens storhetsaspekt kommer inte fram på talraden, vilket den gör på tallinjen. På tallinjen nedan kan vi istället se talet 4 illustrerat på en mängd olika sätt som framhäver olika egenskaper. Det är dels en punkt på tallinjen som visar ordningen. Det är även en sträcka som mäter avståndet mellan 0 och punkten 4, vilket i sig innefattar alla avstånd som är kortare (röda linjen). Vi kallar det för talets kardinalitetsaspekt: i talet 4 ryms även 1, 2 och 3, och alla ännu mindre delar av dessa. Talet kan även illustreras med ett annat avstånd på tallinjen som är precis 4 enheter långt, exempelvis avståndet mellan talen 2 och 6 (gula linjen), eller som en rörelse 4 enheter framåt (addition med talet 4, blå pilen) eller en rörelse 4 enheter bakåt (subtraktion med talet 4, lila pilen). Vi använder oss av alla dessa egenskaper hos talen när vi tänker på operationer. Nedan ser du två olika sätt att visa beräkningen = 5 på tallinjen. I den första versionen är talen 1 och 5 punkter och talet 4 en rörelse från 1 till 5. I det andra exemplet är alla tre talen sträckor och vi visar att om sträckorna 1 och 4 läggs bredvid varandra så är de lika långt som sträckan 5.!!! 20

5 En vanlig svårighet för elever i skolans tidiga år är att förstå subtraktionens antikommutativitet, dvs att På tallinjen blir detta uppenbart om vi utnyttjar egenskapen att tal kan ses som rörelse. Egenskaper hos tallinjen För att tallinjen ska fungera som modell av talen behöver vi vara överens om hur modellen fungerar. Därför är det viktigt att vi klargör vilka överenskommelser det finns när det gäller tallinjen. 1. Ordningen från vänster till höger De reella talen utgör en ordnad mängd. Vi visar denna ordning från vänster till höger på tallinjen, eller nerifrån och uppåt om vi har en lodrät tallinje som i ett koordinatsystem. Talens värde ökar åt höger och minskar åt vänster. Detta visas med pilen åt höger, den positiva riktningen. Moderna svenska läroböcker visar denna ordning genom att rita en pil längst till höger på tallinjen. En äldre innebörd av pilen, som fortfarande används i vissa delar av världen, är att rita den på både vänster och höger sida för att illustrera att tallinjen fortsätter. Det är överflödig information eftersom en linje per definition inte har någon början eller något slut. 2. Utgångspunkten noll, 0 Talet 0 har en speciell status. Det kallas ibland origo, begynnelsepunkt eller nollpunkt. Det är ett unikt tal eftersom det på tallinjen endast kan illustreras som en punkt. Talet 0 är ingen sträcka och ingen rörelse. Denna egenskap framgår inte på talraden i början av artikeln där alla tal inklusive noll ges samma utrymme. Tallinjen är symmetrisk kring talet 0. De negativa talen ligger på linjen i negativ riktning från 0 på så sätt att vi räknar hur många enheter vi avlägsnar oss från noll. Ordningen på den negativa sidan blir därför motsatt mot den positiva sidan, även om talens värde fortfarande sägs öka från vänster till höger. Detta innebär att negativa tal har två olika storleksegenskaper. Till exempel är talet -4 ett större negativt tal än talet -3 eftersom det ligger längre från talet 0, samtidigt är talet -4 ett mindre tal än talet -3 eftersom det ligger längre till vänster. Vi kan kalla det första för absolutbelopp och det andra för värde. 3. Enhetsintervallet (ettan) är sträckan mellan 0 och 1 Enhetsintervallen bygger upp tallinjen. En hel på tallinjen är alltid ett avstånd som är lika långt som avståndet mellan 0 och 1.! 21

6 4. Större intervall byggs upp av enhetsintervallet Vi gör skutt eller hopp på tallinjen som består av multiplar av enhetsintervallet, de är alltså proportionella mot enhetsavståndet. Till exempel är avståndet eller rörelsen 5 på tallinjen alltid 5 gånger så lång som enhetsintervallet. 5. Enhetsintervallet (ettan) kan delas upp i delintervall Delar i form av bråk eller decimaler relateras alltid till enhetsintervallet. Rationella tal mellan 0 och 1 placeras mellan talen 0 och 1 på tallinjen. Till exempel kan ½ ses som antingen punkten mitt emellan talen 0 och 1, eller som avståndet från 0 till punkten ½, eller som ett avstånd eller en rörelse som är precis ½ enhetsintervall långt någon annanstans på tallinjen. Undervisning om tallinjen som modell av talen Vi ska titta på en del av en lektion som handlar om att göra tallinjen till en modell av talen. Beskrivningen är utvecklad från en lektion i åk 1 i Ryssland som jag sett på video utan att få en översättning. Uppgiften börjar med att läraren visar två vaser och frågar: Är det lika mycket vätska i båda vaserna? Efter en stunds diskussion konstateras att vaserna har olika form och är olika vida och därför kan man inte bara jämföra höjden. Nu uppstår nya frågor: I vilken vas finns det mest vätska? Hur stor är skillnaden? Hur kan vi ta reda på det? Att mäta upp vätskan i de olika vaserna är en strategi. Läraren plockar fram ett mindre glas och tillsammans häller de och räknar hur många små glas som fylls av vätskan i varje vas. För att hålla ordning på räkningen ritar läraren en linje på tavlan och markerar med en vimpel var de ska börja räkna. Talet 0 är så speciellt att det får komma senare. Allteftersom glasen fylls markeras intervallen och talen skrivs succesivt i ordning. När båda mängderna har blivit uppmätta finns följande tallinje på tavlan:! 22

7 Situationen med jämförelse av vätskor har nu modellerats med hjälp av en tallinje. Den tredimensionella storheten volym har reducerats till en dimension och vi ser att den vänstra vasen rymmer fyra glas och den högra rymmer sex glas. Nu kan vi lätt jämföra de två volymerna som är representerade som sträckor på tallinjen. Samtal kan föras kring hur stor skillnaden är. Är skillnaden 5? Talet 5 ligger ju mellan 4 och 6. Eller är skillnaden 1? Det finns endast ett tal mellan 4 och 6. Eller är skillnaden 2? Det finns två mellanrum, enhetsintervall, mellan 4 och 6. Eleverna övertygar varandra och läraren att det är mellanrummen som representerar skillnaden, de har ju själva varit med och mätt upp den. Vi kan sedan gå vidare och fråga hur skillnaden skulle se ut om vi hällde i ett glas till i varje vas. Eller om vi hällde i ett halvt glas till i varje. Den beskrivna övningen är ett exempel på problemlösning som behandlar mätandets princip. Samtidigt är det en lektion i hur tal kan representeras och tolkas på tallinjen, hur tallinjen fungerar som representation av tal. Tallinjen som modell för att tänka Tallinjen kan användas som modell för att tänka; att operera, resonera och kommunicera om tal. Titta på bilden av cykeln i gatan. De som vet vad en cykel är ser direkt när de kommer åkande i bil eller på cykel att det är här cykeln ska vara. Bilden av cykeln är till för att kommunicera ett budskap. Det är inte en modell som ska lära någon vad en cykel är. Den som inte vet vad en cykel är kan inte lära sig det av den här bilden. På samma sätt är det med tallinjen. För att fungera som redskap för att tänka och kommunicera om tal behöver tallinjen vara en modell av talen på samma sätt för alla. När både lärare och elever känner sig trygga med tallinjen kan de använda den för att skissa, visa huvudräkningsstrategier och beskriva resonemang. Då blir den en modell för tanken, inte enbart en modell av talen och man kan också kosta på sig att förenkla. Det är svårt att rita en perfekt cirkel utan passare. Men om alla vet vad en cirkel är och jag ska rita en för att resonera om skillnaden mellan en linje som skär cirkeln och en som tangerar, då behöver den inte vara perfekt. Den tomma tallinjen När tallinjen ska vara en tankemodell är det bra om den är enkel. Man kan utgå från en linje som är tom, eller öppen, i bemärkelsen att inga tal eller markeringar finns från början. En linje ritas och endast de tal som behövs markeras, inga andra. Visas ett tal som en sträcka eller rörelse så skriver man ut vilken sträcka eller rörelse som avses och lägger inte möda på att få bilden helt proportionerlig. Man vet ju redan hur tallinjen fungerar så man kan tillåta sig att vara lite slarvig. Just den tomma tallinjen har visat sig underlätta elevernas kreativitet i att utveckla strategier, eftersom de inte blir låsta av de redan utsatta markeringarna. Istället för att alltid dela upp ett tal i ental eller tiotal som är markerade på en färdig tallinje blir de fria att göra helt andra uppdelningar. 23

8 Här visas några exempel på olika räknestrategier för att beräkna = 35 och där den tomma tallinjen har använts för att representerar dem. I ena fallet adderas först 20 och sedan subtraheras 1, representerat genom de tre rörelserna I samma bild visas också addition med 19 representerat genom rörelserna I båda fallen börjar man på 19 och slutar på 35. Resonemanget kan överföras till ett annat talområde. I den andra bilden visas additionen 1,6 + 1,9. Den valda strategin här är att dela upp 1,9 i mindre delar för att så mycket som möjligt kunna arbeta med heltal. Nästa bild kan illustrera tre olika beräkningar: = 16 eller = 35 eller = 19. I de två första beräkningarna är 19 och 35 punkter på tallinjer och 16 är skillnaden i avstånd mellan punkterna. Utifrån den här representationen kan vi föra resonemang om hur de två beräkningarna är relaterade till varandra och slutligen dra den generella slutsatsen att alla subtraktioner kan skrivas om till additioner = x 19 + x = 35. I den tredje beräkningen är 35 en punkt och -16 en rörelse bakåt som slutar på punkten 19. Följande illustrationer visar tre elevers olika sätt att beräkna 71 69, med allt effektivare strategier som utnyttjar förmågan att dela upp tal på olika sätt och visar olika nivåer i utvecklingen av en god taluppfattning. Den första ser subtraktion som rörelse bakåt och är fast i att tänka tiotal och ental. Det blir 24

9 6 tioskutt och 9 entalsskutt bakåt, totalt 14 tankeled att räkna. Den andra gör fortfarande tioskutten bakåt men gör istället 7 tioskutt och kompenserar med att addera ett. Den tredje ser 69 och 71 som två tal på tallinjen och visar att skillnaden mellan dem är 2 eftersom man bara behöver gå två steg från 69 till 71. I de båda första strategierna ses talen 71 och 2 som punkter och det tal, 69, som ska subtraheras som rörelse. I det sista fallet ses talen 71 och 69 som punkter och 2 som avståndet mellan dem. Summering Den här artikeln har försökt beskriva tallinjen som ett didaktiskt redskap, framförallt hur tallinjen kan vara en modell av talen och vilka egenskaper hos talen som kommer fram på tallinjen. Artikeln är den första i en serie artiklar om tallinjen där de kommande innehåller fler undervisningsexempel på hur tallinjen kan användas som en modell för att tänka och resonera om tal, till exempel genom att använda den tomma tallinjen för att utveckla strategier för addition och subtraktioner, två korsande tallinjer för att utveckla multiplikativt tänkande och den dubbla tallinjen för att tänka och resonera om bråk. Litteratur Drageryd, K., Erdtman, M., Persson, U. & Kilhamn, C. (2012). Tallinjen en bro mellan konkreta modeller och abstrakt matematik. Nämnaren 2012:3. University of California (2014). Learning mathematics through representations. Berkeley, CA. Kilhamn, C. (2011). Making sense of negative numbers. Doktorsavhandling. Göteborgs universitet. 25

Bråkräkning uppfattas av många elever som svårt, särskilt vid beräkningar

Bråkräkning uppfattas av många elever som svårt, särskilt vid beräkningar Britt Holmberg & Cecilia Kilhamn Addition med bråk på tallinjen I sin tredje artikel om tallinjen beskriver författarna hur den används för att utveckla elevers förståelse för addition med oliknämniga

Läs mer

Subtraktion på den tomma tallinjen

Subtraktion på den tomma tallinjen Britt Holmberg & Cecilia Kilhamn Subtraktion på den tomma tallinjen Författarna visar tre olika tankemodeller för subtraktion på tallinjen. Varje modell redovisas med för- och nackdelar samt exemplifieras

Läs mer

Syfte. Positivt om negativa tal. Hur möjliggör du för eleverna att förstå. Innehåll. Fler begrepp. Begrepp 3 5 = 3 (-5) = -3 (-3) -

Syfte. Positivt om negativa tal. Hur möjliggör du för eleverna att förstå. Innehåll. Fler begrepp. Begrepp 3 5 = 3 (-5) = -3 (-3) - Positivt om negativa tal RUC Uppsala 0 mars 20 Dokumentation: pedagogdirekt.se Syfte Tillgängliggöra forskning och beprövad erfarenhet Pröva och ompröva egna och andras metoder och modeller Innehåll Historik

Läs mer

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många? 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Göra lika i båda leden

Göra lika i båda leden Modul: Algebra Del 6: Sociomatematiska normer Göra lika i båda leden Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Ordet algebra kommer från det arabiska ordet al-djabr

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Att utveckla taluppfattning genom att dela upp tal är mycket vanligt i de

Att utveckla taluppfattning genom att dela upp tal är mycket vanligt i de Jorryt van Bommel Räkna med ägg När elever möter matematikinnehåll genom arbete med konkret och laborativt material är det av vikt att steget från konkret arbete till abstrakt och generell matematik inte

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

När en Learning study planeras väljs ett område som upplevs som problematiskt

När en Learning study planeras väljs ett område som upplevs som problematiskt K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Addition och subtraktion generalisering

Addition och subtraktion generalisering Modul: Algebra Del 8: Avslutande reflektion och utvärdering Addition och subtraktion generalisering Håkan Lennerstad, Blekinge Tekniska Högskola & Cecilia Kilhamn, Göteborgs Universitet Detta lärandeobjekt

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

PP i matematik år 2. Taluppfattning och tals användning.

PP i matematik år 2. Taluppfattning och tals användning. PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

genom berikning inom det matematiska område klassen arbetar med. Modellen är verkligen enkel: en äggkartong med plats för ett visst antal ägg.

genom berikning inom det matematiska område klassen arbetar med. Modellen är verkligen enkel: en äggkartong med plats för ett visst antal ägg. Jorryt van Bommel Räkna med ägg När elever möter matematikinnehåll genom arbete med konkret och laborativt material är det av vikt att steget från konkret arbete till abstrakt och generell matematik inte

Läs mer

Utvidgad aritmetik. AU

Utvidgad aritmetik. AU Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och

Läs mer

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk) UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används

Läs mer

Arbetsområde: Från pinnar till tal

Arbetsområde: Från pinnar till tal Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Från talrad till tallinje

Från talrad till tallinje 2A Från talrad till tallinje begrepp taluppfattning Avsikt och matematikinnehåll Denna sträva består av delaktiviteter med syfte att utveckla elevernas förståelse för tal, från naturliga till irrationella,

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer

Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under

Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under Christina Skodras Muffles truffles Undervisning i multiplikation med systematiskt varierade exempel I Nämnaren 2015:4 beskrivs ROMB-projektet övergripande i Unga matematiker i arbete. Här redovisas och

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, Arbetsområde: Huvudsakligt ämne: Matematik, åk 4-6 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa

Läs mer

Olika proportionella samband, däribland dubbelt och hälften.

Olika proportionella samband, däribland dubbelt och hälften. Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.

Läs mer

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte

Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar Delprov B, C, D, E. Årskurs Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta

Läs mer

Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping

Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping Algebra Del 1 Upprepade mönster Anna-Lena Ekdahl, Högskolan i Jönköping Det är välkänt att barn långt innan de börjat skolan utforskar och skapar mönster på olika sätt och med olika material. Ofta skapas

Läs mer

Huvudräkning är ett relativt nytt innehåll i den australienska

Huvudräkning är ett relativt nytt innehåll i den australienska Ann Heirdsfield Att knyta forskning till praktik huvudräkning och taluppfattning Denna artikel med ursprung i Australien redovisar ett projekt där en forskare, författaren, och två lärare samarbetade.

Läs mer

Ordlista 1B:1. modell. hel timme. halv timme. timvisare. Dessa ord ska du träna. Öva orden. När du bygger efter en ritning, får du en modell.

Ordlista 1B:1. modell. hel timme. halv timme. timvisare. Dessa ord ska du träna. Öva orden. När du bygger efter en ritning, får du en modell. Ordlista 1B:1 Öva orden Dessa ord ska du träna modell När du bygger efter en ritning, får du en modell. hel timme På en timme går timvisaren ett steg på klockan. halv timme På en halvtimme går minutvisaren

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Görel Sterner Artikel ur Svenska Dyslexiföreningens och Svenska Dyslexistiftelsens tidskrift Dyslexi aktuellt om läs- och skrivsvårigheter

Läs mer

Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:

Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad: Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva

Läs mer

100 tips till 100-rutan

100 tips till 100-rutan 100 tips till 100-rutan 1. Säg gemensamt alla tal i hundrarutan, uppåt från 1 till 100. 2. Säg gemensamt alla tal i hundrarutan, nedåt från 100 till 1. 3. Ställ er i en ring, deltagare A säger talet 1,

Läs mer

hämtad från ls.idpp.gu.se

hämtad från ls.idpp.gu.se Negativa tal Skola Långsjöskolan, Rimbo & Rådmansö skola, Rådmansö Årskurs Åk 7 Antal elever i studien 22 stycken. Studien avslutades våren 2013. Deltagande pedagoger/kontaktperson Kai Gerdelius kai.gerdelius@norrtalje.se

Läs mer

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.

Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl

Läs mer

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik

Rationella tal. R. Området består av följande tre delområden: Sambanden mellan delområden ser ut så här: RB Bråk. AG Grundläggande Aritmetik . Diagnoserna i området avser att kartlägga elevernas förståelse och färdighet avseende tal i bråkform, tal i decimalform, proportionalitet och procent. Området består av följande tre delområden: B Bråk

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Innehåll och förslag till användning

Innehåll och förslag till användning Övningar för de första skolåren med interaktiv skrivtavla och programmet RM Easiteach Next generation. Materialet är anpassat till och har referenser till. Innehåll och förslag till användning De interaktiva

Läs mer

Matematik klass 1. Vår-terminen

Matematik klass 1. Vår-terminen Matematik klass 1 Vår-terminen Rita din matematik-bild Skriv ditt namn i rutan Måla alla rutor där svaret blir 10 3+2 1+9 5+4 6+4 3+7 5+5 4-4 8+4 3+7 9+0 2+8 2+4 7+3 7-6 5+2 5+5 4+4 3+7 6-2 6+4 8+3 6+1

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att:

Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: PALMBLADSSKOLAN Matematik PP för arbetsområde: Tal åk 8 Ur kursplanen för ämnet matematik I detta arbetsområde ska eleven utveckla sin förmåga att: formulera och lösa problem med hjälp av matematik samt

Läs mer

Planering Matematik åk 8 Samband, vecka

Planering Matematik åk 8 Samband, vecka Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med

Läs mer

Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en

Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en Kerstin Larsson Subtraktion Vad är egentligen subtraktion? Vad behöver en lärare veta om subtraktion och subtraktionsundervisning? Om elevers förståelse av subtraktion och om elevers vanliga missuppfattningar?

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

Såväl lodräta algoritmer som talsortsvisa beräkningar har visat sig vara ineffektiva

Såväl lodräta algoritmer som talsortsvisa beräkningar har visat sig vara ineffektiva Kerstin Larsson Mer om beräkningar i subtraktion och addition I artikeln Subtraktionsberäkningar i Nämnaren nr 1, 2012 beskrivs fem övergripande kategorier av beräkningsstrategier för subtraktion. I denna

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8

Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:

Läs mer

Matematikutveckling med stöd av alternativa verktyg

Matematikutveckling med stöd av alternativa verktyg Matematikutveckling med stöd av alternativa verktyg Vad ska man ha matematik till? Vardagslivet Yrkeslivet Skönheten och konsten Underbart att veta att det finns räcker inte det+ LGR11 Undervisningen ska

Läs mer

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers

Boken Förstå och använda tal en handbok behandlar 22 områden av elevers Marie Mäkiranta Att diagnostisera elevers kunskaper och missuppfattningar Författaren har i ett fördjupningsarbete under en kurs i Lärarlyftet arbetat med boken Förstå och använda tal en handbok av Alistair

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta

Läs mer

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod

1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod Taluppfattning Kapitlets innehåll I kapitel möter eleverna decimaltal för första gången. Det första avsnittet handlar om vårt talsystem och att de hela tal eleverna tidigare jobbat med går att dela in

Läs mer

Bråkcirkel och tallinje

Bråkcirkel och tallinje strävorna A Bråkcirkel och tallinje begrepp taluppfattning Avsikt och matematikinnehåll Förmåga att använda fakta om bråkuttryck på ett rationellt sätt bygger på förståelse för bråkuttrycks samband (mellan

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1

Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Upprepade mönster (fortsättning från del 1)

Upprepade mönster (fortsättning från del 1) Modul: Algebra Del 2: Resonemangsförmåga Upprepade mönster (fortsättning från del 1) Anna-Lena Ekdahl och Robert Gunnarsson, Högskolan i Jönköping Ett viktigt syfte med att arbeta med upprepade mönster

Läs mer

Kunskap om samband mellan lässvårigheter

Kunskap om samband mellan lässvårigheter görel sterner Lässvårigheter och räknesvårigheter Här presenteras några exempel på hur specialundervisning i matematik kan läggas upp med tanke på svårigheter kopplade till fonologi, arbetsminne, automatiseringsprocesser

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Vad är det som gör skillnad?

Vad är det som gör skillnad? Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström

Läs mer

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar. Årskurs

Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar. Årskurs Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Årskurs 3 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1.

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1. Taluppfattning Talområde 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 19 Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009

Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009 Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009 Skriver först en liten sammanfattande inledning, tar upp de områden vi samtalade om och mycket av det vi tog upp hittar ni i Förstå

Läs mer

Magiska kvadrater. Material Nio kapsyler Material för att göra egna spelplaner eller spelpåsar, se separata beskrivningar.

Magiska kvadrater. Material Nio kapsyler Material för att göra egna spelplaner eller spelpåsar, se separata beskrivningar. Strävorna 4A Magiska kvadrater... utvecklar sin förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande....

Läs mer

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler. Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Delprov G: Skriftliga räknemetoder

Delprov G: Skriftliga räknemetoder Delprov G: Skriftliga räknemetoder Nedan finns instruktioner för genomförandet av Delprov G, som handlar om skriftliga räknemetoder. Eleverna ska arbeta individuellt med uppgifterna, och de ska inte ha

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Gilla matematik. Yvonne Franzon & Anette Skytt. Bedömningsstöd i matematik för grundsärskolans årskurs 1 6. Gilla Matematik

Gilla matematik. Yvonne Franzon & Anette Skytt. Bedömningsstöd i matematik för grundsärskolans årskurs 1 6. Gilla Matematik Yvonne Franzon & Anette Skytt Gilla matematik Bedömningsstöd i matematik för grundsärskolans årskurs 1 6 Gilla Matematik BEDÖMNINGSSTÖD FÖR GRUNDSÄRSKOLANS ÅRSKURS 1 6 Alla elever har med sig kunskaper

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

En typisk medianmorot

En typisk medianmorot Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt

Läs mer

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning

Läs mer

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:

Läs mer