Tillämpad digital signalbehandling Sammanställning av Matlabkommandon
|
|
- Rasmus Olofsson
- för 8 år sedan
- Visningar:
Transkript
1 Institutionen för data- och elektroteknik Nedanstående lista gör inte anspråk på att vara en komplett sammanställning av alla Matlabkommandon utan vill ta upp de grundläggande kommandon som kan vara bra att kunna. Utöver detta ingår ett antal kommandon som är speciellt inriktade mot signalbehandling och i vårt fall främst då tidsdiskret signalbehandling. Många av kommandona finns i ett antal överladdade versioner där valet av inargument avgör vilken funktion som kommer att köras. Kommandona presenteras bara med namn och en mycket kortfattad beskrivning. Använd Matlabs hjälpfunktion för att få en mer detaljerad beskrivning av respektive kommando komplett med kommandosyntax. Hjälpfunktionen aktiveras genom att i Matlabs arbetsyta ge kommandot help <kommandonamn> Där kommandonamn är namnet på det kommando eller den funktion ni vill ha hjälp om. Grundkommandon clear...radera alla variabler på arbetsytan clc...töm arbetsytan who...lista definierade variabler ;...eka inte beräkningsresultat %...kommentarstart Hjälp slash...hjälp om varianter av division ops...hjälp om operatorer och specialtecken relop...hjälp om relationsoperatorer datatypes...hjälp om datatyper arith...hjälp om aritmetiska operationer CHALMERS LINDHOLMEN Sida 1 Institutionen för data- och elektroteknik Sven Knutsson Box Göteborg Besöksdress: Hörselgången 4 Telefon: Fax: svenk@chl.chalmers.se Web: svenk
2 strfun...hjälp om strängfunktioner strings...hjälp om teckensträngar ltimodels...hjälp om LTI modeller ltiprops...hjälp om LTI-egenskaper m-filer echo...eka m-filkommando type...visa m-fils innehåll input...vänta på inmatning från användare return...returnera från funktion Programstrukturer for...for-loop while...while-loop if...if-else-struktur switch...case-struktur Grundmatematik sqrt...kvadratrot pi...pi sin...sinus cos...cosinus tan...tangens asin...arcussinus acos...arcuscosinus atan...arcustangens argument exp... e log...naturlig logaritm log logaritm log2...2-logaritm argument pow ^...upphöjt till residue...partialbråksuppdelning residuez...partialbråksuppdelning i z-plan gcd...gemensam nämnare lcm...minsta gemensamma multipel roots...polynom? rötter poly...rötter? polynom i eller j...imaginär symbol conj...komplexkonjugat complex...real- och imaginärdel? komplext tal pol2cart...polära? rektangulära koordinater sida 2
3 cart2pol...rektangulära? polära koordinater real...realdel imag...imaginärdel abs...absolutbelopp angle...fasvinkel unwrap...unwrap fasvinkel &...AND...OR ~...NOT std...standardavvikelse mean...medelvärde medean...medeanvärde Matriser och vektorer cat...sammanfoga (konkatinera) arrayer disp...visa array min...minsta värde i array max...största värde i array sort...sortera array i växande ordning sum...summan av vektorelement linspace...vektor med linjärt fördelade värden logspace...vektor med logaritmiskt fördelade värden Stränghantering char...skapa teckenarray strcat...sammanfoga (konkatinera) strängar strcmp...jämför stängar strncmp...jämför första N tecken i strängar strmatch...leta delsträng i sträng findstr...sök sträng i sträng sprintf...skriv formaterad data till sträng sscanf...läs sträng under formatkontroll upper...omvandla till stora bokstäver lower...omvandla till små bokstäver num2str...tal? sträng str2num...sträng? tal int2str...heltal? sträng Typkonvertering uint8...omvandla till 8 bitars unsigned integer uint16...omvandla till 16 bitars unsigned integer uint32...omvandla till 32 bitars unsigned integer sida 3
4 int8...omvandla till 8 bitars integer int16...omvandla till 16 bitars integer int32...omvandla till 32 bitars integer double...omvandla till double num2str...tal? sträng str2num...sträng? tal int2str...heltal? sträng Filhantering fopen...öppna fil fclose...stäng fil ftell...returnera filpositionspekare frewind...sätt filpositions pekare till filstart fseek...sätt filpositions pekare feof...kontrollera filslut delete...radera fil eller grafiskt objekt uiload...gui navigator för filval uisave...gui navigator för filval dlmread...läs från ASCII-avslutad fil dlmwrite...skriv till ASCII-avslutad fil fread...läs binära data från fil fwrite...skriv binära data till fil fscanf...läs formaterad data från fil fprintf...skriv formaterad data till fil textread...läs formaterad data från textfil fgetl...läs rad exklusive radslut från fil fgets...läs rad inklusive radslut från fil csvread...läs kommaseparerad värdefil xlsread...läs Excelfil wk1read...läs spreadsheet (WK1) fil wk1write...skriv spreadsheet (WK1) fil Figurer, plot och image figure...skapa figurfönster close...stäng figur delete...radera fil eller grafiskt objekt clf...töm aktuell figur stem...rita stapeldiagram plot...rita graf semilogx...plot med logaritmisk x-skala semilogy...plot med logaritmisk y-skala loglog...plot med logaritmiska x- och y-skalor subplot...dela en figur i flera underplottar sida 4
5 polar...polär plot bar...stapeldiagram barh...horisontellt stapeldiagram hist...histogram histc...räknar antal värden i histogramintervall stairs...trappstegsgraf zplane...pol/nollställesplot pzmap...pol/nollställesdiagram för LTI system freqzplot...frekvensplot bode...bodeplot för LTI modell bodemag...bode beloppsplot för LTI modell specgram...tidsberoende frekvensanalys, spectrogram strips...stripplot hold...behåll graf då ny graf ritas i samma figur title...titel för plot legend...lägg in ruta med graflinjeinfo i plot text...text i plot gca...läs referens (handle) till aktuellt objekt gcf...läs referens (handle) till aktuell figur get...returnera objektegenskaper set...sätt objektegenskaper grid...sätt grid på aktuell axel xlabel...x-label för plot ylabel...y-label för plot axis...skalning och utseende på plotaxlar whitebg...vit figurbakgrund Signalgenerering zeros...vektor fylld med nollor ones...vektor fylld med ettor rectpuls...aperiodisk fyrkantpuls tripuls...aperiodisk triangelvåg chirp...frekvenssvept cosinus gauspuls...gauss modellerad sinuspuls gensig...generera periodisk signal pulstran...pulståg square...fyrkantvåg sawtooth...sågtand eller triangel sinc...sincfunktion vco...spänningsstyrd oscillator sida 5
6 Systembeskrivningar, överföringsfunktioner zpkdata...pol/nollställe/förstärkningsdata för LTI-system tf...skapa eller omvandla till överföringsfunktion ss...skapa eller omvandla till state-space-representation zpk...skapa eller omvandla till pol/nollställe/förstärkningsrepresentation zero...nollställen för LTI modell pole...poler för LTI modell Transformeringar mellan systembeskrivningar latc2tf...laticefilter? överföringsfunktion tf2latc...överföringsfunktion? lattice poly2rc...polynomkoefficienter? rekursiva koefficienter rc2poly...rekursiva koefficienter? polynomkoefficienter sos2tf...andragradssektioner? överföringsfunktion zp2sos...poler, nollställen och förstärkning? andragradssektioner sos2zp...andragradssektioner? poler, nollställen och förstärkning tf2zp...överföringsfunktion? poler, nollställen och förstärkning zp2tf...poler, nollställen och förstärkning? överföringsfunktion Tids- och frekvenssvar impulse...impulssvar för LTI modell step...stegsvar för LTI modell impz...impulssvar för tidsdiskreta system conv...faltning deconv...dekonvulering och polynom division freqspace...frekvensindelning för frekvensspektra freqs...frekvensspektra för analogt system freqz...frekvensspektra för tidsdiskret system freqresp...frekvenssvar för LTI modell nyquist...nyquist frekvenssvar förlti modell grpdelay...medelgruppfördröjning för filter zplane...pol/nollställesplot evalfr...evaluera frekvenssvar vid en frekvens sida 6
7 DFT och FFT med inverser dct...diskret cosinustransform idct...invers diskret cosinustransform fft...endimensionell FFT fftshift...växla vänster och höger halva av FFT ifft...invers endimensionell FFT iftshift...växla vänster och höger halva av IFFT Fönsterfunktioner boxcar...rektangulärt fönster triang...triangulärt fönster bartlett...bartlettfönster hanning...hanningfönster hamming...hammingfönster blackman...blackmanfönster kaiser...kaiserfönster hann...hannfönster chebwin...tjebytjevfönster Analoga filterprototyper besselap...analog Bessel lågpass prototyp buttap...analog Butterworth lågpass prototyp ceb1ap...analog Tjebytjev typ 1 lågpass prototyp ceb2ap...analog Tjebytjev typ 2 lågpass prototyp elipap...analog elliptisk (Cauer) lågpass prototyp Design av FIR-filter fir1...fönsterbaserat FIR filter, invers fouriertransform fir2...fir filter via frekvenssampling firls...fir filter via minsta kvadrat-metodberäkning remez...parks-mcclellanfilter latcfilt...latticefilter Gradtalskrav för FIR-filter kaiserord...uppskatta parametrar för fir1-filter med Kaiser fönster remezord...uppskattat gradtal för Parks-McClellan filter sida 7
8 Design av IIR-filter besself...analogt Besselfilter butter...analogt och tidsdiskret Butterworthfilter maxflat...analogt och tidsdiskret generaliserat Butterworthfilter cheby1...analogt och tidsdiskret Tjebytjev typ 1 filter cheby2...analogt och tidsdiskret Tjebytjev typ 2 filter ellip...analogt och tidsdiskret elliptiskt (Cauer) filter yulewalk...rekursivt tidsdiskret filter Gradtalskrav för IIR filter buttord...gradtal för Butterworth filter cheb1ord...gradtal för Tjebytjev typ 1 filter cheb2ord...gradtal för Tjebytjev typ 2 filter ellipord...gradtal för elliptiskt (Cauer) filter Filtrering fftfilt...fft-baserad FIR-filterfiltrering (overlap/add) filter...fir- eller IIR-filtrering Ljud sound...spela upp vektor soundsc...spela upp vektor autoskalad till maximal storlek wavplay...spela wavedata wavrecord...spela in wavedata wavread...läs in wavedata från fil wavwrite...skriv wavedata till fil lin2mu...linjärt ljud till µ-lagskomprimerat mu2lin...µ-lagskomprimerat ljud till linjärt Multirate, decimering och interpolering decimate...minska samplingsfrekvensen, decimera interp...öka samplingsfrekvens, interpolera resample...byt samplingsfrekvens med godtycklig faktor sida 8
9 Modulering modulate...modulering demod...demodulering sida 9
Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW
Institutionen för data- och elektroteknik 004-03-15 Signalbehandling i Matlab och LabVIEW 1 Introduktion Vi skall i denna laboration bekanta oss med hur vi kan använda programmen Matlab och LabVIEW för
2 Laborationsutrustning
Institutionen för data- och elektroteknik 2002-02-11 1 Inledning Denna laboration syftar till att illustrera ett antal grundbegrepp inom digital signalbehandling samt att närmare studera frekvensanalys
Innehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Digital signalbehandling fk Laboration 5 Ett antal signalbehandlingstillämpningar
Institutionen för data- och elektroteknik 1999-11-21 Inledning Denna laboration avser att ge illustration av och inblick i ett antal områden för digital signalbehandling. Vi kommer att studera exempel
Flerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
i LabVIEW. Några programmeringstekniska grundbegrepp
Institutionen för elektroteknik Några programmeringstekniska grundbegrepp 1999-02-16 Inledning Inom datorprogrammering förekommer ett antal grundbegrepp som är i stort sett likadana oberoende om vi talar
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Institutionen för data- och elektroteknik 2004-03-22 Tillämpad digital signalbehandling Veckoplanering för signalbehandlingsteorin
Institutionen för data- och elektroteknik 2004-03-22 Veckoplanering för signalbehandlingsteorin Allmänt Erfarenheten från tidigare år säger att kursen upplevs som svår. Detta tror jag beror, inte på att
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Liten MATLAB introduktion
Liten MATLAB introduktion Denna manual ger en kort sammanfattning av de viktigaste Matlab kommandon som behövs för att definiera överföringsfunktioner, bygga komplexa system och analysera dessa. Det förutsätts
MMA132: Laboration 1 & 2 Introduktion till MATLAB
MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med
TSBB14 Laboration: Intro till Matlab 1D
TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen
Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln
Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script
DN1212/numpp Numeriska metoder och grundläggande programmering Laboration 1 Introduktion
Staffan Romberger 2011-12-19 DN1212/numpp Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna använda de datorer som vi använder på labbarna,
MMA132: Laboration 1 Introduktion till MATLAB
MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer
REGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
Enklast att skriva variabelnamn utan ; innehåll och variabelnamn skrivs ut
F5: Filhantering in- och utmatning (kap. 2 och 8) 1 Utskrift på skärm, inläsning från tangentbord (kap. 2) Spara och hämta variabler med save och load (kap. 2) Kommandot textread Mer avancerad filhantering:
Digital signalbehandling Laboration 2 Digital filtrering
Institutionen för data- och elektroteknik 2002-02-19 1 Inledning Laboration två är inriktad på digitala filter. Ni kommer att via en LabVIEW-applikation kunna dimensionera filter samt mata in egna filterdimensioneringar.
KPP053, HT2016 MATLAB, Föreläsning 3. Plotter och diagram Läsa och skriva data till fil
KPP053, HT2016 MATLAB, Föreläsning 3 Plotter och diagram Läsa och skriva data till fil 2D-plott (igen) x = linspace(-10,10); %godtyckligt intervall % punkt framför * och ^ ger elmentvis operation y = x.^2
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1
M0043M Integralkalkyl och Linjär Algebra, H14, Matlab, Föreläsning 1 Ove Edlund LTU 2014-11-07 Ove Edlund (LTU) M0043M, M1 2014-11-07 1 / 14 Några elementära funktioner i Matlab Exempel exp Beräknar e
Numeriska metoder och grundläggande programmering för P1
Laborationer i Numeriska metoder och grundläggande programmering för P1 våren 2011 Namn................................... Personnr............................. Lab 1 Introduktion tog timmar Godkänt den....................................(senast
CHALMERS LINDHOLMEN Sida 1
Institutionen för data- och elektroteknik 2004-04-26 1 Inledning Laboration nummer tre är inriktad på att studera och dimensionera tidsdiskreta filter. Ni kommer att via en LabVIEW-applikation kunna dimensionera
Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab
Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab Eddie Alestedt Vt-2002 Digitala filter Digitala filter appliceras på samplade signaler och uppvisar helt andra egenskaper än
Föreläsning 12: Datastrukturer & filer
1 11 februari 2016 SF1520 Num Met och grundl prog, del 1 för K, HT2015/VT2016 Föreläsning 12: Datastrukturer & filer Kap 6-8 i PEng Idag: Komplexa tal Strängar Glesa matriser Posttabeller Biblioteket igen,
Laboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
REGLERTEKNIK Laboration 4
Lunds Tekniska Högskola Avdelningen för Industriell elektroteknik och automation LTH Ingenjörshögskolan, Campus Helsingborg REGLERTEKNIK Laboration 4 Dynamiska system Inledning Syftet med denna laboration
MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...
Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion
Staffan Romberger 2008-10-31 DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna hantera vektorer och matriser, villkorssatser
DIGITALA FILTER DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1
DIGITALA FILTER TILLÄMPAD FYIK OCH ELEKTRONIK, UMEÅ UNIVERITET 1 DIGITALA FILTER Digitala filter förekommer t.ex.: I Photoshop och andra PC-programvaror som filtrerar. I apparater med signalprocessorer,
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
MR-laboration: design av pulssekvenser
MR-laboration: design av pulssekvenser TSBB3 Medicinska Bilder Ansvarig lärare: Anders Eklund anders.eklund@liu.se Innehåll Uppgift Initialisering av k-space Koordinater i k-space Navigering i k-space
Mer om funktioner och grafik i Matlab
CTH/GU 2/22 Matematiska vetenskaper Inledning Mer om funktioner och grafik i Matlab Först skall vi se lite på funktioner som redan finns i Matlab, (elementära) matematiska funktioner som sinus och cosinus
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Numeriska metoder och grundläggande programmering för T1
Laborationer i Numeriska metoder och grundläggande programmering för T1 hösten 2009-våren 2010 Namn................................... Personnr............................. Lab 1 Introduktion tog timmar
Yrkeshögskolan Novia Utbildningsprogrammet i elektroteknik
Grunderna i programmeringsteknik 1. Vad är Känna till nämnda programmering, begrepp. Kunna kompilera högnivå språk, och köra program i det i kompilering, kursen använda tolkning, virtuella programmeringsspråket.
Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.
Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra
Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther Datorövning 2 Matlab/Simulink i Styr- och Reglerteknik för U3/EI2 Laborationen förutsätter en del förberedelser
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Matriser och Inbyggda funktioner i Matlab
Matematiska vetenskaper 2010/2011 Matriser och Inbyggda funktioner i Matlab 1 Inledning Vi skall denna vecka se på matriser och funktioner som är inbyggda i Matlab, dels (elementära) matematiska funktioner
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Linjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.
MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av
Övning från förra gången: readword
(9 september 2010 T4.1 ) Övning från förra gången: readword /** readword.c * * int readword(char w[], int n) { * * Läser tecken tills en bokstav påträffas. * Läser och lagrar sedan högst n-1 bokstäver
Numeriska metoder och grundläggande programmering för P1 och T1
Laborationer i Numeriska metoder och grundläggande programmering för P1 och T1 våren 2008 Namn................................... Personnr............................. Lab 1 Introduktion tog timmar Godkänt
Implementering av digitala filter
Kapitel 9 Implementering av digitala filter Som vi sett i kapitel 8 kan det behövas ett mycket stort antal koefficienter för att representera ett digitalt filter. Detta gäller i synnerhet FIR filter. Det
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att
MATLAB handbok Introduktion
Department of Physics Umeå University 30 juni 2014 MATLAB handbok Introduktion Marina Wallin Martin Hansson Per Sundholm 1 INTRODUKTION TILL MATLAB 1 1 Introduktion till Matlab Något man som Teknisk fysiker
Optimal Signalbehandling Datorövning 1 och 2
Institutionen för Elektro- och Informationsteknik Lunds Universitet Lunds Tekniska Högskola Optimal Signalbehandling Datorövning 1 och 2 Leif Sörnmo Martin Stridh 2011 Department of Electrical and Information
Passiva filter. Laboration i Elektronik E151. Tillämpad fysik och elektronik UMEÅ UNIVERSITET Ulf Holmgren. Ej godkänd. Godkänd
Tillämpad fysik och elektronik UMEÅ UNIVESITET Ulf Holmgren LABOATION Analog elektronik 961219 Passiva filter Laboration i Elektronik E151 Namn Namn Ej godkänd Datum Datum Godkänd Datum PASSIVA FILTE -
Beräkningsverktyg HT07
Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion
Projekt 3: Diskret fouriertransform
Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.
GRUNDER I VHDL. Innehåll. Komponentmodell Kodmodell Entity Architecture Identifierare och objekt Operationer för jämförelse
GRUNDER I VHDL Innehåll Komponentmodell Kodmodell Entity Architecture Identifierare och objekt Operationer för jämförelse KOMPONENTMODELL Modell för att beskriva komponenter Externt interface Intern funktion
Funktionsteori Datorlaboration 2
Funktionsteori Funktionsteori Datorlaboration 2 Fourierserier Inledning Största delen av denna laboration handlar om Fourierserier, men vi startar med seriesummation. Vissa filer kan du behöva hämta på
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter
Digitala filter Digitala filter FIR Finit Impulse Response Digitala filter förekommer t.ex.: I Matlab, Photoshop oh andra PCprogramvaror som filtrerar. I apparater med signalproessorer, t.ex. mobiltelefoner,
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
MATLAB. En kort praktisk introduktion. Olof Hultin FAFA Omarbetad efter original av Henrik Persson
MATLAB En kort praktisk introduktion Olof Hultin olof.hultin@ftf.lth.se Omarbetad efter original av Henrik Persson FAFA10 2014-11-06 Dagens föreläsning K404: Kort introduktion till MATLAB - ca 40 min H212:
När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
TEM Projekt Transformmetoder
TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT)
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Matriser och Inbyggda funktioner i Matlab
CTH/GU STUDIO 1 TMV036a - 2012/2013 Matematiska vetenskaper Matriser och Inbyggda funktioner i Matlab Analys och Linjär Algebra, del A, K1/Kf1/Bt1 Moore: 2.3, 3.1-3.4, 3..1-3.., 4.1, 7.4 1 Inledning Nu
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
Matematisk Modellering
Matematisk Modellering Föreläsning läsvecka 4 Magnus oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/17 Denna föreläsning (läsvecka 4) Kursadministration (redovisning projekt 2,
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Föreläsning 10, Egenskaper hos tidsdiskreta system
Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Matriser och vektorer i Matlab
CTH/GU LABORATION 2 TMV157-2014/2015 Matematiska vetenskaper Matriser och vektorer i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi
Översikt över Visual Basic
Översikt över Visual Basic Om denna översikt Denna översikt ger en kort introduktion till de viktigaste delarna i programspråket Visual Basic 6.0. På alla ställen där det beskrivs hur man skriver kod gäller
Matematisk Modellering
Matematisk Modellering Föreläsning läsvecka 3 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/39 Denna föreläsning (läsvecka 3) Matematisk modellering - fördjupning Modelleringsexempel
Datorlära 3 Octave Workspace ovh mijlö Skriva text på skärmen Värdesiffror Variabler och typer Strängar Makro Vektorer
Datorlära 1 Introduktion till datasystemet, epost konto, afs hemkonto Introduktion till datorer och datasalar Open Office Calculator Beräkningar med Open Office Calc Diagram med OO Calc Datorlära 2 Utforma
Beräkningsvetenskap föreläsning 2
Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa
Föreläsning 3: Dekomposition. Dekomposition
Föreläsning 3: Dekomposition Dekomposition Dekomposition är en generell metod för att lösa problem Metoden bygger på att man delar upp ett problem i delproblem av samma typ som ursprungsproblemet Uppdelningen
HI1024 Programmering, grundkurs TEN
HI1024 Programmering, grundkurs TEN2 2016-01-09 KTH STH Haninge 8.15-13.00 Tillåtna hjälpmedel: En A4 handskriven på ena sidan med egna anteckningar Kursboken C PROGRAMMING A Modern Approach K. N. King
PC-BERÄKNINGAR. REGLERTEKNIK Laboration 5 och inlämningsuppgift. Inlämningsdatum:... Inlämnad av labgrupp:... Gruppdeltagare:
och inlämningsuppgift PC-BERÄKNINAR Inlämningsdatum:... Inlämnad av labgrupp:... ruppdeltagare:............ ranskad:... Reglab PC-beräkningar del.doc INLEDNIN Denna laboration kommer att visa fördelarna
Funktioner och grafritning i Matlab
CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.
Programmera i C Varför programmera i C när det finns språk som Simula och Pascal??
Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? C är ett språk på relativt låg nivå vilket gör det möjligt att konstruera effektiva kompilatorer, samt att komma nära
Introduktion till Matlab Föreläsning 2
Introduktion till Matlab Föreläsning 2 FY021G Ingenjörsvetenskap Magnus.Eriksson@miun.se Reviderad 2007-09-23 1 Examination En enkel dugga (kort prov, ca 20 minuter) inleder labbtillfället Duggans uppgifter
Laboration: Grunderna i Matlab
Laboration: Grunderna i Matlab Att arbeta i kommandofönstret och enkel grafik Den här delen av laborationen handlar om hur man arbetar med kommandon direkt i Matlabs kommandofönster. Det kan liknas vid
Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka
Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 0803/ Thomas Munther Datorövning Matlab/Simulink i Styr- och Reglerteknik för U3/EI Laborationen förutsätter en del förberedelser
String [] argv. Dagens Agenda. Mer om arrayer. Mer om arrayer forts. String [] argv. argv är variabelnamnet. Arrayer och Strängar fortsättning
Dagens Agenda String [] argv String [] argv Arrayer och Strängar fortsättning Booleska operatorer if, for, while satser Introduktion till algoritmer public static void main(string [] argv) argv är variabelnamnet
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
TDDC74 Programmering, abstraktion och modellering DUGGA 2
AID-nummer: Datum: 2011-02-18 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Fredag 18 feb 2011
Laborationsprojekt i digital ljudsyntes
Laborationsprojekt i digital ljudsyntes A. Målsättning Att studenten skall få fördjupade kunskaper i digital signalbehandling genom att lära sig de grundläggande principerna för digital ljudsyntes av stränginstrumentliknande
Matematisk Modellering
Matematisk Modellering Föreläsning läsvecka 3 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/33 Denna föreläsning (läsvecka 3) Kursadministration (hur går projektarbetet?)
Introduktion till Matlab
Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,