BREEAM-SE 2017 Appendix to Ene 03

Storlek: px
Starta visningen från sidan:

Download "BREEAM-SE 2017 Appendix to Ene 03"

Transkript

1 BREEAM-SE 2017 Appendix to Ene 03 Appendix to Ene 03 To achieve a good lighting quality in combination with a low energy use and also to improve the performance within a building that chooses environmental certification with BREEAM-SE, we mean that the criteria shall be a luminous efficacy of at least 70 lm/watt. The following reports has been attached to show that a luminous efficacy of 70 lm/watt is likely to be met with the technic that are present in the market today. Report number 1: Vägledning för miljöanpassad utomhusbelysning, 2009 Guidance to sustainable external lighting, from Miljöstyrningsrådet (today a part of Swedish Competition Authority). In the report recommendations for energy efficient lighting that was used in the Swedish marked already in 2009 are present. LED-lighting are missing in the report, please see further guidance below. Report number 2 and 3: To show that there are LED's on the market that will fulfil the criteria of 70 lm/watt, two reports prepared by, among others, Swedish Energy Agency are present below. "A test report prepared for the European Commission and the Consultation Forum on the performance of clear LED lamps in the European Market in the third quarter of 2014" and "A paper prepared for the European Commission, Member States and the Consultation Forum on the evolution of the LED market in Europe and how this affects the evidence base associated with the policy decision on Stage 6 of EC regulation No 244/2009". The reports can be found in the homepage for the Swedish Energy Agency:

2 Vägledning för miljöanpassad utomhusbelysning Miljöstyrningsrådet

3 Innehåll: Introduktion Projektering viktiga beslut Gaturum och gestaltning Investering och återbetalning Ljuskällor olika faktorer Armaturer olika faktorer Förkopplingsdon (Driftdon) Styrsystem Elsäkerhet och lägre elförbrukning Underhåll och service Återvinning och avfallshantering Bilaga I: Förkortningar BILAGA II: Ordlista Bilaga III: Beräkning av elförbrukningens miljöpåverkan Bilaga IV: Ljuskvalitet, ljusupplevelse och energibesparing Bilaga V: Kvicksilver och ljuskällor Bilaga VI: Information om övriga ljuskällor för utomhusbelysning Bilaga VII: Information om ljusföroreningen himlaglim Fotnoter Vägledningen är framtagen av Miljöstyrningsrådet Arbetsgruppen för utomhusbelysning Kontaktperson: Eva Dalenstam, Miljöstyrningsrådet

4 INTRODUKTION Syfte och omfattning Många kommuner har behov av att modernisera sina väg-, gatu- och parkbelysningsanläggningar. De upplever ett behov av att få råd och riktlinjer i detta arbete för att kunna göra miljöriktiga val. Denna vägledning samt tillhörande kriteriedokument för belysningsprodukter, entreprenad och projektering är framtagna som stöd för upphandlare som vill genomföra en miljöanpassad upphandling av utomhusbelysning. Upphandlingsdokumenten bygger dels på Vägverkets riktlinjer, Vägar och gators utformning, VGU (2004:80), och dels på Vägverkets publikation Miljökrav vid upphandling av entreprenader och tjänster (2006:105). För att förenkla omfattningen och uppbyggnaden av detta dokument är vägledningen begränsad till utomhusbelysning som omfattas av väg-, gatu- och parkbelysning, exklusive miljöskapande belysningen eller s.k. effektbelysning. Belysningens miljöpåverkan En belysningsanläggning ger upphov till miljöbelastning och den allra största delen, över 80 % av den totala miljöbelastningen 1, orsakas av dess elförbrukning (bilaga III). Val av system och anläggningens dimensionering blir avgörande för den framtida miljöbelastningen. Dessa val görs dels vid beslut om belysningsstrategier för olika områden och dels vid projektering av anläggningarna. Transporter vid underhåll och inköp, kemikalieinnehåll samt avfall är andra miljöbelastande faktorer att ta hänsyn till vid upphandling av utomhusbelysning. 3 Besparingspotentialer Offentlig belysning är en stor kostnadspost för offentliga förvaltningar. I den totala livscykelskostnaden är elenergi en mycket stor post. Många anläggningar som installerades på 60- och 70-talen är idag i stort behov av nya investeringar, och det är då viktigt att välja teknik som minskar elförbrukningen och som därmed ger låga livscykelkostnader. Det finns nya armaturer på marknaden som kan minska energiåtgången väsentligt om gamla armaturer ska ersättas helt. EU är på gång att byta ut kvicksilverljuskällor 2 mot högtrycksnatriumljuskällor eller metallhalogenljuskällor. Detta kommer att leda till en effektivisering med ca 40 %. Ett byte från slammade ellipsoida ljuskällor till klara tubformade ljuskällor kan uppnå 15 % effektivisering medan byte från magnetiska förkopplingsdon till elektroniska minskar energiförbrukningen med ca 7 % och förlänger ljuskällans livslängd med upp till 30 % 3. Även ny styrutrustning gör det möjligt att sänka kostnader och energiförbrukning väsentligt. Om gamla belysningsanläggningar utrustas med nya armaturer och ny styrutrustning inverkar detta inte negativt på kvaliteten. Sveriges Kommuner och Landsting (SKL) har jämfört tre alternativa sätt att bygga om en anläggning från 1960-talet med kvicksilverljuskällor. Undersökningen visar att det ofta är fullt möjligt att halvera användningen av energi utmed en gata. Därmed kan driftskostnaden sänkas betydligt samtidigt som bättre ljuskvalitet uppnås. Att investera i ny belysning kan alltså snabbt bli en mycket lönsam affär 4.

5 Projektering - viktiga beslut Ljus är något av en grundpelare i vårt samhälle. Gatuoch parkbelysning tas för givet i städerna och är en självklar del av vår vardag. Samtidigt känner sig människor, framförallt kvinnor, alltmer otrygga i städerna. Det finns ett stort behov av mer och bättre utformad belysning. Eftersom belysningsanläggningens största miljöbelastning ligger i dess energiförbrukning gäller det därför att vid planeringen noga väga energi mot nytta. Förutsättningar för belysningen Gatu- och vägbelysningens syfte är att hjälpa trafikanter att upptäcka och stanna för hinder på vägen innan en olycka sker. Komplexare situationer ställer högre krav på belysningsmängden. Hastighet, trafiktäthet, bländning och närvaron av oskyddade trafikanter påverkar ljusbehovet. Principen för vägbelysning är att hinder och objekt framträder i mörk kontrast mot den ljusare vägbanan. Högre ljusstyrkor ger kortare reaktionstider. Den farligaste situationen är den med mötande trafik. Den belysta vägbanan hjälper då till att minska bländningen från billjuset vilket ökar chansen för föraren att upptäcka hinder bortom den mötande bilen. Vägbelysning beräknas som vägbanans ljushet mot en tänkt observatör på ett visst avstånd mot belyst område. I Vägverkets skrift VGU finns riktlinjer för i vilka situationer belysning blir nödvändig och rekommenderade ljusnivåer. Allra mest nytta vad gäller trafiksäkerheten får gatubelysning i miljöer där både bilar och oskyddade trafikanter vistas. Parkbelysningens syfte är att människor som går eller cyklar ska kunna förflytta sig säkert i staden. Man ska med belysningens hjälp kunna upptäcka hinder och faror på och bredvid parkvägen, kunna orientera sig samt se och bedöma mötandes avsikter. Olika typer av miljöer har olika behov av belysningsanläggning. Stadsparken med stor genomströmning av folk och närhet till uteliv, målpunkt för turism och plats i stadshistorien har helt andra förutsättningar och behov än gång- och cykelvägen mellan busstationen och det egna bostadsområdet. I parkområden med lägre hastigheter, avsaknad av bländning från bilar och andra krav, är förutsättningarna andra än för gatubelysning vilket innebär att principer och beräkningsmetoder skiljer sig åt. En väl belyst vägbana är fortfarande viktig i parkmiljö för att upptäcka hinder och hål men ljusmängden kan vara lägre. Ett visst sidoljus kan behövas i parkbelysning, mer information om detta finns i avsnittet om Ljusföroreningar och armaturens ljusspridning. Olika val Redan i projekteringsstadiet ska belysningsstrategin bestämmas och projektet kan planeras med utgångspunkt att energieffektivisera. En tidig planering gör att alla som engageras i projektet kan arbeta med samma utgångspunkt, såväl elinstallatörer och arkitekter som belysningskonsulter, byggentreprenörer etc. Följande åtgärder kan övervägas vid projektering: Det första beslut som ska tas är om vägen överhuvudtaget ska belysas. Trafikmängd och svårighetsgrad avgör. Förekommer exempelvis oskyddade trafikanter? Rekommendationerna i VGU kan användas för att välja rätt ljusnivå. Det är viktigt med ljus på vägar där oskyddade trafikanter kan befinna sig. Tidsstyr effekten, dämpa ljusstyrkan vissa tider på dygnet, optimera tänd- och släcktider Byt ljuskällor (och armaturer, förkopplingsdon), på befintliga stolpar. Vid byte av ljuskälla är det viktigt att kontrollera att armaturen och förkopplingsdonet är anpassade till ljuskällan. Byt hela anläggningen och gör en optimering enligt VGU. För att få en bild av vilka åtgärder som är ekonomiskt genomförbara bör en livscykelkostnadskalkyl göras, vilken sedan balanseras mot den budget som finns till förfogande. En möjlighet, ifall budgeten är för liten, är att upphandla utomhusbelysningen som ett EPC-projekt, s.k. Energy Performance Contracting. Läs mer om detta under kapitlet Investering och återbetalning. Vid planering av belysningsstrategier måste också givna de förutsättningarna som råder beaktas. Dessa kan exempelvis vara elnät, stadsplanering, omgivande arkitektur, skyltfönsters belysning, logistiska flöden som exempelvis folk som strömmar ut från en biograf vid vissa tider, etc. 4

6 En ytterligare faktor att ta hänsyn till vid planeringen är den omgivande miljön. Är det stadsmiljö, bostadsområde, park, påfart, motorväg eller tunnel? Är området utsatt för vandalism, finns det extra hög korrosionsrisk? Finns det särskilda krav på design, utformning, tändtider eller underhåll så påverkar det i sin tur vilken teknik som bör användas, vilket i sin tur påverkar energiförbrukningen. Många befintliga belysningsanläggningar är helt eller delvis överflödiga och borde aldrig ha byggts. Om åtgärd (1) enligt ovan alltid övervägs, kan detta kanske undvikas i framtiden. Överdimensionerade anläggningar kan undvikas genom bra belysningsplanering, eller genom EPC som gör det möjligt för leverantörerna att erbjuda så litet belysning som möjligt för att tillgodose den specificerade och efterfrågade funktionen. Ljuspunktshöjden, ljuspunktsavståndet och armaturens ljusfördelning påverkar bländningen, samt belysningsnivån och jämnheten på den belysta ytan. Högre montagehöjd belyser större yta, gör belysningen jämnare och minskar bländningen, men belysningsnivån minskar. Vid högre ljuspunktshöjder kan färre ljuspunkter användas och placeras längre från körbanan. Typiska höjder är: 4 m (gc-vägar), 6 m (bostadsgator), 8 m (matargator), och m (trafikleder). GATURUM OCH GESTALTNING Gestaltning kan vara ett effektivt verktyg för energieffektivisering av utomhusbelysning. Ljusets olika visuella egenskaper, möjligheter och förutsättningar kan utnyttjas för att göra tekniska val som leder till energieffektivisering. Även människans förutsättningar, möjligheter och begränsningar att läsa av sin miljö, biologiskt, fysiskt och upplevelsesmässigt (s.k. miljöpsykologi) är viktiga faktorer som kan påverka de tekniska valen i en energieffektiv riktning. INVESTERING OCH ÅTERBETALNING Ett bra sätt att jämföra olika åtgärder är att beräkna återbetalningstider. Den absolut enklaste beräkningen är att dela investeringen med kostnadsbesparing per år. En mer avancerad jämförelse kan göras med hjälp av livscykelkostnadsberäkningar, LCC. Ett exempel på LCC finns på Miljöstyrningsrådets hemsida tillsammans med kriteriedokumenten för utomhusbelysning. Åtgärder som ger största möjliga energibesparing ska prioriteras eftersom de också ger störst miljönytta. En investering i energieffektiv utomhusbelysning kan kosta en del, men detta återbetalas på relativt kort tid. Det är dessutom mycket motiverat eftersom av kommunernas drift- och underhållskostnader är gatubelysningen den näst största posten med 25 %, d.v.s mkr (2005). Det är en ökning med ca 9 % jämfört med Den stigande trenden beror på det stigande elpriset. Detta eftersom kostnaderna domineras av elkostnaderna. Återbetalningstiden är kort p.g.a. de höga energipriserna 5. Ifall investeringsbudgeten är mycket låg, är en möjlighet att genomföra ett EPC-projekt. I Sverige är det mer vanligt med EPC inom fastighetsförvaltning, där det har tillämpats mycket framgångsrikt. EPC EPC står för Energy Performance Contracting. Det är en funktionsupphandling av energibesparing med driftansvar och prestandagaranti. Det innebär att entreprenören har ansvar för slutresultatet och garanterar en viss energibesparing som gäller under hela kontraktstiden. EPC säkerställer att den investering som görs verkligen ger det tänkta resultatet. Besparingarna kan dessutom oftast bli större än den garanterade, eftersom entreprenören garanterar en minsta besparing. Om besparingen inte uppfylls blir entreprenören återbetalningsskyldig. Investeringarna betalas tillbaka av den garanterade besparingen. Entreprenören kan sköta detta eller så finansierar kommunen projektet. Att det är en garanterad besparing innebär att kommunen undviker risktagandet. Olika delar i belysningsanläggningen har olika livslängder. Följande är typiska värden: armaturer 25 år, stolpar år och kabel år. Den ekonomiska livslängden för hela anläggningen är ca 33 år. Det innebär att vid planering av belysningsanläggningen ska ett armaturbyte beräknas ske innan det är dags att byta stolpe, samt att kabelnätet håller 2-4 gånger så länge som armaturen. Om en 25 år gammal armatur byts idag gör utvecklingen i teknik och ljuskällor att man automatiskt sparar energi. Armaturer för 250 W kan bytas till 150 W eller 100 W armaturer. Inom utomhusbelysning har man erfarenhet av EPC inom ett Europeiskt projekt, E-street, under Intelligent Energy Europe. Mer om deras projekt finns att läsa på där bland annat olika finansieringsmodeller presenteras. Göteborgs Stad deltog i projektet. Kommuner som saknar eller har mindre erfarenhet av gatubelysning har möjlighet att använda sig av andra kontraktsformer för att energieffektivisera. Ett sätt är att ingå i ett PPP, Public Private Partnership, eller OPS, Offentlig Privat Samverkan. PPP innebär att en privat aktör går in och gör investeringen åt kommunen, samt bidrar med kompetens 5

7 och erfarenhet. Investeringen betalar kommunen sedan av under en återbetalningsperiod. En typ av kontrakt är resultat av en s.k. funktionsupphandling, dvs. färdigt ljus på gatorna. Slutresultatet står i fokus i kontraktet, hur detta utförs är av mindre betydelse. Detta är en fördel om kommunen har ont om egna tekniska personalresurser att bistå med. Det enda kommunen behöver göra är att utföra stickprovskontroll. Dessutom ska entreprenören redovisa resultaten i sitt kvalitetssystem under kontraktsperioden. Viktiga är att vid dessa typer av kontrakt att tiden inte är för kort då investeringen skall betalas av på många år (det kan röra sig om avskrivning på ca 33 år). Kommunen får också lägre energikostnader vilket ger utrymme för avskrivningar. LJUSKÄLLOR OLIKA FAKTORER Kvaliteten på ljuskällor kan definieras med olika begrepp som finns beskrivna nedan. I ordlistan i bilaga II, finns förklaringar till de belysningstekniska termerna. Ljusutbyte Klara ljuskällor har högre ljusutbyte än slammade (matta) ljuskällor. Klara ljuskällor möjliggör dessutom att ljuskällan kan styras med hjälp av optik, varför dessa föredras ur energieffektiviseringssynpunkt. Det kan vara motiverat att använda slammade ljuskällor i vissa situationer i bostadsområden om bländning konstateras som problem. Ett alternativ är då istället att använda bländskydd som ger ett mjukare ljus. Ett högt ljusutbyte är nödvändigt för att uppnå energieffektivisering och ska eftersträvas i första hand, men det finns även andra faktorer att ta hänsyn till som kan utläsas i nedan följande avsnitt. Färgåtergivning, färgtemperatur & spektrum Det är viktigt att överväga i vilka fall god färgåtergivning behövs, eftersom ljuskällor med denna egenskap inte alltid ger optimalt ljusutbyte och inte alltid har den långa livslängden som andra ljuskällor har. Ny utveckling av ljuskällor har dock gjort det möjligt att finna ljuskällor med både god färgåtergivning, högt ljusutbyte och bra livslängd. God färgåtergivning kan fungera brottsförebyggande eftersom det gör det möjligt att kunna se färger och utläsa ansikten m.m. Det finns också arkitektoniska skäl till att prioritera god färgåtergivning. Detta är endast några exempel och det finns givetvis fler skäl till att välja ljuskällor med god färgåtergivning. Det finns ljuskällor med god färgåtergivning som kan ge energibesparingsmöjligheter, läs mer om detta i bilaga IV. I denna bilaga om Ljuskvalitet, ljusupplevelse och energibesparing berörs spektrumets och färgtemperaturens betydelse ur säkerhets- och energisynpunkt. Livslängd, ljusnedgång och lampbortfall Livslängd, ljusnedgång och lampbortfall är ofta nämnda tillsammans, eftersom livslängden för en ljuskälla anges som brinntid (i timmar) vid ett visst lampbortfall, och även ljusnedgången kan anges för denna brinntid. Ett bra mått skulle vara s.k. normal brinntid, då 90 % av ljuskällorna lyser med % av ursprungligt ljusflöde. För mer förklaringar, se ordlistan. Alla ljuskällor tappar ljus över livslängden. Ljuskällans ljusnedgång påverkar vilken dimensionering man bör göra av belysningsanläggningen (d.v.s. en viss överdimensionering görs för att kompensera ljusnedgången). Ljuskällans ljusnedgång påverkar också planeringen av underhåll. När ljuskällorna tappat för mycket ljus är det dags att byta ut dem. Vad gäller lampbortfall, är det bra att välja ljuskällor med lågt lampbortfall av säkerhetsskäl (det anses värre med mörka luckor i belysningen än en allmän ljusnedgång i hela anläggningen). Överdimensioneringen gör det dock intressant ur energisynpunkt att även välja ljuskällor med liten ljusnedgång. Val av ljuskällor med lång livslängd är viktigt ur miljösynpunkt i miljöer där det är svårt att byta ut belysningen, eftersom många olika fordon krävs vid dessa byten. Det är då bra att minimera dessa tillfällen. Kemikalieinnehåll Ljuskällor innehåller flera kemikalier. Följande miljöfarliga kemiska ämnen kan förekomma i ljuskällor: kvicksilver, bly och krom. Den mest uppmärksammade är kvicksilver, som är mycket giftigt och dessutom bioackumulerande, vilket innebär att det kan tas upp och ansamlas i en organism. Det är därför viktigt att planera för en god avfallshantering vid underhållsentreprenad, så att uttjänta ljuskällor omhändertas så att kvicksilvret kan återvinnas. Allmänt kan sägas att innehåll av farliga ämnen har fasats ut i ljuskällor under de senaste åren. Även kvicksilvermängden har stadigt minskat. Ljuskällorna omfattas av WEEE-direktivet, producentansvaret för elektriska och elektroniska produkter. Det innebär att producenterna ansvarar för att det finns ett system för säkert omhändertagande. Läs mer om detta i kapitlet om återvinning och avfallshantering. Ljuskällor omfattas också av RoHS-direktivet. Genom RoHS-direktivet förbjuds användningen av kvicksilver, kadmium, bly, sexvärt krom och flamskyddsmedlen PBB och PBDE i elektriska och elektroniska produkter som släpps ut på marknaden efter 1 juli Det finns dock undantag i lagstiftningen för vissa specificerade användningsområden, och kvicksilver i ljuskällor är en av dem 6. 6

8 Inom branschen utvecklas ljuskällor utan kvicksilver. Dessa har dock för närvarande ett lägre ljusutbyte. Högtrycksnatriumljuskällor förlorar ex lumen per watt ifall de är kvicksilverfria. Läs mer om kvicksilver och ljuskällor i bilaga V. Det är viktigt med tydliga och detaljerade miljödeklarationer för ljuskällorna så att kunskap om all deras innehåll finns vid slutomhändertagandet. Olika ljuskällor I tabellen nedan redovisas typiska värden för ljuskällor som kan förekomma i utomhusbelysning. Kvicksilverljuskällan finns inte med i tabellen eftersom den p.g.a. sin höga energiförbrukning ska fasas ut enligt Ekodesigndirektivet. Ibland kan det vara nödvändigt med en kompromiss vid val av ljuskällor. Idag har exempelvis keramisk metallhalogenljuskällan kortare livslängd än högtrycksnatriumljuskällan och kompaktlysrör. Å andra sidan har den både god färgåtergivning och högt ljusutbyte. Lysrören och kompaktlysrören finns i longlife-utförande men har lägst ljusutbyte av ljuskällorna. Lysrören och kompaktlysrören är utformade så att det inte går att rikta ljuset från dessa ljuskällor på samma sätt som för keramisk metallhalogen och högtrycksnatriumljuskällan. Högtrycksnatriumljuskällan har högst ljusutbyte och relativt lång livslängd, men sämre färgåtergivning. Den har också sämre ljusutbyte för mesopiskt och skotopiskt seende än övriga ljuskällor. Ljuskälla Effekt Livslängd vid 10% lampbortfall (h) Högtrycks-natrium-ljuskälla 50W 400W Ca (Långlivs-varianter ca ) Ljusnedgång vid denna livslängd Färgtemperatur (K) (ju högre värde desto kallare) Färgåtergivning (Ra) (ju högre värde desto bättre) Ljusutbyte (lm/w) Övrig information (Hg=kvicksilver) Ca 10 % Ca 2000 Ca 20 Ca Innehåller Hg (Finns även Hgfria varianter) Keramisk metallhalogen-ljuskälla 35W 400W Ca Ca % Ca Ca Innehåller Hg Högt ljusutbyte för mesopiskt och skotopiskt seende Lysrör 14W 80W Ca (Långlivs-varianter ) Kompaktlysrör 5W 80W Ca (Långlivs-varianter < 42000) Ca 10 % Ca Innehåller Hg Högt ljusutbyte för mesopiskt och skotopiskt seende Ca 10 % Ca 85 Ca Innehåller Hg Högt ljusutbyte för mesopiskt och skotopiskt seende Aktuell teknik för ljuskällor, 2009 En ljuskälla med såväl god färgåtergivning, högt ljusutbyte och lång livslängd med högst 10 % lampbortfall och fortsatt god ljusbibehållning eftersträvas oftast. Dessa ljuskällor kan dock vara svåra att få tag på, som kan utläsas av tabellen ovan som sammanfattar befintlig teknik på marknaden. Utveckling sker dock av t.ex. keramiska metallhalogenljuskällor som har både ökad livslängd och högre ljusutbyte. I VGU går att utläsa att högtrycksnatriumljuskällor mest används till vägbelysning och mindre känsliga områden i tätort och keramisk metallhalogenljuskällor används för gator, GC-vägar, torg och parker. Övriga ljuskällor som används inom utomhusbelysning är kompaktlysrör som kan användas på GC-vägar, torg och i parker, samt lysrör som kan användas i tunnlar. Det är dock viktigt att kontrollera att kompaktlysrören och lysrören klarar låga temperaturer (armatur och förkopplingsdon). Det finns annars risk för så mycket som 50 % bortfall av ljusflödet vid minusgrader och livslängden kan minskas. Alla de tekniska val som görs när man planerar sin belysningsstrategi påverkar hur energieffektiv och miljöanpassad belysningsanläggningen blir. Det vill säga, det är inte bara ljuskällorna som ska övervägas noga utan också val av armaturer med dess reflektorer och stolpar m.m. Mer information om övriga ljuskällor för utomhusbelysning, som diodljuskällor och induktionsljuskällor, finns i bilaga VI. ARMATURER OLIKA FAKTORER Armaturen är en viktig del av belysningssystemet när man vill optimera ljusets kvalitet och minimera ljusspill. Armaturen kan vara utrustad med en reflektor som ökar luminansen och reflektorns form och yta bestämmer ljusstrålens storlek och symmetri. Blanka reflektorer riktar ljuset och placerar det så att det ger störst nytta. Bländskydd kan ingå i armaturen för att ge ett mjukare ljus. 7

9 Optik - effektivare reflektorer Systemets belysningseffektivitet (UF) definieras av andel ljusflöde som träffar referensytan per summan av det totala ljusflödet från de installerade ljuskällorna. UF av en armatur är resultatet av en kalkyl bestående av armaturens fotometriska data samt ljuspunktskonfigurationen, vägreflektionen och vägdimensionerna. På så vis tas systemet med i beräkningarna 7. För att få en hög UF måste så mycket som möjligt av ljuset riktas mot den tänkta ytan. Desto högre UF, desto mindre energi behövs för ljuskällan. Nya armaturer har multifacetterad reflektor som kan användas för att anpassas till specifika ytor. Armaturer med interna reflektorer kan minska uppåtriktad spilljus. Asymmetrisk reflektor undviker störande sidospilljus. Armaturer med transparent skyddsmaterial med mer koncentrerade optikegenskaper och hög optisk transmittans skulle förbättra UF. UF kan då förväntas att öka till 0,6. Aluminiumreflektorer kan öka sin prestanda genom multilagerteknik. Reflektering kan ökas från 87 % till 95 % p.g.a. detta. Armaturens verkningsgrad kan ökas med 5-15 %. Totalverkningsgrad För att optimera armaturens totaleffekt (d.v.s. ljuskällans och förkopplingsdonets effekt tillsammans, där så liten förkopplingsdonseffekt som möjligt eftersträvas), är det viktigt att förkopplingsdonets verkningsgrad är så hög som möjligt (förkopplingsdonets verkningsgrad räknas ut genom att dela ljuskällans effekt med ljuskällans och förkopplingsdonets effekt tillsammans). Det finns en utveckling av ny armaturdesign med bra skydd. Till exempel finns det enligt klass IP66, fuktoch dammskydd av den optiska enheten med dubbelt hölje, vilket garanterar långsiktig renhet av den optiska enheten. Det finns också nya armaturer med självrengörande lager på glaset som minskar lagring av extern smuts. Det är UV-strålar som aktiverar det självrengörande lagret, de bryter ner det och beståndsdelarna sönderdelar smutsen. Det finns också självrengörande lager som aktiveras av vatten. Kupor av plast går att lackera med en speciallack. Denna lack gör att kupan blir mer motståndskraftig mot t.ex. UV strålning, repor, graffiti och är därmed mycket enkel att rengöra. I smutsig miljö kan det i de flesta fall räcka med att det regnar på kupan. Ljusföroreningar och armaturens ljusspridning I Sverige gör vi av med minst 300 GWh/år i form av spilljus. Armaturer med strö- och spilljus i utomhusbelysningen är inte önskvärda av flera skäl: Lägre belysningskvalitet: Mindre ljus där det gör nytta, bländning, ljus som stör omgivningen, ljusföroreningar Högre driftskostnader: Högre energiförbrukning därför att ljuset slösas bort Onödig miljöpåverkan: Utsläpp av växthusgaser, ljus som stör omgivningen och djur samt belysning av natthimlen Ljusnedgång Anläggningar överdimensioneras för att ge marginal för den ljusnedgång som sker på grund av ålder och smuts. För att undvika ljusnedgång ska armaturen skyddas med hjälp av minst kapslingsklass IP65 istället för IP23 (hög ljusbibehållningsfaktor uppnås). 8

10 Gatuarmaturer med planglas som är helt avskärmade uppåt ger de bästa förutsättningarna för att minska ljusföroreningar och spilljus. Ljuset ska spridas till den tänkta ytan och sidospilljus undvikas. GC- och parkvägsarmatur kan ha en lätt välvd kupa eller ha någon enstaka procents ljussläpp åt sidorna för att ge en vägledning. Lameller och bländskydd är sätt att dämpa sidoljusspillet. I undantagsfall kan som rent estetisk ljussättning uppljus accepteras, men då företrädesvis när något skärmar uppåt såsom träd och annan vegetation. All ljusförorening bör minimeras. Mer information om ljusföroreningar och dess påverkan finns i bilaga VII. Armaturens kupa eller planglas kan vara tillverkade av plast eller glas: Glas har mycket lång livslängd och blir inte gul med stigande ålder. Polykarbonat (PC) är en okrossbar plast som är känslig för hög temperatur och UV ljus. Med stigande ålder blir plasten gul och slagtåligheten försämras då starkt. Även transmissionsgraden försämras då plasten gulnar. Slagtålig Akryl är inte lika okrossbar som PC, men den gulnar inte så mycket som PC. Om en kupa gulnar så blir det mindre ljus i anläggningen. Slagtålig akryl är ett bra alternativ där vandaliseringen är begränsad. Den behåller sin transmissionsgrad bättre än konkurrenten sett över hela sin användningsperiod. Armaturens åldringsegenskaper Vid konstruktion av belysningsarmaturer för utomhusbruk är det viktigt att ta hänsyn till den mekaniska påfrestningen och atmosfären som armaturen utsätts för. Metall är oftast den bästa konstruktionslösningen för stabilitet och livslängd. Den är bra för kylning av armaturen och enkel att återvinna. En del utomhusprodukter levereras omålade vilket är ett bra sätt att reducera miljöpåverkan. 9 Det är viktigt med hållbara strategier ur ett miljöperspektiv. Därför beställs ofta armaturer, stolpar m.m. som är korrosionsskyddade. Samtidigt ska ett sådant skydd helst inte innehålla farliga kemikalier. Skriften Bara stål kan rosta så, från Sveriges Kommuner och Landsting ger lite vägledning. Bland annat förespråkas vattenbaserad ytbehandling om möjligt. En del miljöer ställer dock extra höga krav på korrosionsskydd, exempelvis tunnlar och kustnära områden, där smutshalt och salthalt i luften är höga. FÖRKOPPLINGSDON (DRIFTDON) Det finns både elektroniska och magnetiska förkopplingsdon. Elektroniska förkopplingsdon har följande fördelar jämfört med magnetiska förkopplingsdon: Mer kompakta och effektiva (10 % högre ljusutbyte för lägre wattal: W). Minskad variation avseende ljuskällans ljusflöde (magnetiskt förkopplingsdon ger variationer på ±20 %). Kan vara reglerbara. Vissa elektroniska förkopplingsdon har över-

11 vakningsfunktion, t.ex. larm för åldrad ljuskälla. Detta minskar underhållskostnader och transporter. Detta förutsätter att donet kommunicerar med en central övervakning. Längre ljuskällelivslängd och skydd mot hög spänning vid igångsättning efter nedgång. Den höga spänningen som är effekten av att förkopplingsdonet försöker sätta igång ljuskällan gång på gång (detta sker dock först när ljuskällan har svalnat) skadar ljuskällans och förkopplingsdonets livslängd. Skydd mot detta finns som funktion i elektroniska förkopplingsdon. Alternativt kan högtrycksnatriumljuskällor med inbyggt skydd användas. Vissa elektroniska förkopplingsdon kan vid höga temperaturer i armaturen ljusreglera (dämpa) ljuskällan automatiskt för att skydda förkopplingsdonet. Vissa elektroniska förkopplingsdon kan i äldre ljuskällor ljusregleras automatiskt vid hög lampspänning. På detta sätt kan cykler (antändning, uppvärmning, avstängning, avkylning) hos högtrycksnatriumljuskällor undvikas. Andra miljöfördelar med elektroniska förkopplingsdon är snabb tändning, mindre flimmer samt att ljuskällan släcks när ljuskällan har en felaktighet. Elektroniskt ljusreglerbara förkopplingsdon har inte på allvar blivit ett marknadsmässigt alternativ. Det beror på höga priser, osäker livslängd på grund av förkopplingsdonets komplexitet, bristande kompabilitet med tillgängliga ljuskällor och ett högre pris vid anpassning till utomhusmiljön. Teknologin finns dock tillgänglig för vissa utomhusapplikationer såsom järnvägar, försvaret, telekom och fordon. Därmed kan den snart förväntas bli mer tillgänglig även för andra syften. STYRSYSTEM Allmänt Ett nyinstallerat styrsystem förväntas ha en livslängd på ca 20 år. Under denna tid kommer mycket att förändras vad gäller energipris och ljuskällornas effektivitet. Men även behovet av övervakning för att uppnå ett effektivare underhåll blir en viktig faktor att ta hänsyn till. Energipriset tenderar att stiga i minst samma takt som använd utrustning blir energieffektivare. För att kunna åstadkomma en långsiktig besparing i pengar krävs därför en möjlighet att bättre kunna anpassa ljusnivåer efter rådande yttre förutsättningar. Val av styrutrustning blir därför en viktig del i användarens långsiktiga energistrategi. Ett antal olika system finns tillgängliga på marknaden. De mer avancerade innehåller funktioner som 10 gör att de kan ersätta både enklare lokala och centrala tändsystem och senare även ge möjlighet till en mer avancerad styrning. Lokal tändutrustning Astronomiskt ur - Monteras i belysningscentralen och tänder eller släcker belysningen baserat på solens position på den plats som utrustningen är anpassad för. Ljusrelä - Monteras i anslutning till belysningscentralen och tänder eller släcker belysningen baserat på rådande ljusförhållanden på platsen. Central tändutrustning Styrcentral tvåvägs - Monteras i belysningscentralen och får sitt kommando för att tända/släcka från en centralt placerad utrustning via GSM/GPRSkommunikation. Tändvillkor kan komma från en central gemensam ljussensor eller enligt ett upplagt tidsschema. Medger manuell tändning eller släckning från driftcentral. Utrustning finns i flera utföranden, allt från enkel till/från-funktion till mer avancerade system förberedda för kommunikation med armaturer samt återföring av larm och mätvärden. Styrcentral envägs - Monteras i belysningscentralen och får oftast sitt kommando som ett SMS via GSM kommunikation. Kan också vara ett system byggt på Minicall eller annan typ av envägs radiokommunikation. Kan endast ta emot order för tändning och släckning. Ingen möjlighet till återrapportering av larm eller utebliven tändning finns. Tänd- och släckorder skickas ofta flera gånger för att säkerställa funktion. Ljusreglering (dämpning/dimning) Tvåvägs - Utrustningen monteras i armaturen och växlar vid en kalkylerad tidpunkt till den lägre nivån av förkopplingsdonets två effektlägen. Effektreglering - Utrustningen monteras i anslutning till belysningscentralen och reglerar spänningsnivån på utgående ledningar. Alla anslutna armaturer dämpas gemensamt. Dämpningsnivå och tidpunkt för aktivering bestäms av en intern klocka eller en extern styrsignal. Individuell effektreglering - Utrustningen monteras i armaturen och kommunicerar med det elektroniska förkopplingsdonet. Detta system medger individuell styrning och övervakning av varje armatur. Tänd- och släckkommando, dämpningsnivå, larm och mätvärden överförs från styrcentralen via elnätskommunikation eller radio. Detta system ger bäst möjlighet till energibesparing med bibehållen säkerhet då armaturer vid övergångsställen m.m. kan styras oberoende av andra armaturer.

12 Kommunikation BC/Armaturer - Organisationen LonMark (lonmark. org) har utarbetat ett förslag till standard för kommunikation mellan belysningscentraler (BC) och armaturer där det befintliga elnätet utnyttjas. Den öppna standarden kommer att baseras på elnätskommunikation enligt LON EIA och kallas LonMark, Functional profile, Outdoor Luminair Controller. Denna standard beräknas att antas inom kort efter en sista remissrunda. Standarden definierar hur tänd/släck-funktion, larm samt värden som lampspänning, brinntimmar, energiförbrukning m.m. skall kommuniceras mellan armaturen och belysningscentralen. Idag finns ingen annan etablerad standard, varför det kan vara lämpligt att referera till ovan nämnda vid en upphandling. En avsikt med denna nya standard är att styrcentralen skall kunna kommunicera med armaturer innehållande utrustning från olika leverantörer. Det är också möjligt att styra kommunikationen mellan belysningscentral och armaturer via WiFi, d.v.s. trådlöst LAN(WLAN) enligt IEEE Kommunikationen sker då mellan basnod och noder i armaturerna. Här finns dock inga standardiserade funktionsprofiler framtagna som definierar vad som skall överföras och hur detta skall gå till. En liknande sätt att styra via radio använder ZigBee som kommunikationslänk. BC/GUI - För kommunikation mellan belysningscentral (BC) och centralt placerade användarinterfacet (GUI) finns idag ingen enhetlig standard definierad. Dock kan rekommenderas att kommunikationen bygger på GPRS/UMTS/3G med TCP/IP som protokoll. För de högre nivåerna bör krävas ett protokoll baserat på den öppna XML-standarden. Då inga funktionsprofiler finns definierade är det viktigt att leverantören dokumenterar och lämnar ut hur man nyttjat XML-protokollet. Tändsystemet Styrsystemets tändsystem kan optimeras avseende tänd- och släcktider baserat på några olika villkor: 1. Geografisk position. Det är stor skillnad på tid för solens upp- och nedgång på olika latituder och longituder. 2. Tid på året. Solens upp- och nedgång ändras varje dygn. 11 Ett ljusrelä har ofta en inställning där man kan ställa in luxtal för manöver, t.ex. 15 lux. Dock måste det beaktas att ett mätt ljusvärde också baseras på vädret, en grå och mulen dag tänder det följaktligen lite tidigare än om det skulle vara molnfritt. På samma sätt är det med ett system där man nyttjar en ljusgivare. Istället för ett inställt värde på ljusreläet enligt ovan kan luxparametrarna ställas in i ett centralt styrsystem där systemet även kan ha olika luxtal för tänd och för släck. En ytterligare parameter är den s.k. hysteresfaktorn. Den är ofta baserad på att ett förinställt tröskelvärde (ex. 15 lux) skall vara stabilt under en bestämd tid för att manöver skall ske. Detta värde kan vara 1-10 minuter. Anledningen är att vid övergång kan värdet pendla och det är inte effektivt att ena stunden slå på belysningen, för att ett tillfälligt moln exempelvis under en kort tid ger ett momentant värde som understiger 15 lux.

13 Tändsystem som baseras på astronomiskt ur är enklare att jämföra mot ovanstående beräknad skymning och släckning. I sådana system förekommer ingen yttre påverkansparameter. Dock kan systemet optimeras genom att en solvinkelparameter tillförs som är konstant. Systemet skulle exempelvis kunna tända enligt position och datum för solens passage nedanför horisonten minus 0,5 grader, eller en tidskonstant skulle kunna införas som säger att x antal minuter efter en beräknad horisontpassage skall systemet tända. ELSÄKERHET OCH LÄGRE ELFÖRBRUKNING För att uppnå hög elsäkerhet och låg anslutningsavgift i anläggningen (och därmed lägre elräkning) bör startströmmen i armaturen hållas så låg som möjligt. Det innebär att anläggningen kan avsäkras lägre vilket ger att utlösningsvillkoren förbättras och färre inmatningspunkter i anläggningen är möjligt. Detta på grund av att längre kabellängder kan tillåtas utan att elsäkerheten försämras, utlösningsvillkoren. UNDERHÅLL OCH SERVICE Anläggningar överdimensioneras ofta för att ge marginal för ljusminskning p.g.a. ålder och smuts. Med systematiskt underhåll kan överdimensioneringen hållas nere. En underhållsplan bör upprättas för varje anläggning. En bra rutin för förebyggande åtgärder är nödvändig för att kunna hålla en god service på belysningsanläggningen. Rutinen är också bra för att undvika onödiga transporter. Detta bör kompletteras med en plan för hur drift- och underhållsarbetet ska sänka effektförbrukningen. Dokumentation, karta och register samt uppdatering är grundstommen i en planering. Vet man vart man ska ta vägen kan man redan från början ha med sig rätt material och slippa åka flera gånger. När en åtgärd är utförd bör den registreras omgående. Debiteras energin genom ackordsberäkning ger det snabbt effekt på energifakturan vid armaturbyten. Felanmälan och rutiner för att prioritera rätt är viktigt. Finns det en bemannad kundtjänst är det bra om så exakta uppgifter som möjligt kan fås. Det underlättar arbetet med att göra rätt prioritering. Enstaka släckta ljuskällor på gator repareras t.ex. bara vid översyn, medan ljuskällor vid övergångsställen, i gångtunnlar och på stora hållplatser skall åtgärdas inom ett eller ett par dygn. Det är bra om man upplyser om detta på hemsidan och via kundtjänst. Även larmcentralen behöver veta vad som gäller utanför ordinarie arbetstid. Seriebyte bör utföras på hela anläggningen för att slippa byta enstaka ljuskällor och undvika blinkljus- 12

14 källor. Att byta 100 ljuskällor på en gång kostar bara en bråkdel (per styck) mot att byta en. En ljuskälla med lång livstid kostar mer per styck men minskar transportkostnaden avsevärt. Samtidigt har man inte samma kontroll på statusen av anläggningen som man får vid tätare seriebyte. Vid användande av longlife-ljuskällor kan det vara lämpligt att lägga in extra översyn mellan seriebytena. På många mindre gator med högtrycksnatriumljuskällor kan det finnas möjlighet att koppla om befintlig armatur och därmed sänka watt-effekten på ljuskällan i samband med seriebytet. Många standardarmaturer är omkopplingsbara W och även W. Denna extrakostnad brukar ha betalat sig inom ett år med minskad energikostnad. Styrsystem möjliggör fjärrstyrning och på så sätt att transport fram och tillbaka till belysningscentralen undviks. Vid översyn kan dessutom anläggningen lätt tändas en stund innan man är på plats för att kunna hitta blinkljuskällor som annars inte hinner slockna vilket medför att man måste åka ut igen. ÅTERVINNING OCH AVFALLSHANTERING Från 1 juli 2001 gäller en lag som kräver att alla uttjänta el-produkter, inklusive belysning, tas omhand av producenterna, det s.k. producentansvaret. Produkternas innehåll av metaller, andra värdefulla material och energi används till återvinning. Detta utförs av utbildad personal som även tar bort eventuella miljöfarliga komponenter. Lagen förbjuder uttryckligen att el-produkter deponeras eller förbränns utan föregående behandling. För mer information, se Det är viktigt med en professionell återvinnings- och avfallshantering och det bör man ställa krav på i underhållsentreprenaden. Detta eftersom det finns farliga kemikalier i exempelvis ljuskällorna som behöver särskilt omhändertagande samt att ökad återvinning sparar material och resurser. I dagsläget finns det en marknad för allt kvicksilver som drivs ur lyspulvret, det innebär att 100 % av kvicksilvret återanvänds. Utvecklingen mot en ökad insamling i EU tillsammans med en minskad användning av kvicksilver i nyproduktion kan på sikt göra att det återvinns mer kvicksilver än vad marknaden efterfrågar men det är fortfarande en bra bit kvar till dess. Det finns avsättningsmöjligheter för både, glas, metall och elektronik så det finns inga incitament till att inte återvinna dessa fraktioner. Det renade glaset säljs till den som för tillfället betalar bäst för den renhetsgrad de kan få ut, just nu går det till nyproduktion av flaskor och konservburkar. Metall och elektronik går till metall-/elektronikåtervinnare som materialåtervinner metaller och energiåtervinner plast. Vid fragmentering av elektroniken uppkommer en liten restfraktion, det är det enda som deponeras. 13

15 BILAGA I: FÖRKORTNINGAR Lista på förkortningar AMA = Handboksserien Allmän material- och arbetsbeskrivning BC = belysningscentral BSK (99) = Boverkets handbok om stålkonstruktioner, med korrosivitetsklasser CEN = Europeiska kommittén för normering (på franska) CIE = International Commission on Illumination EPC = energy performance contracting EIA = Electronic Industry Alliance EN = europeisk standard ratificerad av antingen CEN (European Committee for Standardization) eller CE- NELEC (European Committee for Electrotechnical Standardization) EU = Europeiska unionen EuP = Energy Using Products GC = gång- och cykel GPD = Grundpaket drift GPRS = General Packet Radio Services GPS = Globalt positioneringssystem GSM = Globalt system för mobil kommunikation GWh = gigawattimmar HF = high frequency HID = high-intensity discharge lamps HPNa= högtrycksnatriumljuskälla IEC = International Electrotechnical Commission IP = ingress protection ISO = Internationella standardiseringsorganisationen kw = kilowatt LCA = Livscykelanalys LCC = Livscykelkostnad (på engelska) LED = Light emitting diode Lm = lumen LON = Local operating network, finns bland annat i följande nationella/internationella standarder: EN14908, ANSI/EIA709/852 OPS = Samverkan mellan offentlig och privat sektor RoHS = Restriction of Hazardous Substances SMS = Short message service TCP = Transmission Control Protocol VGU = Regelverket Vägars och gators utformning UF = utilization factor ULOR = upward light output ratio UMTS = Universal Mobile Telecommunications System XML = extensible Markup Language 14

16 15 BILAGA II: ORDLISTA Armatur: Viktig del av belysningssystemet för att optimera ljusets kvalitet och distribution samt minimera ljusspill. Den kan vara utrustad med en reflektor som ökar luminansen och dess form och yta bestämmer ljusstrålens storlek och symmetri. Bländskydd kan ingå i armaturen för att ge ett mjukare ljus. Armaturens verkningsgrad (light output ratio, LOR (%)): Andel totalt ljusflöde från armaturen med dess tillbehör, per ljusflöde från enbart lampan. Belysningsnivå (lux, lm/m2): Också kallad illuminans eller belysningsningsstyrka. Anger hur mycket ljus som träffar en specifik yta. Belysningsstyrka, luminans och övrig belysningsplanering utgör några av funktionskriterierna vid val av ljuskällorna. Cykel: Tändcykel antändning, uppvärmning, avstängning, nedkylning Dämpa (dimma, dimra, ljusreglera): (dimma = svävande vattendroppar i luften som sänker sikten till mindre än 1 km), (dimra = dialektalt för effektdämpa) Effekt (watt, W): För varje angiven nätspänning är lampans effekt ett mått på hur mycket ström lampan förbrukar. Ju högre wattantal, ju mer ström förbrukas. Högre wattantal ger i regel starkare ljus, men detta beror på ljusutbytet. Fotopisk: Dagsljusseende Färgtemperatur: Anges i Kelvin (K). Mått på om ljuskällan har varm eller kall ljusfärg. Fås genom att ljusfärgen jämförs mot ett upphettat järnstycke, ju kallare ljusfärg desto högre temperatur (vitglödgat). Glödlampan ligger på 2700K och dagsljuset på runt 6000K. Färgåtergivning: Anges i Ra-index. Mått på hur väl ljuskällan återger ett antal referensfärger. Bäst färgåtergivning har dagsljus och glödlampan med Ra-index 100. Bra färgåtergivning ligger på över 80. Förkopplingsdon: Också kallad ballast eller driftdon. Används eftersom lampan inte kan kopplas direkt till elnätet, utan via en transformator (ballasten) som ökar spänningen för att uppnå tändning samt reglerar strömtillförseln. Halvavskärmad armatur: Ger ljus på marken men även ljus åt sidorna, ex parkarmatur med takkupa. Helavskärmad armatur: Riktar ljus endast på marken, med eller utan reflektor, t ex trafikarmatur.

17 Klara ljuskällor: Ljuskälla med lampkolv av klarglas vilket ger ett distinkt ljus. Kompakta högtryckslampor (high-intensity discharge lamps, HID): Kompakta versioner av urladdningslamporna (ljusalstring genom urladdning av den gas som finns i lampans kolv). Till dessa räknas högtryckskvicksilverlampor (HPM), högtrycksnatriumlampor (HPS) och metallhalogenlampor (MH) 8. Lampbortfall: Mortalitet, eller antal ljuskällor som inte längre lyser vid en viss brinntid. Livslängd: Anges i timmar (h). Finns olika sätt att redovisa, praktiskt sätt påverkas ljuskällans livslängd av 2 faktorer: ljusbibehållning/ljusnedgång och lampbortfall. Ljusflöde, anges i lumen (lm): Mått på hur mycket ljus en ljuskälla avger. Ljusföroreningar (light pollution): Summan av alla effekter från det artificiella ljuset på omgivningen såsom belyst natthimmel, s.k. sky glow, himlaglim. Ljusbibehållningsfaktor: LLMF Lamp Lumen Maintenance Factor andel ljusflöde av ljuskällans ursprungliga ljus som finns kvar vid en viss brinntid. Ljusnedgång, armaturens, också kallad LMF: Andel ljusflöde som armaturens ursprungliga ljusflöde har minskat med vid en viss brinntid. Ljusnedgång, ljuskällans: Andel ljusflöde som ljuskällans ursprungliga ljusflöde har minskat med vid en viss brinntid. Ljusstyrning: Teknik som möjliggör tändning, släckning och fördunkling av ljuskällor. ljuskällans ljusstyrka och ytmaterialets reflektans. Belysningsstyrka, luminans och övrig belysningsplanering utgör några av funktionskriterierna vid val av ljuskällorna. Medellivslängd (h): Brinntiden då hälften av ljuskällorna har fallit bort. Det rekommenderas att inte använda sig av denna typ av livslängd vid projektering av belysningsanläggningar, av säkerhetsskäl. Mesopisk: Skymningsseende Nedåtriktat ljus (downward light output ratio, DLOR (%)): Andel nedåtriktat ljusflöde från armaturen med dess tillbehör, per ljusflöde från enbart lampan. Normal brinntid (h): Brinntiden då minst 90 % lyser med minst 85 % av sitt ursprungliga ljus. D.v.s. att lampbortfallet är högst 10 % och ljusnedgången på de kvarvarande ljuskällorna är högst 15 %. Det rekommenderas att använda denna typ av livslängd, i de fall då det är möjligt. Parkarmatur: Armatur som ofta har stolphöjd på 3-4,5 m, ger ofta både ljus på marken och atmosfärsljus. Kortare stolpavstånd. Runtomstrålande armatur: Ger ljus i alla riktningar, t ex globarmatur. Skotopisk: Mörkerseende Slammade ljuskällor: Ljuskälla med matterad lampkolv vilket ger ett mjukare ljus. Spridningsvinkel (grader): Anger det område där ljusstyrkan är minst 50 % av maxvärdet. Används för ljuskällor med reflektor. Ljusspektrum: Redovisas med kurvor eller stapeldiagram över ljuskällans fördelning på olika våglängder (färger). En ljuskälla med god färgåtergivning har ljus i både det röda, gröna och blå spektrat. Ljusstyrka (candela, cd): Anger hur starkt ljuset är i en viss riktning. Ljusutbyte, anges i lm/w: Om man kombinerar ljuskällans elektriska effekt med ljusflödet får man ett mått på hur effektiv den är som ljusalstrare (lm/w), de mest effektiva ljuskällorna idag ligger på över 100 lm/w. LSF, Lamp sur vival factor, ljuskällans livslängd: Andel av ljuskällor som fortfarande lyser vid en viss brinntid. Luminans (cd/m2): Anger hur ljus en yta upplevs då den träffas av ljuskällans ljus. Denna beror på 16 Stavar: Den del av ögat som har mörkerseende. Systemets belysningseffektivitet (utilization factor, UF (%)): Andel ljusflöde som träffar referensytan per summan av det totala ljusflödet av de installerade lamporna. UF av en armatur är resultatet av en kalkyl av armaturens fotometriska data samt ljuspunktskonfigurationen, vägreflektionen och vägdimensionerna och på så vis tas systemet med i beräkningarna 9. Tappar: Den del av ögat som har dagsljusseende. Trafikarmatur: Armatur där ett effektivt ljus på markytan prioriteras. Försedd med planglas är den bättre avbländad än med kupat glas. Uppåtriktat ljus (upward light output ratio, ULOR (%)): Andel uppåtriktat ljusflöde från armaturen med dess tillbehör, per ljusflöde från enbart lampan.

18 BILAGA III: BERÄKNING AV ELFÖRBRUKNINGENS MILJÖPÅVERKAN MÅTT OCH RÄKNESÄTT Energienheten en kilowattimme (1 kwh) = kilowattsekunder = kj (kilojoule) = 3,6 MJ (megajoule). EL OCH UTSLÄPP Det finns tre vedertagna sätt att beräkna utsläpp från förbrukad el: 1. Det grövsta sättet är att betrakta de egna elleveranserna som ett genomsnitt av landets elförbrukning, med samma fördelning mellan olika energikällor. För Sverige år 2007 innebar det 48 gram koldioxid per kilowattimme el. Om s.k. nordisk elmix beräknas, innebar det år ,36 kilogram koldioxid per megajoule el (= 0,1 kilogram per kilowattimme) Om el upphandlas på ett sätt som kräver att leverantören redovisar produktionssätt, kan man beräkna utsläppen från sin elförbrukning på sålunda redovisade uppgifter. 3. När elbehovet minskas genom effektivisering, bör man vara medveten om att inga vattenkraftverk inom överskådlig tid kommer att stängas på grund av minskad elefterfrågan. Därför kan man för elsparåtgärder räkna med marginalutsläpp, dvs som om den insparade elen vore producerad i kolkondenskraftverk. Det innebär ett koldioxidutsläpp på 0,23 kg/mj (= 0,828 kilogram per sparad kilowattimme). Samma räknesätt tillämpas på ökning i elbehovet. Energimyndigheten rekommenderar vid energieffektiviseringsåtgärder att 1 kg koldioxid per kilowattimme kan användas vid koldioxidvärderingen 11. Enligt räknesätt 2 (upphandling) kan upphandlande myndighet styra sina inköp på den elmarknad som finns så att vi uppmuntrar investeringar i ett mer hållbart utbud av el. Enligt räknesätt 3 (sparande) kan upphandlande myndighet minska efterfrågan på marknaden så att andra inköpare får tillgång till det större utbud av hållbar el, som deras egen besparing frigjort. Ett problem som gör räknesätt 1 (genomsnitt) oanvändbart är att all den förnybara el, som vissa elkunder upphandlat särskilt (enligt räknesätt 2), måste dras ifrån innan mängden koldioxid per kwh räknas ut för den återstående elmängd som är tillgänglig på marknaden. I annat fall intecknar man ju den förnybara elen två gånger, först för den som verkligen upphandlat den och sedan för det allmänna genomsnittet. BILAGA IV: LJUSKVALITET, LJUSUPPLEVELSE OCH ENERGIBESPARING Studier 12 tyder på att bättre färgåtergivning kan motivera lägre belysningsnivåer som ändå ger samma synbarhet. Detta är främst intressant för bostadsområden, på- och avfarter samt GC-vägar. Ljuskällor med spektrum som tar hänsyn till människans visuella förutsättningar vid låga belysningsnivåer kan nämligen förbättra synbarheten, känslan av säkerhet och kan tillåta lägre belysningsnivåer och därmed spara energi. Människor uppfattar skotopiskt (mörkerseende) anpassat ljus (blått) som ljusare än gulare ljus. Vid samma belysningsstyrka uppfattas ljus med färgtemperaturen 4000 K som 15 % ljusare än ljus med färgtemperaturen 3000 K. På så sätt kan exempelvis en 35 W keramisk metallhalogenljuskälla väljas framför en 70 W högtrycksnatriumljuskälla energimängden halveras och ändå upplevs det ljusare. Reaktionstiden blir också kortare i blått ljus. Exempelvis är reaktionstiden vid 0.1 cd/m2 för högtrycksnatriumljuskällor ekvivalent med 0.05 cd/m2 för metallhalogenljuskällor 13. Ny utveckling av keramiska metallhalogenljuskällor har gjort det möjligt att få en ljuskälla med både god livslängd, ljusutbyte och färgåtergivning. UK har minskat nivåerna av belysning för fotgängare från 5 lux till 3 lux samtidigt som man ökat Ra-index till 65, de har utformat en standard för detta. Forskning visar förutom att reaktionstiden är kortare vid vitt ljus, även att vägen upplevs ljusare och mer komfortabel, trafiksignaler framträder tydligare och att säkerhetskänsla är större. Nedan ses tabellen från den brittiska standarden BS5489: 17

19 BILAGA V: KVICKSILVER OCH LJUSKÄLLOR Kvicksilvrets miljö- och hälsoegenskaper Kvicksilver är ett av de allra farligaste miljögifterna och utgör ett hot både mot miljön och mot människors hälsa. Det är en lättflyktig metall som kan spridas över långa avstånd i atmosfären. Kvicksilver kan inte brytas ned utan ansamlas i mark, vatten och levande organismer. Kvicksilver och dess föreningar har framförallt negativa effekter på nervsystemet och dess utveckling, samt på hjärt-kärlsystemet, immunsystemet, fortplantningssys temet samt njurarna. Störningarna av nervsystemets utveckling och giftigheten för det centrala nervsystemet är de känsligaste och mest väldokumenterade effekterna. Den största källan till kvicksilverutsläpp till luft globalt är förbränning av kol 14. Kvicksilvrets nytta kontra risk Både i urladdningsljuskällor (exempelvis högtrycksnatriumljuskällor och keramiska metallhalogenljuskällor) och i lysrör/kompaktlysrör används kvicksilver för att uppnå ljusalstring. Energieffektiva ljuskällor med ett högt ljusutbyte kräver en viss mängd kvicksilver. I framtiden kan utveckling av nya alternativ ske. Diodljuskällor innehåller inte kvicksilver. Vid jämförelse av kvicksilverutsläpp till naturen så sker nedfall av ca 4,2 ton kvicksilver per år i Sverige, p.g.a. långväga lufttransporter, och då är förbränning av kol det största bidraget. De årliga svenska utsläppen till luft beräknas vara 0,7 ton, detta från sopförbränning (förbränning av produkter innehållande kvicksilver) m.m. 15 Ljuskällor från inomhusbelysning har inte samma professionella omhändertagande som vid utomhusbelysning, då underhållsentreprenad tar hand om uttjänta ljuskällor och skickar dessa vidare för omhändertagande. Det finns därmed liten risk att kvicksilver i utomhusbelysning exponeras ute i naturen. BILAGA VI: INFORMATION OM ÖVRIGA LJUSKÄLLOR FÖR UTOMHUSBELYSNING Induktionsljuskällan är en annan ljuskälla som kan förekomma i utomhusbelysning. Den används på GCvägar, torg och parker samt svåråtkomliga ställen, av underhållsskäl. Detta eftersom den har så lång livslängd, ända upp till timmar. Ljuskällan är inte känslig för vibrationer. Ljusutbytet är ca 80 lm/w. Induktionsljuskällan har högt ljusutbyte vid skoptiskt 18 och mesoptiskt seende (mörker/skymningsseende). En anledning till att induktionsljuskällan inte används i stor utsträckning idag är att den är relativt stor, vilket gör det svårt att fördela ljuset i armaturen. Diodljuskälla eller s.k. LED-ljuskälla beskrivs i många sammanhang som framtiden för all slags belysning. För vissa applikationer finns redan idag tekniskt och ekonomiskt konkurrenskraftiga alternativ med LED s. I utomhusbelysningssammanhang har man hittills främst använt LED s som visuell vägledning eller utsmyckning, men produktutvecklingen går dock snabbt och det börjar komma konkurrenkraftiga alternativ för t.ex. GC-vägar. För konventionell gatu- och vägbelysning får vi vänta något på LED-alternativen, men med tanke på att vi i Sverige generellt använder ljuskällor med lägre effekter än övriga EU finns det anledning att tro att det vi kommer att se produkter framme inom 1-2 år. Idag har diodljuskällan ingen standard för hur exempelvis ljusutbyte, fotometrisk data och livslängd med avseende på lampbortfall och ljusnedgång ska mätas. En standard är dock under utveckling och kommer att finnas tillgänglig till årsskiftet 2009/2010. De krav som finns uppställda i kriteriedokumentet går därför inte att ställa på diodljuskällor för att de är svåra att verifiera. Det finns en skrift, Rekommendationer kring livslängd och ljusutbytesangivelser för LED-moduler, framtagen av Belysningsbranschen. Idag finns några försöksanläggningar, både i Sverige och utomlands. För dessa anläggningar är det viktigt med god omsorg, så att belysningsnivån kontrolleras att den håller, även efter en viss tid. Miljöstyrningsrådets kriteriedokument att uppdateras ungefär vartannat år, och diodljuskällorna kommer då att tas med i dokumentet ifall standarden är färdig. Det finns förhoppningar om att diodljuskällorna kan bidra till stora energibesparingar. BILAGA VII: INFORMATION OM LJUSFÖRORENINGEN HIMLAGLIM Största delen av det som kallas skyglow (himlaglim) kommer från reflekterat ljus från gatu- och sportbelysning. Det är alltså inte direktstrålande ljus från armaturerna som skapar det största problemet utan närvaron av belysningsanläggningen i sig. Vill man minska skyglow måste man sänka belysningsnivån. Är man i känsliga områden från astronomisk synvinkel och där djur som exempelvis fladdermöss 16 och nattfåglar kan störas, bör man noga överväga beho-

20 vet av belysningsanläggningar. I samma resonemang blir styrning och ljusreglering åtgärder att använda för att minska anläggningens påverkan. Fotnoter 1. I Preparatory Studies for Eco-design Requirements of EuPs, Final Report Lot 9: Public street lighting (van Tichelen P., m fl) konstateras energiförbrukningen vara den största miljöpåverkan från utomhusbelysning, sett över anläggningens livslängd. Det ska dock sägas att denna livscykelanalys (LCA) endast avser belysningsprodukternas tillverkning, distribution, användning och slutligt omhändertagande och inte entreprenaderna, såsom underhållsentreprenaden med ingående transporter. Dessutom täcker inte LCA in miljöaspekter såsom kemiska risker eller biologisk mångfald. 2. Kvicksilverlampsförbud kommer att enligt Direktivet (2005/32/EC) om ekodesign (eller EuP, Energy Using Products) införas år Walraven H, Market Assessment and Review of Energy Savings, Echelon AS, E-street Initiativ, WP 2, Nattens ljus, Sveriges Kommuner och Landsting, Kommunernas väghållning 2005, Sveriges Kommuner och Landsting, Läs mer om RoHS-direktivet på 7. Kapitel , Preparatory Studies for Eco-design Requirements of EuPs, Final Report, Lot 9: Public street lighting, 2007/ETE/R/021, P. Van Tichelen, T. Geerken, B. Jansen, M. Vanden Bosch (Laborelec),V. Van Hoof, L. Vanhooydonck (Kreios), A. Vercalsteren, Ekodesigndirektivets kravförslag, Kapitel , Preparatory Studies for Eco-design Requirements of EuPs, Final Report, Lot 9: Public street lighting, 2007/ETE/R/021, P. Van Tichelen, T. Geerken, B. Jansen, M. Vanden Bosch (Laborelec),V. Van Hoof, L. Vanhooydonck (Kreios), A. Vercalsteren, Enligt bildspelet Energianvändningens klimatpåverkan. Energimyndigheten, Tobias Persson ger svensk medelel gco2/kwh, nordisk g och EU-snittet omkring 400 g. Se även Koldioxidvärdering av energianvändning. Vad kan du göra för klimatet? Underlagsrapport. Statens energimyndighet, Eskilstuna, september Persson, T., Koldioxidvärdering av energianvändning, Energimyndigheten, Morante, P., Mesopic Street Lighting Demonstration and Evaluation, Lighting Research Center, 2008, Code of Practice for the Design of Road Lighting, Guidance on Amendment 1 to BS5489-1:2003, samt Halonen, L., Performance based model for mesopic photometry, Lighting Laboratory, Helsinki University of Technology, MOVE Mesopic Optimisation of Visual Efficiency, Hashmi K, Presentation Vägbelysning, Energimyndigheten, Information från Kemikalieinspektionen, www. kemi.se, Information från Peter Bennich, Energimyndigheten, Se följande rapporter: Emery, M., Effect of street lighting on bats, Urbis Lighting LTD, 2008, Bats and lighting in the UK, Bat Conservation Trust, Nature Conservation Advice in relation to bats, Interim Advice Note 116/08 19

21 Miljöstyrningsrådet Vasagatan Stockholm

22 Test Report Clear, Non-Directional LED Lamps Updated to reflect 1000 hours testing and with a detailed discussion on LightingEurope s comments on this report A test report prepared for the European Commission and the Consultation Forum on the performance of clear LED lamps in the European Market in the third quarter of Prepared by: Swedish Energy Agency Belgian Federal Ministry for Health, Food Chain Safety and Environment CLASP European Programme European Council for an Energy-Efficient Economy 18 March Update (1000 hours testing) 19 November 2014 (100 hours testing)

23 Authors: Peter Bennich, Swedish Energy Agency Bram Soenen, Belgian Ministry for Health, Food Chain Safety and the Environment Michael Scholand, CLASP Europe Nils Borg, eceee Testing Team: Christofer Silfvenius, Swedish Energy Agency Jonas Pettersson, Swedish Energy Agency Why This Market and Testing Study? In June 2013, DG Energy published a review study 1 prepared by consultants (VHK/VITO) on the feasibility of keeping in place an Ecodesign regulatory measure EC No 244/2009 adopted in 2009 for non-directional household lamps. The regulatory measure under review is the final stage of the European regulation on non-directional household lighting, referred to as Stage 6, scheduled to enter into force in September Stage 6 would effectively phase out mains-voltage, omnidirectional halogen lamps from the European market. The VHK/VITO review study included a projection of the anticipated price and performance of LED replacement lamps based on the best information available at that time. However, since that time the rate of innovation in LED products has far exceeded expectations, and the price and performance levels are exceeding the projections published in the June 2013 VHK/VITO review study. In this context, it became clear that in order for policy makers make an informed decision on whether to keep, amend or delay Stage 6 of 244/2009, new evidence should be provided including test data to verify product claims. Thus, the authors designed and conducted this limited market and testing study, purchasing lamps from vendors across Europe and testing them at the Swedish Energy Agency s lighting laboratory. It is hoped that these test results of LED lamps on the current European market will prove useful to policy makers, enabling them to make appropriate decisions with regard to Stage 6. This is report is an updated version of our November 2014 report. Whereas the original report was based on test results after operating the samples 100 hours, this update is based on 1000 hours of operation. In addition, we are pleased to submit a detailed discussion of LightingEurope s critique of our original report (see Appendix). Acknowledgements: The authors wish to thank colleagues at the Swedish Energy Agency and CLASP for supporting the study and helping to purchase the LED lamps, the testing team at the Swedish Energy Agency for conducting the tests and David Wren from PassMark Software for kindly making available data tables with test results of 1 NDLS STAGE 6 REVIEW - FINAL REPORT - Review study on the stage 6 requirements of Commission Regulation (EC) No 244/2009, by VHK (pl)/ VITO for the European Commission. Delft/Brussels, 14 June ii

24 Executive Summary This study was undertaken because new LED lamps have been introduced into the European market at low prices and with claims of very high performance levels. It was deemed necessary, therefore, to conduct a limited market and testing study of the products available in the current European market by the third quarter of 2014 and to present this new evidence, including test report results, to the Ecodesign Consultation Forum. This report is an update to our November 2014 report (which provided test results after 100 hours of use) 2. The updated report provides test results on the samples following 1000 hours of use. The findings of the 2014 report still hold true: LED products are introduced on the European market at much lower prices and much better performance levels than anticipated by the European Commission as late as in June Approximately 50% of the LED lamps purchased and tested for this study already exceed the 2016 price and performance levels that were anticipated in June 2013, and one model available on the European market in 2014 already exceeds the anticipated 2018 level on efficacy and the 2020 level on price. When ecodesign regulation EC No 244/2009 was drafted, the Commission anticipated that compact fluorescent lamps (CFLs) would replace the majority of frosted non-directional incandescent lamps, which were phased out starting in Clear mains-voltage halogen lamps were allowed to remain on the market as a replacement for clear incandescent lamps and they were expected to constitute a relatively small share of total sales for non-directional lamps. Much of the anticipated savings from this regulation were based on this assumed market response. Recently however, GfK sales data has become available for several major European economies showing that the non-directional household lamp regulation has failed to move the old frosted incandescent market toward CFLs, and instead has simply moved both clear and frosted incandescent lamp users to clear halogen lamps, greatly reducing the anticipated energy savings. The final stage of EC No 244/2009 ( Stage 6 ) would take effect in September 2016 and phase-out D- Class clear halogen lamps in favour of more efficient technologies (e.g., B-Class halogens, CFLs and LED lamps). In June 2013, the Commission published a review study 3 by VHK/VITO (hereafter called June 2013 VHK/VITO review study ) to assess the feasibility of Stage 6. Taking the findings of that study into account, with other evidence, the Commission decided to propose a two-year delay to Stage 6 in order to give LED technology more time to develop. The June 2013 VHK/VITO review study provided a projection of LED lamp efficacy and price in the EU from 2012 to However, in 2014 the authors of this test report found that the price and performance being claimed by LED lamps in the European market were much faster than had been anticipated in the VHK/VITO review study. Therefore, this study was conceived to ascertain the performance of LED retrofit lamps in 2014 relative to what had been expected in June This study team purchased and tested 170 LED lamps (sample size of 10 units of 17 different models) and 10 halogen lamps (10 units of one model). Due to the fact that clear LED lamps were identified 2 Test Report Clear, Non-Directional LED Lamps; Prepared by: Swedish Energy Agency; Belgian Federal Ministry for Health, Food Chain Safety and Environment; CLASP European Programme; and European Council for an Energy-Efficient Economy. 19 November Click here for a PDF copy of this report. 3 NDLS STAGE 6 REVIEW - FINAL REPORT - Review study on the stage 6 requirements of Commission Regulation (EC) No 244/2009, by VHK (pl)/ VITO for the European Commission. Delft/Brussels, 14 June iii

25 as an issue because of the importance of creating a sparkle effect in certain light fittings, this study focused on clear LED lamps (example of one below). The LED lamps tested ranged from 62.7 lumens per watt (about the same as a CFL) to lumens per watt (lm/w) nearly twice as efficient. The halogen lamp s average efficacy was 12.8 lm/w, meaning that for the same light output, it will consume about ten times more electricity than the lm/w LED lamp. It should be noted that this was not a market enforcement activity since the samples were too small to evaluate their compliance on performance. However, some of the products displayed incorrect information on the packaging and it would, in principle, be possible for market surveillance authorities to take action based on these information-related issues of non-compliance. Figure ES-1. One of the AC Mains-Voltage Non-Directional LED Filament Lamps To make a comparison with the June 2013 VHK/VITO review study, the prices paid for all the lamps purchased, including taxes, were normalised to Euros per 500 lumens of light output using currency exchange rates at the time of purchase. 4 The normalised prices of the LED lamps ranged from 6.16 to per 500 lumens (including VAT); and the halogen lamp was 2.29 per 500 lumens. The figure below shows the price and efficacy projections from the VHK/VITO review study drawn as solid lines from the X-axis (price) and the Y-axis (efficacy). The red dots are the price (including VAT) and measured efficacy of the LED lamps purchased in August/September 2014 for this study. 4 This normalised level of light output was selected to be consistent with the way the price progression of LED lamps was presented in the June 2013 consultant s report, titled NDLS STAGE 6 REVIEW - FINAL REPORT - Review study on the stage 6 requirements of Commission Regulation (EC) No 244/2009, by VHK (pl)/ VITO for the European Commission. Delft/Brussels, 14 June iv

26 Figure ES-2. MV LED Non-Directional Retrofit Clear LED Lamps: projections made in 2013 on price/performance compared with real 2014 values The above figure shows that approximately 50% of the LED lamps purchased and tested for this study already exceed the anticipated 2016 price and performance levels and one model available on the European market in 2014 already exceeds the anticipated 2018 level on efficacy and the 2020 level on price. Thus, this sample of lamps indicates that the market of LED lamps in Europe is moving much faster than was previously expected, with many models available today already several years ahead of projected price and performance levels in the June 2013 VHK/VITO review study. When the first version of this report was presented at the Consultation Forum December 10 th, 2014, LightingEurope also presented an extensive critical review of the report. The author s detailed comments on LightingEurope s concerns are presented in Annex C where we discuss that after 1000 hours of testing, 15 out of 17 (or 88%) of LED lamps tested do not indicate any product performance concerns relative to the quality requirements of EU No 1194/2012. Six Key Questions answered by this study Finally, as stated in the announcement informing the Commission and Consultation Forum about this study, the authors have attempted to address six key questions that constitute the principal outcomes of this work. These questions and answers are discussed in some detail in Chapter 6, with very brief summaries given below. Q: What is the current cost and performance of clear LED lamps? A: The data for LED Lamps tested in this study have exceeded the expected progression of LED technology published in the June 2013 VHK/VITO review study. The table below presents the comparison between an estimate of the VHK/VITO review study forecast and the sample average from lamps purchased in August/September v

27 Table ES-1. Current Price and Efficacy of Mains-Voltage Retrofit LED Replacement Lamps Source of estimate Price (Euro) per 500 lumens of light in 2014 Efficacy (lumens per watt) in 2014 VHK/VITO review study (June 2013)* / 500 lumen 76 lm/w Test data average, this study / 500 lumen 98 lm/w Difference, test data average in 2014 compared with VHK/VITO review study 11 percent lower 29 percent higher * The VHK/VITO review study did not provide actual values for 2014, therefore the figures shown in this table are derived from linear interpolation between the 2012 and 2016 values. The values are 11% lower on price and 29 percent higher on efficacy compared to a linearlyinterpolated estimate from the June 2013 VHK/VITO review study. See section 5.9 for discussion on these estimates. Q: Do they give an aesthetic pleasant light? A: The LED lamps tested in this study were found to have CCT values that were around 2700K to 2900K, which is consistent with the baseline technology they seek to replace (i.e., incandescent and halogen). The CRI value for most LED lamps exceeded 80 CRI (with a few exceptions, where the CRI was measured at 79). Two of the LED lamps tested had CRIs values in the 90 s (IKEA and vosled). The flicker index and percent flicker of the lamps were measured and many lamps had no flicker. The lamps were also tested for their light distribution pattern, and there was a very good resemblance to the halogen reference lamp (see Annex B). Thus, it would appear that the LED lamps tested can meet the optical requirements of luminaires that are currently using halogen lamps. For these reasons, it would appear that these clear LED lamps do offer consumers an aesthetic, pleasant light. And, a limited review of website comments posted about these lamps (see section 2.2.6), indicates that the early-adopters of LED filament lamps are satisfied. Q: Are the dimmable lamps compatible with leading edge and trailing edge dimmers? A: Although these two dimmers do not represent all dimmers in Europe, they do represent two of the most common types found in the market. Five of the LED lamps purchased for this study were marketed as dimmable. Of these, two of those lamps were able to be dimmed on both types of dimmers (#6 IKEA, #13 Star Trading). The other three lamps had issues with one of the dimmers. Lamp #5 from LED Connection was not compatible with the leading edge dimmer and Lamps #14 from OSRAM and #15 from Philips were not compatible with the trailing edge dimmer. Overall, the results indicate that the industry is working on better LED drivers to make them compatible with the main types in Europe, and there are still be some manufacturing / quality control issues to work out in production. Q: Do these lamps meet the LED quality requirements in EU No 1194/2012? A: In order to ensure that the manufacturers of these new high-performance, low-cost LED lamps are not sacrificing light quality aspects that are important to European consumers, the Swedish Energy Agency s test laboratory also conducted tests to investigate whether the lamps complied vi

28 with the quality requirements for LED lamps under EU No 1194/ (see Chapter 5). The sample size (n=10) was not sufficiently large for market surveillance testing, therefore the findings should only be taken as indicative as to whether these lamps would meet the requirements. Furthermore, all of the tests are not complete (some require 6000 hours of data), but most of those that are done the answer is yes, the new LED lamps do meet the quality requirements of EU No 1194/2012 see Table ES-2. Table ES-2. Indicative Findings of Quality Requirements for LED Lamps 1194/2012 Requirement 100 hours testing 1000 hours testing Lamp survival factor at 6000 h 200h and 1000h aging and measurements complete. Technical 1000h report writing in progress. Lamps are in 2000h aging. Lumen maintenance at 6000 h Same as above. Switching cycles before failure No failures in LED, but one failure in a halogen lamp Starting time Yes, all LED lamps passed Lamp warm-up time to 95% Yes, all LED lamps passed Premature failure at 1000 h n/a One LED lamp (#11) failed; 2 lamps failed before 1000h Colour rendering index After 100 hours, all LED lamps met the minimum requirement; two models were within the allowable tolerance After 1000 hours, all LED lamps met the minimum requirement; two models were within the allowable tolerance Colour consistency Lamp Power Factor Most LED lamps met the six MacAdam step requirement, except #9 (Panasonic) and #17 (Calex) which exceeded the maximum 6 steps ±10% 6 All lamps met requirement After 1000 hours, only one LED lamp (#17) exceeded the maximum 6 steps ±10% Overall, the LED lamps were found to be compliant with the ecodesign requirements under 1194/2012, except for a few models which exceeded the six MacAdam 7 step limit and one model that experienced premature failure. At 1000 hours, the LED lamps continued to perform very well with no changes over the 100 hours testing except for the Panasonic lamp (#9) which now measured within the colour consistency requirements (6.43 steps). As discussed in the previous report (and highlighted in comments from LightingEurope in December 2014), there were some 5 Commission Regulation (EU) No 1194/2012 of 12 December 2012 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for directional lamps, light emitting diode lamps and related equipment; EN link: 6 In the November 2014 report, it was reported that three lamps failed the MacAdam steps, however the test results were reviewed again and if it was found that there was one deviating data point from the main grouped data and no other data points between the deviating point and the grouped data, the deviating point was removed from the MacAdam calculation since there was no other statistical confirmation from related data. 7 The six step Macadam requirement comes from ecodesign regulation EU No 1194/2012: when a light source is measured from multiple directions, all measurements x, y coordinates should be grouped within a 6 step Macadam ellipse. vii

29 issues associated with lamp packaging, however this project is focused on testing the quality of the lamps, not the packaging. Some importers did omit energy labels and one had developed their own energy label with an A+++ class (which does not exist in EU 874/2012) 8. This labelling violation was reported to the UK NMO. Q: Are LED filament lamps reliable products for consumers? A: To assess reliability, the lamps were subjected to a switching-cycle test and an operational test which is on-going. In the future, the Team collaborating on this study intends to publish additional test information on reliability of the lamps under test. All the LED lamps finished the switching cycle test successfully (one halogen lamp in the sample of ten failed the switching cycle test). Three (3) of the 170 LED lamps tested were defective and did not operate out of the box (and thus could have been returned for a refund / replacement) thus these lamps were not used in our testing and those models simply had smaller test samples studied. Two individual LED lamps sold by ccled (both sample #11) failed during the burn-in. Lamp #12 had one unit fail during measurements, but all the other LED lamps so far have not have problems after 1000 hours of testing. 9 The longer-hour lifetime testing is continuing in parallel with the publication of this report. The test data shows LED filament lamps complying with switching-cycle tests, but one model experienced premature failure. This doesn t necessarily mean LED filament lamps are worse than other lamps, as the halogen reference lamp also had difficulties with the switchingcycle test. For the consumer, a limited number of early failures should not pose a big problem, particularly where they are covered by product warranties. Q: What trends in price and performance of LED filament lamps have been observed in the last two years and what is expected in the future? A: Although LED filament technology was originally developed in 2008, 10 it hasn t been a popular LED lamp type until recently. The performance of LED filament lamps is linked to the performance of LEDs themselves, which it is shown in Chapter 2 are simply mounted in a chain under the phosphor coating of the filament. These emerging lamp designs have simplified the electronic drivers and the optics, resulting in a mains-voltage energy-efficient lamp which exceeds the price and performance that was envisaged in the June 2013 VHK/VITO review study. In addition the retail LED lamp price of these LED filament lamps is approximately 11 % lower than the forecast and efficacy is 29 % better. Given that the VHK/VITO review study was the basis for the Commission s recent proposal to delay the implementation of Stage 6 of EC No 244/2009 by 2 years, 11 that proposed amendment would now seem to be redundant because the technological progress of LED lamps has exceeded expectations. LED filament lamps are available today that can replace many halogen applications, and are years ahead of the expert projections. 8 Commission Delegated Regulation (EU) No 874/2012 of 12 July 2012 supplementing Directive 2010/30/EU of the European Parliament and of the Council with regard to energy labelling of electrical lamps and luminaires; EN link: 9 The verification procedure in Annex IV of EU/1194/2012 has a tolerance of maximum 1 failure out of every 20 lamps. 10 Tevaja Lighting Corporation, China. See: November 2014, Commission issued an which stated the following: EU TBT notification concerning the Draft Commission Regulation amending Regulation (EC) No 244/2009 has now been published on the WTO website under the following reference: G/TBT/N/EU/248 and can be found here (click on this link) viii

30 Table of Contents EXECUTIVE SUMMARY... III 1 INTRODUCTION MARKET AND TECHNOLOGY ASSESSMENT EUROPEAN LAMP MARKET COMPARISON OF EUROPE WITH OTHER DATABASES MARKETING LED LAMPS LAMP 2 MAPLIN LED FILAMENT / A15QF LAMP 5 - LED CONNECTION CLASSIC LED BLUB LAMP 6 IKEA LEDARE LED LAMP LAMP 15 PHILIPS CLEAR LED LAMP LAMP 17 CALEX LED FILAMENT GLS LED FILAMENT TECHNOLOGY LAMPS PURCHASED AND TESTS CONDUCTED LAMP SELECTION AND PROCUREMENT TEST LABORATORY TESTS CONDUCTED TEST RESULTS WHOLESALE LIGHTING MS-B22-6W-OMNI UK LED STANDARD BULB OSRAM HALOGEN CLASSIC A ECO LIGHTING EVER LED FILAMENT BULB LED CONNECTION CLASSIC LED BULB IKEA LEDARE / VOSLED LIGHT BULB CLEAR, 5.5W LED CONNECTION FILAMENT LAMP PANASONIC NOSTALGIC CLEAR LED LAMP NCC-LICHT / LED FILAMENT LED24.CC / E27 LED GLÜHFADEN BIRNE STAR TRADING DIRECT - LED FILAMENT LAMPA E27 NR STAR TRADING LED FILAMENT LAMPA CANDELABRA SHAPE OSRAM PARATHOM CLASSIC A ADV 10W PHILIPS CLEAR LED BULB - GLS 6W A CLEAR LED LAMPEN DIRECT, 4 WATT POLARIS CALEX LED FILAMENT GLS SEGULA DISCUSSION OF TEST RESULTS POWER CONSUMPTION LIGHT OUTPUT EFFICACY CORRELATED COLOUR TEMPERATURE COLOUR RENDERING INDEX LAMP WEIGHT AND DIMENSIONS LAMPS AND HEAT EU NO 1194/2012 PERFORMANCE REQUIREMENTS PRICE AND EFFICACY IN ix

31 6 KEY QUESTION EXAMINATION AND DISCUSSION WHAT IS THE CURRENT COST AND PERFORMANCE OF CLEAR LED LAMPS? DO THEY GIVE AN AESTHETIC PLEASANT LIGHT? ARE THE DIMMABLE LAMPS COMPATIBLE WITH LEADING EDGE AND TRAILING EDGE DIMMERS? DO THESE LAMPS MEET THE LED QUALITY REQUIREMENTS IN EU NO 1194/2012? ARE LED FILAMENT LAMPS RELIABLE PRODUCTS FOR CONSUMERS? WHAT TRENDS IN PRICE AND PERFORMANCE OF LED FILAMENT LAMPS HAVE BEEN OBSERVED IN THE LAST TWO YEARS AND WHAT IS EXPECTED IN THE FUTURE? ANNEX A. ANNOUNCEMENT TO STAKEHOLDERS OF THIS STUDY ANNEX B. DETAILED TEST RESULTS OF THE STUDY; 100 HOURS ANNEX C. CLARIFYING LIGHTINGEUROPE S CRITIQUE OF THE NOVEMBER TEST REPORT List of Tables TABLE ES-1. CURRENT PRICE AND EFFICACY OF MAINS-VOLTAGE RETROFIT LED REPLACEMENT LAMPS... VI TABLE 3-1. LAMPS PURCHASED FOR TESTING AND SOME OF THE PERFORMANCE CHARACTERISTICS CLAIMED ON THE WEBSITES TABLE 4-1. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-2. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-3. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-4. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-5. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-6. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-7. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-8. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 4-9. SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE SUMMARY OF TEST RESULTS FOR SAMPLE OF LAMP # TABLE 5-1. UNOFFICIAL QUALITY CHECK (SAMPLE SIZE ONLY 10 UNITS) FOR LED LAMPS UNDER TEST, 100 HRS TABLE 5-2. UNOFFICIAL QUALITY CHECK (SAMPLE SIZE ONLY 10 UNITS) FOR LED LAMPS UNDER TEST, 1000 HRS TABLE 6-1. CURRENT PRICE AND EFFICACY OF MAINS-VOLTAGE RETROFIT LED REPLACEMENT LAMPS TABLE 6-2. DIMMER COMPATIBILITY CHECK FOR FIVE DIMMABLE LED LAMPS TABLE 6-3. INDICATIVE FINDINGS OF QUALITY REQUIREMENTS FOR LED LAMPS TABLE 6-4. LED LAMP CONSUMER RELIABILITY TEST RESULTS x

32 List of Figures FIGURE ES-1. ONE OF THE AC MAINS-VOLTAGE NON-DIRECTIONAL LED FILAMENT LAMPS... IV FIGURE ES-2. MV LED NON-DIRECTIONAL RETROFIT CLEAR LED LAMPS: PROJECTIONS MADE IN 2013 ON PRICE/PERFORMANCE COMPARED WITH REAL 2014 VALUES... V FIGURE 2-1. GFK SHIPMENT ESTIMATE OF NON-DIRECTIONAL MAINS-VOLTAGE LAMPS, (AUSTRIA, BELGIUM, FRANCE, GERMANY, GREAT BRITAIN, ITALY AND THE NETHERLANDS)... 4 FIGURE 2-2. LOT 19 IMPACT ASSESSMENT SHIPMENTS PROJECTION OF NON-DIRECTIONAL MAINS-VOLTAGE LAMPS FOR EUROPE, FIGURE 2-3. COMPARISON OF TEST DATA (2014) WITH PUBLIC DATABASES OF LED LAMPS ( )... 6 FIGURE 2-4. CLOSE-UP PHOTOGRAPH OF LED FILAMENTS FROM LED CONNECTION (#5) 8W LAMP FIGURE 2-5. CUT-AWAY VIEW OF LED FILAMENT ON TRANSPARENT SUBSTRATE FIGURE 2-6. DIMENSIONED (MM) DIAGRAM OF LED FILAMENT AND CLOSE-UP PHOTOGRAPH FIGURE 2-7. EXAMPLE OF AN LED FILAMENT SPECIFICATION FROM THE RUNLITE CATALOGUE (2014) FIGURE 3-1. MAP OF EUROPE SHOWING COUNTRIES WHERE LED LAMPS WERE PROCURED FIGURE 4-1. CHROMATICITY PLOT FOR LAMP #9 WITH 49 DATA POINTS, ONE OUTLIER CLEARLY VISIBLE FIGURE 4-2. SAME CHROMATICITY PLOT FOR LAMP #9 WITH 48 DATA POINTS, ONE OUTLIER REMOVED FIGURE 5-1. POWER CONSUMPTION DISTRIBUTION OF LAMP MODELS TESTED (WATTS) FIGURE 5-2. DISTRIBUTION OF LIGHT OUTPUT LAMP MODELS TESTED (LUMENS) FIGURE 5-3. DISTRIBUTION OF EFFICACY MEASUREMENTS FOR LAMP MODELS TESTED (LUMENS/WATT) FIGURE 5-4. DISTRIBUTION OF CCT MEASUREMENTS FOR LAMP MODELS TESTED (K) FIGURE 5-5. DISTRIBUTION OF COLOUR RENDERING INDEX FOR LAMP MODELS TESTED (RA) FIGURE 5-6. WEIGHT OF THE LAMPS TESTED, COMPARED TO AN INCANDESCENT LAMP FIGURE 5-7. LENGTH AND WIDTH OF THE LAMPS TESTED, COMPARED TO AN INCANDESCENT LAMP FIGURE 5-8. MAXIMUM SURFACE TEMPERATURE OF THE LAMPS WHILE IN STEADY-STATE OPERATION FIGURE 6-1. EXAMPLE OF MV LED NON-DIRECTIONAL RETROFIT CLEAR LED LAMPS: PROJECTIONS MADE IN 2013 ON PRICE/PERFORMANCE RATIO VS. REAL 2014 VALUES FIGURE C-1. LAMP #2 EXCEEDS THE MAXIMUM ALLOWANCE OF MACADAM STEPS FIGURE C-2. LAMP #3 WAS MEASURED AT THE WRONG OPERATING VOLTAGE FIGURE C-3. LAMP #4 MEASURED LIGHT OUTPUT WAS LESS THAN THE DECLARED VALUE FIGURE C-4. LAMP #5 EXCEEDS THE MAXIMUM ALLOWABLE (5%) FAILURES AT 200 HOURS FIGURE C-5. LAMP #8 MEASURED LIGHT OUTPUT WAS LESS THAN THE DECLARED VALUE FIGURE C-6. LAMP #10 EXCEEDS POWER RATING ALLOWANCE FIGURE C-7. LAMP #11 EXCEEDS THE MAXIMUM ALLOWABLE (5%) FAILURES AT 200 HOURS FIGURE C-8. LAMP #13 MEASURED LIGHT OUTPUT WAS LESS THAN DECLARED VALUE FIGURE C-9. LAMP #17 MEASURED LIGHT OUTPUT WAS LESS THAN DECLARED VALUE, MAX ELLIPSE EXCEEDED 88 xi

33 Acronyms and Abbreviations 4E AC ANSI CCT CEM CFL CLASP CO 2 CRI DC DG EC EU IEA kg LED lm MEPS MRSP OEM PCB R09 R&D REACH RoHS UK UNEP US V VHK VAT W Energy Efficient End-use Equipment (IEA Annex) Alternating Current American National Standards Institute Correlated Colour Temperature Clean Energy Ministerial Compact Fluorescent Lamp Collaborative Labelling and Appliance Standards Program Carbon Dioxide Colour Rendering Index Direct Current Directorate General European Commission European Union International Energy Agency kilogram Light Emitting Diode Lumens Minimum Energy Performance Standards Manufacturer Recommended Sales Price Original Equipment Manufacturer Printed Circuit Board a measure of saturated red (colour rendering) Research and Development Registration, Evaluation, Authorisation and Restriction of Chemicals Regulation on Hazardous Substances United Kingdom United Nations Environment Programme United States / United States of America Voltage Van Holsteijn en Kemna B.V. Value Added Tax Watts xii

34 1 Introduction On Monday, 15 September, Bram Soenen of the Belgian Ministry for Health, Food Chain Safety and the Environment circulated an to all the stakeholders of the European Commission s Consultation Forum for non-directional household lamps to inform them of this study. This highlighted the fact that LED technology has continued to evolve at a very rapid pace, with the recent introduction of competitively priced (<10 ) LED filament clear non-directional lamps into the European market. Several of these lamps claimed to have very high efficacies and if those performance values are correct, then the actual product performance will have exceeded the anticipated rate of price and performance improvement used as a basis for DG Energy s proposal on the treatment of Stage 6 of EC No 244/2009. A copy of the 15 September and the two-page attachment informing stakeholders about the study can be found in Annex A of this report. This study provides a market snap-shot of clear LED lamps on the European market from August 2014, looking at their measured price and performance. The objective of the study is to examine the following key questions: What are the current cost (lumen/ ) and performance (lm/w) of clear LED lamps? Do they give an aesthetic pleasant light (warm white, high CRI, no flicker)? Are the dimmable lamps compatible with leading edge and trailing edge dimmers? Do these lamps meet the LED quality requirements in EU No 1194/2012? Are LED filament lamps reliable products for consumers? (i.e., failure rate, switching test) What trends in price and performance of LED filament lamps have been observed in the last two years and what is expected in the future? This report is structured as follows: Chapter 1. Introduction this chapter provides an overview and context for the test study and this report. Chapter 2. Market and Technology Assessment provides an overview of the European lamp market including data from the recent IEA 4E Mapping & Benchmarking Annex report. This chapter includes information on how LED filament and other clear lamps are being marketed in Europe and some information on the consumer response. This chapter also includes some information about LED filament technology. Chapter 3. Lamps Purchased and Tests Conducted provides information about the lamps that were selected, the test laboratory (the Swedish Energy Agency s lighting test laboratory) and the tests conducted. Chapter 4. Test Results presentation of test results for each individual lamp model and a comparison between the different models. It should be noted that not all the planned testing is complete at this time, therefore updates to these findings will be provided in the future as new data becomes available. This report provides the 1000 hour test results, and is an update to the November 2014 report (100 and 200 hour results). 1

35 Chapter 5. Discussion of Test Results compares the test results of the different lamps, looking at the differences in performance both averages and minimum and maximum values. Chapter 6. Key Question Examination and Discussion the key questions mentioned above and included in the original message of 15 September are discussed in this chapter. The responses to these questions constitute the outcomes and conclusions of this study. As indicated in Chapter 4, due to the fact that some of the lifetime tests require 6000 hours (i.e., approximately 8 months) to complete, the authors are intending to publish updated test results on this sample of test lamps in the future. This report is the 1000 hour test result update. Like this report, any future updates will be provided to the Commission and the Consultation Forum, and posted in the public domain. 2

36 2 Market and Technology Assessment This chapter provides information about the lamps that were selected for testing and their claimed performance levels. It includes photographs of the lamps as well as information about where the lamps were sourced and the prices paid. It also contains information about this new technology referred to as LED filament lamps. 2.1 European Lamp Market Ecodesign regulation EC No 244/2009 bifurcated the incandescent lighting market into frosted and clear lamps, and set different energy efficiency requirements for frosted and clear replacement lamps. The intention of the policy measure was that frosted incandescent lamps would be replaced with compact fluorescent lamps (A-class energy label) and clear incandescent lamps would be replaced by mains-voltage halogen lamps (D-class energy label). Then, in September 2016, the final stage of 244/2009 would phase out mains-voltage halogen lamps in favour of B-class halogen lamps, CFLs and LED lamps, of which there are models on the 2014 market at A, A+ and A++ energy classes. In a recent publication, the IEA 4E Mapping & Benchmarking Annex published an update to their domestic lighting market study, which includes GfK sales data for Europe. 12 Some of that data is reproduced below; including the mains-voltage incandescent and halogen, integrally ballasted CFL and LED lamps. The data show that CFL sales peaked in 2010 and have been in decline ever since. In fact, CFL sales were lower in 2013 than they were in 2007, prior to the adoption of EC No 244/2009. Meanwhile, mains voltage halogen lamp sales have grown by 477% over that same time period. The GfK sales data shown in Figure 2-1 seem to indicate that the regulation for non-directional household lamps has failed to advance the sales of CFLs. The data show that the regulation has simply moved the European non-directional household lighting market from incandescent to halogen lamps. 13 When making a comparison between the two graphs, it is important to focus on the relative shares of lamp types rather than the absolute numbers. This is because the GfK shipment data is reported to represent about 70 percent of seven large EU Member States while the 2009 lamp forecast used to calculate energy savings represents the whole EU market. 12 IEA Mapping and Benchmarking report Domestic Lighting Update, September See: 13 Halogen lamps are approximately 20% more efficient than incandescent lamps while CFLs are approximately 400% more efficient. Thus, the allowance made for halogen mains voltage clear lamps has become a loop-hole that has undermined the original regulation and wiped out the anticipated savings. 3

37 Figure 2-1. GfK shipment estimate of Non-Directional Mains-Voltage Lamps, (Austria, Belgium, France, Germany, Great Britain, Italy and the Netherlands) The actual market in 2013 contrasts sharply with the market forecasts prepared in 2009 for Option 2 Clear B Slow (the scenario selected by the Commission for regulation EC No 244/2009, see Figure 2-2 below), which had expected CFL sales to be 4 times larger than mains voltage halogen lamps in The fact that actual CFL sales are one quarter of halogen sales in 2013 (see Figure 2-1 above) would mean that the European market is not on track to deliver the anticipated 39 TWh of electricity savings in 2020 from EC No 244/2009. The contrast in the relative share of halogen to CFL in 2013 between Figure 2-2 and Figure 2-1 is notable. 14 Final report, Lot 19: Domestic lighting prepared by VITO for European Commission DGTREN unit D3, Andras Toth, 2009/ETE/R/069; October See shipments projection in Annexe 8-6: Main economic and environmental data for the scenario Option 2 Clear B Slow. 4

38 Figure 2-2. Lot 19 Impact Assessment Shipments Projection of Non-Directional Mains-Voltage Lamps for Europe, Furthermore, frosted incandescent lamp sales were estimated to be nearly three-quarters of sales in 2007 (clear incandescent lamps were approximately one-quarter of sales). 15 Although a transition from frosted incandescent to CFL was deemed cost effective for households 16, most frosted lamp sockets have not migrated to CFLs (clear halogen lamp sales were 4 times larger than CFLs in 2013). This would mean, the decision to keep clear mains voltage halogen lamps in the market has slowed the market adoption of energy-efficient lighting and undermined the expected energy savings from EC No 244/2009. Given this new information about how the market seems to have responded to the policy measures (i.e., shifting to halogen lamps), the proposal to delay Stage 6 of EC No 244/2009 which would allow mains voltage halogen lamps to remain on the European market 17 would further erode energy savings and delay the introduction of energy-efficient lighting in Europe Comparison of Europe with other databases In parallel with the laboratory tests on the procured samples of lamps, additional research was conducted on published databases and sources of data that may also be included in this report to supplement the information and evidence being submitted to the Commission and Consultation Forum. These additional data represent self-reported, published and tested results thus they are given a different colour in the plots to differentiate them from the performance values of the lamps tested by the Swedish Energy Agency. The data were gathered from five different sources: 15 Final report, Lot 19: Domestic lighting prepared by VITO for European Commission, 2009/ETE/R/069; October Annexe 8-6: Main economic and environmental data for the scenario Option 2 Clear B Slow. 16 Full Impact Assessment, Commission Staff Working Document, on ecodesign requirements for nondirectional household lamps, Quote on page 16: In the frosted lamps category, the analysis has shown that it is cost-effective to only allow class A level lamps (= CFLs) November 2014, Commission issued an which stated the following: EU TBT notification concerning the Draft Commission Regulation amending Regulation (EC) No 244/2009 has now been published on the WTO website under the following reference: G/TBT/N/EU/248 and can be found here (click on this link) 5

39 Olino Database (NL): LED benchmark (AU): LightingFacts (US): ENERGY STAR (US): California (US): Only omni-directional, general lighting service lamps (both clear and frosted) were imported into the database for this study. There are 1808 models in the database, although some will be duplicated across the three US sources. Although the database contains LED lamps with wattages over 30W and light output over 2500 lumens, the figure below provides a scatterplot of the data between 2 and 12 Watts and 0 to 1200 lumens. The test data from this study are included in the plot, as yellow circles (labelled Sweden Test Data in the figure legend). Figure 2-3. Comparison of Test Data (2014) with Public Databases of LED Lamps ( ) The Swedish Test Data, prepared for this report, tend to have higher efficacy values than the other LED lamps in the databases (2012 to 2014). The test data from this study tends to be more efficient because they were all purchased in the third quarter of 2014 and therefore are using the most recent and energy-efficient LEDs. Furthermore, the LED filament lamps seem to be new models, just emerging onto the market in volume this year, and so these public databases don t yet reflect those models. The data gathered from these five public data sources either didn t include price information or it was only available for a few models, therefore no meaningful comparison could be made on price. 6

40 2.2 Marketing LED Lamps This section of the report provides some screen captures of the LED lamps from the websites where they were purchased. The marketing information is provided to show the performance attributes which are being emphasised when promoting these lamps in the market such as low power consumption, long service life, beam angle, correlated colour temperature and colour rendering index, and lumen output Lamp 2 Maplin LED filament / A15QF The following is a screen capture of the claimed performance characteristics of Maplin s six watt LED filament lamp which was purchased from Maplin in the UK. 7

41 2.2.2 Lamp 5 - LED Connection Classic LED blub The following is a screen capture of the claimed performance characteristics of the LED Connection s six watt LED filament lamp which was purchased from LED Connection in the UK Lamp 6 IKEA Ledare LED lamp The following is a screen capture of the claimed performance characteristics of the IKEA Ledare lamp that was purchased at the Edmonton (UK) IKEA store. 8

42 2.2.4 Lamp 15 Philips Clear LED Lamp The following is a screen capture from the press release of the Philips Clear LED lamp. Please note that the retail price quoted in the Philips press release is lower than the retail price paid for this lamp when it was purchased for this testing study. (The price paid was ) Lamp 17 Calex LED Filament GLS The following is a screen capture of the claimed performance characteristics of the Calex LED filament lamp which was purchased from ELV in Belgium. 9

43 2.3 LED Filament Technology An LED filament lamp is a retrofittable, mains-voltage replacement lamp that uses LEDs mounted in series under a phosphor coating as light-emitting filaments. These filaments are designed so that light is produced uniformly and evenly, usually in all directions. Multiple filaments are then arranged in the glass envelope in order to maximise the light emission pattern in all directions (see polar plots in Annex B). The resulting product emits light in a pattern that matches traditional incandescent and halogen (tungsten) filament lamps and offers the sparkle effect for special lighting installations. The figure below is a close-up photograph taken of one of the lamps tested in this study. This particular lamp had 8 LED filaments contained within the glass bulb. Each of these filaments consumes approximately 1 watt of power, thus this lamp is about an 8 watt LED lamp. And the filaments are typically operating around 110 lumens per watt, thus this lamp will have approximately an 880 lumen output. Figure 2-4. Close-up photograph of LED filaments from LED Connection (#5) 8W lamp 10

44 According to one manufacturer s website, the filament LED lamp was first produced by the Japanese lighting company, Ushio in The original design bent the tube into a U-shape and used six filaments to duplicate the appearance of incandescent bulbs, with 3 LED chips in each of the six filaments. When the LED filaments are operating, they resemble a concentrated small point source, similar to an incandescent or halogen filament, thus offering a familiar and traditional look while creating the sparkle optical effect where light from these sources interacts with cut glass and crystal in decorative and ornamental lighting fixtures. As described in the vosled 2014 product catalogue, Gerhard Liebscher, Managing Director of vosled says The Edison bulb is a truly great design: an almost perfect point light source that can be adapted to any lighting situation with the use of lamp shades. And now it s energy efficient too Edison would be delighted with the new vosled bulbs! 19 Companies adapted and improved upon the original Ushio design, and in 2013 several products introduced to the global lighting market by different manufacturers. For example, Tevaja Lighting Company (China), uses a longer filament which incorporates 30 LED chips into each filament, enabling a greater light output from each filament. 20 The photo below shows a cut-view of one of these filaments, both with the yellow phosphor and with the phosphor removed, revealing the string of LED die mounted on the substrate. These LEDs are GaN, emitting a blue light, and they are connected in series on a transparent substrate before the whole assembly is coated in phosphor. Light is emitted out the front and back of the LEDs, enhancing the luminous flux and efficacy. The photo below shows a cut-away view of an LED filament, with the arrangement of LEDs in series. Figure 2-5. Cut-away view of LED filament on transparent substrate The LED filament designs use LED chips encapsulated on a transparent substrate 21 of glass or synthetic sapphire, and coated with phosphor. The Tevaja Company refers to this new packaging 18 Tevaja Lighting corporation, China. See: 19 VOSLED Kompromisslos Besser, vosled Glühbirnen Light bulbs, 2014 Catalogue. Plauen, Germany. website visited 5 September Tevaja Lighting corporation, China. See: ; also, it should be noted that manufacturers may vary the number of LEDs in the filament to create the desired light output level and forward voltage. Shenzhen Harrison Optoelectronics Technology Co. for example, offers a filament that uses 28 LED chips on a sapphire substrate. See: lear_glass_cover_globe_bulb_lights.html 21 There are several different types of mounting substrates for the LEDs in these filaments. In addition to glass and synthetic sapphire, some manufacturers are using a ceramic substrate and others metal although the metal will have obvious implications in light emission patterns. See for example: 11

45 technology as a chip-on-glass design. The filament of glass or synthetic sapphire is very thin, with a diameter of approximately 1.5mm, but with a length of approximately 30mm. The LED filament is formed by connecting the LEDs in series on the substrate, adding the connectional terminals at each end and encapsulating the LED part in the yellow phosphor. The following figure shows a dimensioned diagram of an LED filament from a product catalogue 22, where all dimensions shown are in millimetres. Figure 2-6. Dimensioned (mm) diagram of LED filament and close-up photograph The following is a screen capture of another manufacturer s catalogue 23 who sells the LED filaments as an Original Equipment Manufacturer (OEM) supplier to lamp assembly companies. In this table, the LED filament is described as following the chromaticity binning requirements of the ANSI standard and certified by LM-80. The website states that these filaments are compliant with the European Regulation on Hazardous Substances (RoHS) and REACH. The filament is available in a number of different colour temperatures. d_filament.html 22 To view the catalogue, click on this link: 23 This catalogue was accessed on 15 October 2014; see: 12

46 Figure 2-7. Example of an LED filament specification from the Runlite Catalogue (2014) The design of LED filament lamps contrasts with traditional LED lamp designs in that there is no heat sink connected to the LED Lamp. Instead, we understand that these lamps are filled with a special gas that has high thermally conductive properties, and which therefore transfers the waste heat from the LED filaments to the surface of the glass bulb where it is emitted into the ambient air. One of the reasons this new thermal design is thought to be possible is because of the very high efficacies relative to some of the traditional designs for example, the most efficient LED filament is approximately twice as efficient as the least efficient clear LED lamp tested, thus using half the watts for the same light output and consequently halving the waste heat. In order to assess this aspect in this test study, the operating temperature of the lamps were measured under steady-state performance. In this study, the highest bulb surface temperatures were found and measured for each lamp using an infrared camera. Compared with the halogen reference lamp, the LED lamps had a cooler surface temperature (see Section 5.7). Manufacturers of these LED filaments claim that they have a very long lifespan, typically ten times longer (20,000 hours) than halogen lamps (2,000 hours). This claim is also being tested in this study, up to 6,000 hours of testing which will be completed and published in The driver operating the LED filaments is physically small compared to the circuits operating other LED lamps. In some designs tested in this study, the entire driver fit within the space of the end-cap of the lamp (i.e., the E27 screw base or the B22 bayonet fitting). In other designs, a very small white plastic housing extended up from the screw base of only about 15 mm containing the driver. Either way, there are substantially less electronic components with the associated environmental resource efficiency benefits that are associated with these simplified designs. 13

47 For more information on LED filament lamps, please see the following resources: Product example: b.pdf Close-up examination: Explanation on the filaments: LED filament lamps: Chip-on-glass packaging: Phosphor for LED products: 14

48 3 Lamps Purchased and Tests Conducted This chapter provides some information about the lighting test laboratory at the Swedish Energy Agency where the tests were conducted. It also provides information on which tests were conducted by the lab, including electrical, light quality and other tests. 3.1 Lamp Selection and Procurement All of the lamps purchased for this study were procured online. The map below shows the countries from which the lamps were sourced from retailers located in Belgium, France, Germany, the Netherlands, Sweden, and the United Kingdom. Figure 3-1. Map of Europe showing countries where LED lamps were procured Due to some comments that were raised by stakeholders in 2013 about the lack of replacement products that could offer a sparkle effect in decorative fixtures and luminaires such as those which incorporate refractive glass and crystal, this study sought to identify and source lamps that offered a clear glass envelope where the LED emitting part of the light could create this effect. There were two general types of clear LED lamps on the European Market at this time: 1) a clear optical light guide, such as the lamps produced by IKEA, Philips and OSRAM and 2) LED filament lamps, such as those sold by Maplin (UK), Wholesale Lighting (UK) and Vosla (DE). Both types of LED lamps offer consumers the benefit of creating a sparkle effect when installed in those luminaires that interact optically with the lamp. The following table is a list of all the lamps purchased for this study and their claimed performance attributes. The measured test results for these products are presented in Chapter 4 and Annex B. 15

49 Table 3-1. Lamps purchased for testing and some of the performance characteristics claimed on the websites # Make / Model Lumen Watts CCT CRI Life Dim? Retailer Price each Euros /500 lm 1 Wholesale Lighting / MS-B22-6W-OMNI k No WLL(UK) Maplin LED filament / A15QF >80 50k No Maplin UK Osram Halogen Classic A ECO (46W, 240-V version) k Yes Amazon Lighting Ever LED Filament / WW-EU >80 50k No LE UK LED Connection Classic LED bulb 600 7? -- 30k Yes LED Conn IKEA LEDARE / k Yes IKEA UK Vosla GmbH (DE), vosled-light bulb clear, 5.5W >90 25k No vosled (Germany) LED Connection 8W warm white filament LED k No LED Conn Panasonic Nostalgic Clear / LDAHV10L27CGBEP k No Panasonic FR (France) NCC-Licht / LED Filament 6W warmweiß 2700K k No Amazon.de (Germany) LED24.cc / E27 LED Glühfaden Birne 8w 2700K No Amazon.de (Germany) LED filament lampa E27 # No Star Trading 52,00 SEK LED filament lampa E27 # (candelabra) Yes Star Trading 106,00 SEK Osram PARATHOM Classic A ADV 10W k Yes LEDLightbulbs Philips Clear LED bulb - GLS 6W A60 E27 Clear k Yes LEDLIghtbulbs Led lampen direct (NL) / Polaris 4 Watt >80 15k No LED Lampen (NL) Calex (NL) LED Filament GLS / k No ELV Belgium (BE) Segula LED Lamp / E27 5.5W k No LEDitLight (NL) Min: Max:

50 3.2 Test Laboratory All of the testing was conducted at the Swedish Energy Agency s lighting test laboratory in Stockholm. This laboratory was established in 2013 in cooperation with the UNEP Collaborating Global Efficient Lighting Centre in Beijing. The laboratory also participated in the International Energy Agency s 4E Solid State Lighting Annex s 2013 Interlaboratory Comparison. 24 The main activity of this laboratory is for conducting testing as part of on-going market surveillance activities in Sweden to ensure compliance with the European Commission s ecodesign lighting product regulations EC No 244/2009 (non-directional household lighting), EC No 245/2009 (tertiary sector lighting), EU No 874/2012 (energy labelling for lighting products) and EU No 1194/2012 (directional lighting and LEDs). In terms of testing equipment, the laboratory currently has a wide range of equipment for testing all types of lighting products, including: two 1.8 meter integrating spheres; a near field photogoniometer (that can test up to 1400mm luminaires); life test and stress cycling equipment for E14- and E27-lamps, linear fluorescent tubes and LED-modules; and a wind cap for luminaire temperature measurements. The parameters most often measured in the lighting laboratory are luminous flux (lumens), correlated colour temperature (CCT in K), colour rendering (including colour rendering index, colour quality scale and gamut area index), efficacy (lumens per watt), colour shift over time (MacAdam ellipse) and flicker (including percent flicker and flicker index). 3.3 Tests Conducted The Swedish Energy Agency s laboratory conducted a range of tests on the samples of lamps procured for this study. The study looked at the lamps under test as compared to the requirements of EU No 1194/2012, although the sample size and procurement practices may not be aligned with procedures followed by the Swedish Market Surveillance Authority. Thus, the results of this study should not be viewed as market surveillance test results, but rather as indicative findings that may offer unofficial test results on a few models of clear LED Lamps to European market surveillance authorities. This may help them to target their compliance and enforcement procurement practices more accurately. The screen-capture below presents the requirements from EU No 1194/2012 for all non-directional and directional LED lamps. 24 This project compares the ability of 110 laboratories worldwide to test Light Emitting Diode (LED) lamps and luminaires. The outcome of this large-scale interlaboratory comparison will help governments and manufacturers around the world ensure that new LED products sold to consumers and companies are of high quality and meet the claimed performance. 17

51 The following is a list of tests conducted, although some of the tests are not yet complete such as lumen maintenance and colour shift at 6000 hours as these will take several months to complete. However, some interim results are presented in this report. Please note that the test metrics marked with a star (*) are the ones required by the European regulation EU No 1194/2012 (table above). Recorded physical information Test Lamp Identification Number Manufacturer Name Model Number Width, Length and Weight Steady-state operation Voltage (V) Current (ma) Power (Watts) Luminous flux (lumens) Efficacy (lm/w) 18

52 Power factor* Lamp max temperature, C Flicker index Percent flicker Light and colour quality Chromaticity x Chromaticity y Correlated colour temperature (CCT) Colour rendering index* and individual scores for CRI01 through CRI16 Minimum measured Duv (negative values are below Planck) Maximum measured Duv MacAdam centre x MacAdam centre y Colour consistency - within six MacAdam steps?* (yes/no) Number of MacAdam ellipses containing all points? Gamut Point Lifetime Premature failure rate at 200 and 1000 hours* Switching cycles* - 30 second on + 30 second off at 100h Lumen maintenance at 100, 1000, 2000, 4000 and 6000 hours Colour shift at 100, 1000, 2000, 4000 and 6000 hours Lamp survival factor at 6000 hours* - tests are on-going Lumen maintenance at 6000 hours* - tests are on-going Dimmer compatibility (only on those lamps marketed as dimmable ) Leading edge dimmer (ELKO 400GLI) Trailing edge dimmer (ELKO 315GLE) * Test parameters marked with a (*) are regulated quantities under EU No 1194/2012. In addition to these, CLASP (who managed the procurement of the lamps) also recorded the prices paid and the sources from which the samples were obtained for the study. These data were used to help plot the current price and performance of LED lamps relative to the projected performance given in Table 2 of the June 2013 VHK/VITO review study. 19

53 4 Test Results This chapter presents a summary of the individual lamp test results. As previously noted, not all the testing is complete at this point, therefore updates to this report will be provided as more test data on the samples of lamps becomes available. In Chapter 5, a comparison of some of the key test parameters across the different lamp models is provided and in Annex B, more detailed test results are shown. The purpose of providing these results is to be as transparent as possible about the tested performance findings for these lamps. 4.1 Wholesale Lighting MS-B22-6W-OMNI This lamp was purchased from a UK-based on-line retailer (see link in the table below). Although the box and lamp were labelled 6 watts, the measured power consumption of the lamps purchased was approximately 5 watts. The packaging for the lamp was simply a white, blank box, with a sticker giving the Lamp ID. The box did not have an EU energy label. These lamps were purchased in August 2014 for per 500 lumens including VAT, however by November 2014 the same UK retailer had reduced the price by 17% to per 500 lumens including VAT. Item Table 4-1. Summary of Test Results for Sample of Lamp #1 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm Website Click on this link 20

54 4.2 UK LED Standard Bulb This lamp was purchased from Maplin s, a UK electronics retailer with an on-line shop (see link in the table below). The lamp came in a black and green coloured UK LED box, and an energy label that did not comply with EU regulations. The label indicated that the lamp was an A+++ class non-directional lamp, although the highest class is actually A++. The lamps were purchased in August 2014 for per 500 lumens including VAT, however at the time of this report (two months later) the same UK supplier had reduced the price by 17% to per 500 lumens including VAT. Item Table 4-2. Summary of Test Results for Sample of Lamp #2 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra > % % R09 (red) (Red) Max ellipse MacAdam steps * Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link *Note: The MacAdam steps reported in the November 2014 report at 100 hours was 7.58 steps this has now been corrected to On re-analysis of the test data, if there was a deviating data point from the main grouped data and no other data points between the deviating point and the grouped data, the deviating point was removed from the MacAdam calculation since there was no other statistical confirmation from related data. 21

55 4.3 Osram Halogen Classic A ECO This lamp was purchased from Amazon (UK) dispatched from and sold by Amazon (see link in the table below). These lamps were purchased as a basis for comparison between the clear LED lamps and mains-voltage halogen lamps. The lamps were supplied with the traditional OSRAM boxes, and compliant labelling information, including the energy class rating D. The lamps were purchased in August 2014 for 2.29 per 500 lumens including VAT, however at the time of this report (two months later) the same UK supplier has increased the price considerably by 88% to 4.29 per 500 lumens including VAT. Our initial measurement of light output for this lamp indicated that it was lower than the declared value, however it had been measured at 230V (since the nominal voltage across all of Europe is 230V ±10% according to EN 50160; see p.83 for further comments) and the lamp had been designed to operate at 240V. Thus, for the 1000-hour measurement, the lamp was tested at both voltages, and the sensitivity of the filament to the operating voltage can be seen in the table below a reduction of about 14% due to the difference in voltage. Taking lumen depreciation into account at 1000h, it appears that this lamp would have been very close to the declared (initial) value had it been measured at 240V. Item Table 4-3. Summary of Test Results for Sample of Lamp #3 Units Declared Value Measured Value (100h)* Difference at 100h Measured (1000h) 230V 240V Difference 1000h vs. 100h (230V) Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm Website Click on this link * The 100 hour test results are reported at 230V and the 1000 hour test results are reported at both 230V and 240V. 22

56 4.4 Lighting Ever LED Filament Bulb This lamp was purchased from Lighting Ever, a UK on-line lighting retailer (see link in the table below). The lamp came in colourful packaging, including an EU energy label and a scale indicating the colour temperature of the lamp. The lamp was labelled as an A+ class. These lamps were purchased in August 2014 for per 500 lumens including VAT, and there was no change in price two months later. This lamp offers a low wattage consumption, but also a modest light output of only 359 lumens. The measured light output of this LED Lamp is 36 percent lower than is advertised on the packaging. Item Table 4-4. Summary of Test Results for Sample of Lamp #4 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra > % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link 23

57 4.5 LED Connection Classic LED bulb This lamp was purchased from LED Connection, a UK on-line lighting retailer who specialises in LED lighting products. This lamp was the only clear model tested which uses surface-mounted LEDs emitting directly from the PCB board. As shown in the photo, the lamp is constructed around a rectangular box which has LED die mounted on all surfaces all four sides and the top and bottom of the cube. The lamp is sold in a clear plastic package and uses an outdated EU energy label on the back (note: these lamps may predate the effective date of the new lamp labelling requirements that took effect in September 2013). These lamps were purchased in August 2014 for per 500 lumens including VAT, and there was no change in price two months later. Item Table 4-5. Summary of Test Results for Sample of Lamp #5 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra > % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link 24

58 4.6 IKEA LEDARE / This sample of lamps was purchased from IKEA s retail store in Edmonton, North London, UK. This lamp design uses a light guide / diffuser to create a filament effect when installed in certain luminaires. The individual LEDs are visible through this optical guide, as shown in the picture below. This lamp is sold in a clear plastic blister pack, and incorporates a current EU energy label. These lamps were purchased in August 2014 for 6.30 per 500 lumens including VAT, and there was no change in price two months later. Item Table 4-6. Summary of Test Results for Sample of Lamp #6 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link 25

59 4.7 vosled Light Bulb Clear, 5.5W This sample of lamps was purchased from VOSLA s on-line retail shop based in Germany. As shown in the photos, this is an LED filament lamp which has six filaments in each lamp. The product is marketed as having good quality light, and this is reflected in the measured results of 91 CRI and an R09 (red) of The lamps have an efficacy rating typical of the LED filament lamps at this time, but they are more expensive than some of the other lamps in this study. The packaging for these lamps includes a EU energy label with an A+ rating and a guide for CCT scale. These lamps were purchased in August 2014 for per 500 lumens including VAT, and there was no change in price two months later. Item Table 4-7. Summary of Test Results for Sample of Lamp #7 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra > % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link 26

60 4.8 LED Connection Filament Lamp This sample of lamps was purchased from LED Connection, the same UK specialist on-line lighting retailer who supplied Lamp #5 for this study. This model was introduced into the market in September 2014 and is the third highest flux of the LED lamps tested. This 7.6W model has eight filaments and the sample average was measured as having a luminous flux of 782 lumens. The lamp was supplied in a blank (white) box with only a sticker on one end that matched the same information on the sticker on the lamp (see photo below). These lamps were purchased in September 2014 for per 500 lumens including VAT, and there was no change in price at the time of this report being issued. Item Table 4-8. Summary of Test Results for Sample of Lamp #8 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link 27

61 4.9 Panasonic Nostalgic Clear LED Lamp This sample of lamps (model number LDAHV10L27CGBEP) was purchased from Panasonic s on-line retail shop based in France. This lamp is among the three highest wattage lamps measured (9.6 watt average), but is also one of the higher light outputs (792 lumens). The lamp was shipped in a clear plastic box that is larger at the top of the package. The packaging includes a current Energy Label for lighting, indicating that these lamps at A+. Inside the lamp, the design has LEDs mounted on a platform and coated in yellow phosphor. There are four strips two on top of the platform and two below. The light quality of this lamp appears to be lower than some of those tested, with a CRI that failed to meet the requirement under EU No 1194/2012 of a CRI of 80. The lamps also scored a negative result on the R09 red tile. Furthermore, the number of MacAdam ellipse steps exceeds the limit of 6 steps. These lamps were purchased in September 2014 for per 500 lumens including VAT, and there was no change in price at the time of this report being issued. Item Table 4-9. Summary of Test Results for Sample of Lamp #9 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps * Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link *Note: The MacAdam steps reported in the November 2014 report at 100 hours was 33.8 steps this has now been corrected to On re-analysis of the test data, if there was a deviating data point from the main grouped data and no other data points between the deviating point and the grouped data, the deviating point was removed from the MacAdam calculation since there was no other statistical confirmation from related data. Please see the following two chromaticity plots which clearly illustrate the issue. 28

62 Figure 4-1. Chromaticity Plot for Lamp #9 with 49 Data Points, One Outlier Clearly Visible Figure 4-2. Same Chromaticity Plot for Lamp #9 with 48 Data Points, One Outlier Removed The outlier that affects the number of MacAdam steps can be seen in Figure 4-1. The outlier increases the MacAdam ellipses from 7.5 to 33.8 steps. The outlier was determined to be a deviating data point from the main grouped data because there were no other data points between the deviating point and the grouped data. It was removed from the MacAdam calculation since there was no other statistical confirmation from related measurement data. 29

63 4.10 NCC-Licht / LED Filament This sample of lamps (model number Glühbirne 6W = 60W E27 Glühlampe Glühfaden warmweiß 2700K 360 A++) was purchased from a German retailer (NCC-Licht) through the German-based Amazon.de website. The lamps were supplied in colourful boxes that indicate their light output, wattage consumption and equivalent halogen lamp. The lamps also include a current EU energy label, marking these lamps as the highest energy class A++. The lamps themselves have six LED filaments as shown in the photo. The lamps offer a warm white (around 2600K CCT), have a CRI slightly lower than the requirement (79 CRI instead of 80) and a low score on the R09 red tile. The lamps were purchased in September 2014 for 9.18 per 500 lumens including VAT, and there was no change in price at the time of this report being issued. Item Table Summary of Test Results for Sample of Lamp #10 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- (no change) Website Click on this link 30

64 4.11 LED24.cc / E27 LED Glühfaden Birne This sample of lamps (model number B00JSP665G) was purchased from a German retailer (LED24.cc) through the German-based Amazon.de website. The lamps were supplied in white cardboard boxes with a sticker that covered two sides of the box (see photo). The sticker applied to the box includes the current EU energy label, marking these lamps as being A+ class. The lamps themselves have six LED filaments as shown in the photo, with a total light output of 748 lumens. The CRI values for this lamp exceed the requirement of 80 and the R09 value is The number of MacAdam steps is also within the limit of 6 steps. The lamps were purchased in September 2014 for per 500 lumens including VAT. The lamps are no longer stocked by this retailer and it is unknown whether any new stock will be sold. The website says: Derzeit nicht verfügbar. Ob und wann dieser Artikel wieder vorrätig sein wird, ist unbekannt. Item Table Summary of Test Results for Sample of Lamp #11 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm Website Click on this link 31

65 4.12 Star Trading Direct - LED filament lampa E27 Nr This sample of lamps (model number ) was purchased from Star Trading Direct, a Swedishbased retailer. These lamps have a very good efficacy, reaching 112 lumens per Watt. The colour and light quality requirements for this lamp are all achieved, with a CRI of 81 and the number of MacAdam steps less than 6. The lamps were purchased in September 2014 for 6.16 per 500 lumens including VAT. Item Table Summary of Test Results for Sample of Lamp #12 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- No change Website Click on this link 32

66 4.13 Star Trading LED filament lampa candelabra shape This sample of lamps (model number ) was purchased from Star Trading Direct, a Swedishbased retailer. These lamps are dimmable, as some of the applications that call for a candle-shaped lamp would be on dimming circuits. The lamp was tested with both a leading edge (ELKO 400GLI) and trailing edge dimmer (ELKO 315GLE), and performed well (no noticeable flicker or other light quality issue). The lamps have a relatively low efficacy about the same as a compact fluorescent lamp, but they exceed the minimum CRI values and are well within the maximum MacAdam steps. The lamps were purchased in September 2014 for per 500 lumens including VAT. Item Table Summary of Test Results for Sample of Lamp #13 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- No change Website Click on this link 33

67 4.14 Osram PARATHOM Classic A ADV 10W 827 This sample of lamps was purchased from LED Lightbulbs, a UK-based on-line retailer who specialises in LED products. These lamps are among some of the least expensive lamps purchased for this study, costing only 7.16 per 500 lumens in 2014 a price point that is was not expected until 2020 in the June 2013 VHK/VITO review study. These lamps are marketed as dimmable on certain dimmers, and they were found to work successfully on the leading edge dimmer but not the trailing edge dimmer used in this test. The packaging includes the current EU energy label, which ranks these lamps as an A+ class. The efficacy of these lamps is about 50% better than a compact fluorescent lamp, at 89.5 lumens per watt, and the colour rendering meets the requirement of 80. The lamp itself has a light guide designed to create a sparkle effect. The lamps were purchased in September 2014 for 7.16 per 500 lumens including VAT and their price had not changed at the time this report was issued. Item Table Summary of Test Results for Sample of Lamp #14 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- No change Website Click on this link 34

68 4.15 Philips Clear LED bulb - GLS 6W A Clear This sample of lamps was purchased from LED Lightbulbs, a UK-based on-line retailer who specialises in LED products. These lamps were advertised in a March 2014 press release from Philips as having a suggested retail price of 8.99, however we were unable to locate these lamps at that sales price. The purchase price paid was higher than the manufacturer s suggested retail price (MSRP). The packaging includes the current EU energy label, which ranks these lamps as an A+ class. The efficacy of these lamps is about 40% better than a compact fluorescent lamp, at 84.7 lumens per watt, and the colour rendering exceeds the requirement of 80. These lamps are marketed as dimmable on certain dimmers, and they were found to work successfully on the leading edge dimmer but not the trailing edge dimmer used in this test. The lamp itself has a light guide designed to create a sparkle effect (see Philips press release for information about this). The lamps were purchased in September 2014 for per 500 lumens including VAT and their price had not changed from that same retailer at the time this report was issued. The MSRP for this lamp is 8.99 per 500 lumens light. Item Table Summary of Test Results for Sample of Lamp #15 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- No change Website Click on this link 35

69 4.16 LED Lampen Direct, 4 Watt Polaris This sample of lamps was purchased from LED Lampen Direct, a Dutch-based on-line retailer who specialises in LED lighting products. This product is called the Polaris 4 Watt lamp, advertised as a replacement for a 50W incandescent lamp, and was manufactured by a company named YPHIX. This lamp has lower light colour quality specifications - a CRI measurement slightly below 80 and a negative R09 red score meaning this light source will not render red coloured objects very well. It does, however, have only 2.9 MacAdam steps, well within the limit of 6 steps. The lamps were purchased in September 2014 for per 500 lumens including VAT and their price had not changed from that same retailer at the time this report was issued. Item Table Summary of Test Results for Sample of Lamp #16 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra > % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- No change Website Click on this link 36

70 4.17 Calex LED Filament GLS This sample of lamps (Model number ) was purchased from Electrocirkel n.v., an electrical whole supplier based in Belgium. The brand of this model is Calex. This lamp has a relatively high light colour quality specification - a CRI measurement of 88 and R09 red score of It has, however, 9.5 MacAdam steps, which is greater than the regulatory limit of steps. The lamps were purchased in October 2014 for per 500 lumens including VAT and their price had not changed from that same retailer at the time this report was issued. Item Table Summary of Test Results for Sample of Lamp #17 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- No change Website Click on this link 37

71 4.18 Segula This sample of lamps (Model number ) was purchased from LEDitLight.net in the Netherlands, a specialty on-line retailer for LED lamps. This lamp was the most expensive LED lamp purchased for the test, which was bought in October 2014 for per 500 lumens including VAT. The price of the lamp had not changed from that same retailer at the time this report was issued. Item Table Summary of Test Results for Sample of Lamp #18 Units Declared Value Measured Value (100h) Difference at 100h Measured Value (1000h) Difference 1000h vs. 100h Power Watts % % Light Output Lumens % % Efficacy lm/w % % CCT K % % CRI Ra % % R09 (red) (Red) Max ellipse MacAdam steps Price paid / 500 lm Current Price / 500 lm -- No change Website Click on this link 38

72 5 Discussion of Test Results In this chapter, the test results are presented and discussed, allowing a comparison of performance levels across the sample of 17 models of LED lamps and 1 halogen lamp tested. 5.1 Power Consumption The figure below shows the average power consumption in watts of the lamps tested (blue diamond for 100-hour and red diamond for 1000-hour test) and then an error bar that gives the minimum and maximum values observed in the sample of 10 units for each of the 18 lamp models (a total of 180 lamps). For the most part, the units tested were found to have power measurements that do not deviate significantly from the sample average. The LED lamps were all found between approximately 4 and 10 watts. The power consumption for the halogen lamp (#3) is off the scale of the Y-axis, with an average power consumption of 45.5 Watts. At 1000-hours of testing, one of the circuits in one of the units under test for lamp #4 had failed, thus it is still producing light, but at approximately half its rated value, hence there is a corresponding drop in wattage for that one unit while the other 9 models in the sample are operating as normal. Figure 5-1. Power Consumption Distribution of Lamp Models Tested (Watts) 39

73 5.2 Light Output The light output distribution is presented below, with a range of outputs from approximately 300 to 850 lumens. Unlike the power consumption distribution figure, these test results exhibited variance for some of the models between the average for the sample and the min/max of specific units in the sample. In particular, lamps #1 (Wholesale Lighting), #10 (NCC Licht) and #17 (Calex) exhibited a range that was larger than the other lamps. Several LED lamps had deviations that were within 10% of the sample average. The OSRAM halogen lamp (#3) has a very consistent lumen output profile, similar to that of the LED lamp #14 (OSRAM). After 1000 hours, we find some more variance in lumen output for some of the lamps, specifically lamps #4 and #11 which each had one unit where part of the LED circuit fail (although power measurement dropped for #4 and not #11). Otherwise, the luminous flux declines slightly, reflecting the longer time in service, but the ranges of the samples don t change significantly. Figure 5-2. Distribution of Light Output Lamp Models Tested (Lumens) 40

74 5.3 Efficacy The efficacy distribution pattern varied significantly for LED lamps. Those lamps that employed light guides tended to have slightly lower efficacy than some that simply emitted light directly from the LED filament through a clear glass envelope. The three lamps with the highest variance in efficacy are #1 (Wholesale Lighting), #10 (NCC Licht) and #17 (Calex) the same three lamps with the highest variance in measured power. The reference halogen lamp sample (#3) is shown with an efficacy of 12.8 lumens / Watt 5 to 10 times less than the LED lamps tested. After 1000 hours, there were some small reductions in efficacy, generally in line with lumen depreciation. Lamp #11 experienced a significant drop in one of the units under test, however this due to a partial failure in the circuit of one unit in that sample. Figure 5-3. Distribution of Efficacy Measurements for Lamp Models Tested (lumens/watt) 41

75 5.4 Correlated Colour Temperature The figure below provides the sample averages and distribution of the correlated colour temperature (CCT) measurements. Most of the LED lamps tested have a CCT between 2600 and 2900K, approximately the same as a tungsten filament CCT. Lamp #3, the halogen lamp, has a CCT just under 2800 K, and several lamps such as #12 (Star Trading) appear to match the CCT of halogen perfectly. After 1000 hours of testing, the results for most of the lamps was virtually the same, with the exception of lamp #8, #11 and #13 which experienced a decrease (#8, #13) and an increase (#11) in the measured CCT for one unit within the sample. Figure 5-4. Distribution of CCT Measurements for Lamp Models Tested (K) 42

76 5.5 Colour Rendering Index The figure below provides the sample averages and distribution of the colour rendering index results. Here, the halogen lamp (#3) is clearly visible, with a 100 CRI value, due to the fact that CRI is a measurement metric based on tungsten-filament technology. The LED lamps are required to achieve a CRI of 80, and most do, although some appear to fall slightly below the requirement. Two of the LED lamps tested lamps #6 (IKEA) and #7 (Vosla) have CRI values that are greater than 90. After 1000 hours of testing, the CRI did not change very much for any lamp, although the range for lamp #7 expanded, with one model within the sample increasing and another decreasing. Overall, the average CRI for the sample of #7 increased slightly during the analysis period. Figure 5-5. Distribution of Colour Rendering Index for Lamp Models Tested (Ra) 5.6 Lamp Weight and Dimensions One of the issues that was identified as a potential problem with LED replacement lamps was the higher weight and unusually large dimensions. It is understood that this issue was due, in large part, to the fact that LED lamps do not project heat in their light emission, thus any waste heat generated in the conversion of electricity to light has to be conducted away from the LED through a heat sink and cooling fins. However, as LED lamps improve their efficacy (e.g., moving from 60 lumens per watt to 120 lumens per watt), the conversion efficiency improves, and the heat sinks can be reduced in size and can potentially reach a point where the surfaces of the existing lamps are sufficient to radiate and convect the heat away from the lamp surface. At that point, heat sinks may no longer be necessary. 43

77 LED filament lamps do not employ the use of heat sinks. Instead, these lamps are filled with a special gas that has high thermally conductive properties and which transfers the waste heat from the LED filaments to the surface of the glass bulb where it is emitted into the ambient air. The figure below shows the weight of the 18 lamps tested, compared to a red line which represents the weight of a standard 60W incandescent lamp (28 grams). The halogen lamp (#3) is a slightly smaller lamp than the standard 60W, thus it has a slightly lower mass. Many of the LED filament lamps have very similar weights to the incandescent reference point within 10 to 20 grams. At these weights, there is no risk that the LED replacement lamps would cause problems in existing fixtures and sockets due to the higher mass. There are a few LED lamps notably #6, 9, 14 and possibly 15 which are heavier than the others but all lamps are less than 160 grams, which and the vast majority are less than 50 grams. Figure 5-6. Weight of the lamps tested, compared to an Incandescent Lamp In the figure below, the lamp length (X-axis) and widest width (Y-axis) are plotted for all eighteen lamps that were tested. The reference incandescent lamp is shown as a red square in the midst of this scatter plot. Again, several LED replacement lamps are either shorter or narrower than incandescent lamp, and three LED lamps are longer but the same width, with just one LED lamps that is both larger and wider than the incandescent reference lamp. 44

78 Figure 5-7. Length and Width of the lamps tested, compared to an Incandescent Lamp 5.7 Lamps and Heat Measurements were made of the maximum surface temperature of the lamps while in steady-state operation. The figure below presents the results of the measurements, plotting the lamps by wattage over temperature. The halogen lamp is not shown because of the very high wattage, but the measured surface temperature was 89.3 degrees Celsius, just slightly higher than the 10 watt LED lamps. Figure 5-8. Maximum surface temperature of the lamps while in steady-state operation 45

79 5.8 EU No 1194/2012 Performance Requirements The testing conducted under this study should not be interpreted as enforcement testing of the products, the sample sizes were not sufficient. These test results should be seen as indicative of the actual performance of those lamps tested, and may be used by market surveillance authorities to help better target their own respective sampling and testing programmes for lighting. The screen-capture below presents the requirements from EU No 1194/2012 for all non-directional and directional LED lamps. Of the complete list of functionality parameters given in the ecodesign implementing measure, this study was able to measure the following: Lamp survival factor at 6000 h - tests are on-going, interim results available Lumen maintenance at 6000 h tests are on-going Number of switching cycles before failure yes, tested 46

80 Starting time yes, tested Lamp warm-up time to 95% - yes, tested Premature failure rate at 1000 h yes, tested Colour rendering index yes, tested Colour consistency yes, tested Lamp Power Factor yes, tested The tables below shows the measured results for all the LED lamps tested at 100 hours and 1000 hours (note: omitting the halogen lamp, which is #3). The measured results that comply with the test requirements are shaded in green and those that do not are shaded in red. There was one lamp (#11) which failed on the initial burn-in and two lamps which had colour coordinates in excess of six MacAdam ellipse steps. After 1000 hours of testing, there was still only one LED lamp (#11) which failed on premature failure and now just one lamp that had colour consistency issues (#17). Table 5-1. Unofficial Quality Check (sample size only 10 units) for LED Lamps Under Test, 100 hrs Sample Number: Lamp survival 6000h -- test results not available yet -- Lumen maint. 6000h -- test results not available yet -- Switching cycles Premature failure CRI Colour consistency Power factor Table 5-2. Unofficial Quality Check (sample size only 10 units) for LED Lamps Under Test, 1000 hrs Sample Number: Lamp survival 6000h -- test results not available yet -- Lumen maint. 6000h -- test results not available yet -- Switching cycles Premature failure CRI Colour consistency Power factor 5.9 Price and Efficacy in 2014 This study has found that the price and performance of LED lighting exceeded the anticipated rate of improvement that was originally presented Table 2 from the consultant s review report. 25 The report provided a projection in Table 2 of efficacy (in lumens per watt) and price (in Euro including VAT per 500 lumens of light) that was expected at the time of publication (June 2013 VHK/VITO review study). For this study, LED replacement lamps were purchased in August and September 2014 at price points and performance levels that exceeded the levels anticipated by Table NDLS STAGE 6 REVIEW - FINAL REPORT - Review study on the stage 6 requirements of Commission Regulation (EC) No 244/2009, by VHK (pl)/ VITO for the European Commission. Delft/Brussels, 14 June

81 The year 2014 is not presented in Table 2 of the June 2013 VHK/VITO review study, however if a linear interpolation is drawn between the values in 2012 and 2016, then the efficacy value would be 76 lm/w for Table 2 of the June 2013 VHK/VITO review study identifies CLASP 2013, based on US DoE MYPP projections, making reference to an efficacy projection that CLASP had shared with the consultant. It is therefore notable that CLASP is one of the co-authors of this testing report, and wishes to make a correction to the forecast due to the fact that CLASP was too conservative our earlier estimate; LED technology has moved faster than was anticipated. In this report, test results are presented for 17 LED lamps that were tested in a Member State market surveillance laboratory. The sample average efficacies of these LED lamps varied from 62.7 to lm/w a range where the highest value is nearly double the lowest. Of all the lamps tested, the single lowest LED lamp tested at lm/w and the single highest LED lamp was lm/w. Although this sample is not a comprehensive review of the total European market, it does include models from major manufacturers such as OSRAM, Philips and IKEA, and it also includes models from small start-up importers. Taking the seventeen LED lamps and dropping the three highest and three lowest efficacy values, the average of the sample of lamps tested is 98 lumens/watt. The original efficacy forecast cited in Table 2 of the June 2013 VHK/VITO review study identifies LightingEurope as the source of the price projection up to 2020, with the extrapolation from 2021 to 2030 being done by VHK. Again, 2014 is not presented in the VHK/VITO review study, however if a linear interpolation is drawn between the values in 2012 and 2016, then the price estimate for 2014 would be per 500 lumens. While this price point is within the range of prices observed in 2014 (there were lamps purchased that were above and below 14), prices for LED lamps continue to decline making them more competitive with mains voltage halogen and CFLs, as indicated by the sample of recent LED lamps that were purchased for this study in August and September 2014 for example: lamp #6: 6.30 / 500 lumen lamp #10: 9.18 / 500 lumen lamp #12: 6.16 / 500 lumen lamp #14: 7.16 / 500 lumen lamp #16: / 500 lumen Compared with the interpolated price of for 2014 in Table 2 of the consultant s report, two of the lamps purchased in 2014 are less than half that price. In order to calculate the best LED replacement lamp prices for 2014 from this testing study, the prices of the seventeen LED lamps were sorted in price order. The three highest priced lamps were dropped because these would be less attractive to consumers (who have equal access to less expensive models) and the average of the remaining 14 LED lamps tested was / 500 lumens. This price point is approximately 10 percent (or 1.50) less expensive than the interpolated 2014 price from the VHK/VITO review study. An update on pricing was not performed for this 1000-hour update report. 48

82 6 Key Question Examination and Discussion In this chapter, the key questions listed in the original message of 15 September are addressed. 6.1 What is the current cost and performance of clear LED lamps? As discussed in this report, the projection provided in Table 2 of the June 2013 VHK/VITO review study has been surpassed by LED product innovation in the market. The figure below shows the projections from the above Table 2 as threshold lines of price and efficacy. It then superimposes the actual, measured test results as red dots, which are sample average efficacies (n=10) of the clear LED lamps tested in this study. The halogen lamp is off the Y-axis scale due to its low efficacy. The figure has reversed the X and Y axes, so efficacy improves and price is lower as the products move toward the origin. Figure 6-1. Example of MV LED Non-Directional Retrofit Clear LED Lamps: Projections made in 2013 on price/performance ratio vs. real 2014 values Thus, it is clear from this graph the current cost of performance of LED Lamps tested in this study have exceeded the expected progression of LED technology published in the June 2013 VHK/VITO review study. The reference values used in this analysis for 2014 are: a price point of / 500 lumens of light output and an efficacy of 98 lumens per watt. These values are 11% lower on price and 29 percent higher on efficacy compared to a linearly-interpolated estimate from the VHK/VITO review study. See section 5.9 for discussion on these estimates. 49

83 Table 6-1. Current Price and Efficacy of Mains-Voltage Retrofit LED Replacement Lamps Source of estimate Price (Euro) per 500 lumens of light in 2014 Efficacy (lumens per watt) in 2014 VHK/VITO review study (June 2013)* / 500 lumen 76 lm/w Test data average, this study / 500 lumen 98 lm/w Difference, test data average in 2014 compared with VHK/VITO review study 11 percent lower 29 percent higher * The VHK/VITO review study did not provide actual values for 2014, therefore the figures shown in this table are derived from linear interpolation between the 2012 and 2016 values. 6.2 Do they give an aesthetic pleasant light? In Europe, consumers of non-directional household lamps tend to have a preference for warm colour temperatures with high colour rendering and no flicker. A recent report by the IEA 4E Mapping and Benchmarking Annex found that the European market has shifted away from CFL sales and instead is now migrating toward clear halogen lamp sales. The LED lamps tested in this study were found to have CCT values that were around 2700K to 2900K, which is consistent with the baseline technology they seek to replace (i.e., incandescent and halogen). The CRI value for most LED lamps exceeded 80 CRI (with a few exceptions, where the CRI was measured at 79). Two of the LED lamps tested had CRIs values in the 90 s (IKEA and vosled). The flicker index and percent flicker of the lamps were measured and many lamps had no flicker. The lamps were also tested for their light distribution pattern, and there was a very good resemblance to the halogen reference lamp (see Annex B). Thus, it would appear that the LED lamps tested can meet the optical requirements of luminaires that are currently using halogen lamps. For these reasons, it would appear that these clear LED lamps do offer consumers an aesthetic, pleasant light. And, a limited review of website comments posted about these lamps (see section 2.2.6), indicates that the early-adopters of LED filament lamps are satisfied. 6.3 Are the dimmable lamps compatible with leading edge and trailing edge dimmers? Of the LED lamps purchased for this test study, five of them were identified as dimmable in the manufacturer literature. For those lamps that were labelled as dimmable, the LED lamps were tested on both a leading edge dimmer (ELKO 400GLI) and a trailing edge dimmer (ELKO 315GLE). Although these two dimmers do not represent all dimmers in Europe, they do represent two of the most common types found in the market. The table below presents the results of the testing of these five dimmable LED Lamps on the two dimmers. 50

84 Table 6-2. Dimmer Compatibility Check for Five dimmable LED Lamps Lamp Description Leading Edge (ELKO 400GLI) Trailing Edge (ELKO 315GLE) #5 LED Connection Classic LED bulb No Yes #6 IKEA LEDARE / Yes Yes #13 Star Trading LED filament lampa candelabra shape Yes Yes #14 Osram PARATHOM Classic A ADV 10W 827 Yes No #15 Philips Clear LED bulb - GLS 6W A Clear Yes No The testing found that two of those lamps were able to be dimmed on both dimmers (#6 IKEA, #13 Star Trading). The other three lamps had issues with one of the dimmers. Lamp #5 from LED Connection was not compatible with the leading edge dimmer and Lamps #14 from OSRAM and #15 from Philips were not compatible with the trailing edge dimmer. Overall, the results indicate that the industry is working on better LED drivers to make them compatible with the main types in Europe, and there are still be some manufacturing / quality control issues to work out in production. 6.4 Do these lamps meet the LED quality requirements in EU No 1194/2012? In order to ensure that the manufacturers of these new high-performance, low-cost LED lamps are not sacrificing light quality aspects that are important to European consumers, the Swedish Energy Agency s test laboratory also conducted tests to investigate whether the lamps complied with the quality requirements for LED lamps under EU No 1194/ (see Chapter 5). The sample size (n=10) was not sufficient large for market surveillance testing, therefore the findings should only be taken as indicative as to whether these lamps would meet the requirements. Furthermore, all of the tests are not complete (some require 6000 hours of data), but most of those that are done the answer is yes, the new LED lamps do meet the quality requirements of EU No 1194/2012: Table 6-3. Indicative Findings of Quality Requirements for LED Lamps 1194/2012 Requirement 100 hours testing 1000 hours testing Lamp survival factor at 6000 h 1000h aging and measurements complete. Technical 1000h report writing in progress. Lamps are in 2000h aging. Lumen maintenance at 6000 h Same as above. Switching cycles before failure No failures in LED, but one failure in a halogen lamp Starting time Yes, all LED lamps passed Lamp warm-up time to 95% Yes, all LED lamps passed Premature failure at 1000 h n/a One LED lamp (#11) failed; 2 lamps failed before 1000h 26 Commission Regulation (EU) No 1194/2012 of 12 December 2012 implementing Directive 2009/125/EC of the European Parliament and of the Council with regard to ecodesign requirements for directional lamps, light emitting diode lamps and related equipment EN link: 51

85 1194/2012 Requirement 100 hours testing 1000 hours testing Colour rendering index Colour consistency Lamp Power Factor After 100 hours, all LED lamps met the minimum requirement; two models were within the allowable tolerance Most LED lamps met the six MacAdam step requirement, except #9 (Panasonic) and #17 (Calex) which exceeded the maximum 6 steps ±10% 27 All lamps met requirement After 1000 hours, all LED lamps met the minimum requirement; two models were within the allowable tolerance After 1000 hours, only one LED lamp (#17) exceeded the maximum 6 steps ±10% Overall, the LED lamps were found to be compliant with the ecodesign requirements under 1194/2012, except for a few models which exceeded the six MacAdam 28 step limit and one model that experienced premature failure. At 1000 hours, the LED lamps continued to perform very well with no changes over the 100 hours testing except for the Panasonic lamp {#9) which now measured within the colour consistency requirements (6.43 steps). As discussed in the previous report (and highlighted in comments from LightingEurope in December 2014), there were some issues associated with lamp packaging, however this project is focused on testing the quality of the lamps, not the packaging. Some importers did omit energy labels and one had developed their own energy label with an A+++ class (which does not exist in EU 874/2012) 29. This labelling violation was reported to the UK NMO. 6.5 Are LED filament lamps reliable products for consumers? There are a few different ways to assess consumer reliability. One approach is to look at the duration of the warranty offered by a manufacturer when the lamps are sold and the other is to conduct lifetime-measurements that assess reliability through testing. For warranties, many of the LED lamps do not state a warranty on their packaging, thus it is unclear whether these products are covered by a warranty or not. Three of the lamps did clearly state warranties on their packaging lamp #14, the Osram Parathom, had the longest warranty, offering consumers 4 years of coverage. Lamps #2 (UK LED Standard) and #9 (Panasonic nostalgic) each offered consumers 2 years. However, it should be noted that in general, these LED lamps are 27 In the November 2014 report, it was reported that three lamps failed the MacAdam steps, however the test results were reviewed again and if it was found that there was one deviating data point from the main grouped data and no other data points between the deviating point and the grouped data, the deviating point was removed from the MacAdam calculation since there was no other statistical confirmation from related data. 28 The six step Macadam requirement comes from ecodesign regulation EU No 1194/2012: when a light source is measured from multiple directions, all measurements x, y coordinates should be grouped within a 6 step Macadam ellipse. 29 Commission Delegated Regulation (EU) No 874/2012 of 12 July 2012 supplementing Directive 2010/30/EU of the European Parliament and of the Council with regard to energy labelling of electrical lamps and luminaires; EN link: 52

86 marketed to last for 20,000 hours or more, which in a typical domestic household would be in excess of 20 years of service. For testing for reliability, there are two tests that were evaluated (1) the switching cycle test, where the lamp is switched on for 30 seconds and off for 30 seconds fifteen-thousands times; (2) the failure rate test, where the lamps are operated for extended periods of time to determine whether they are still operating at 200 hours, 1000 hours and 6000 hours. The table below presents the findings of this analysis. Note that all samples of LED lamps were subject to the 200 hours of failure rate test, but after that the samples of ten lamps were split in half with 5 units being put onto the switching cycle test and 5 units on longer-term operational test for the 1000-hour and 6000-hour test results. Table 6-4. LED Lamp Consumer Reliability Test Results Switching # Brand 200 hours 1000 hours* Notes Cycles 1 Wholesale Lighting 5 - pass 9 - pass 9 - pass Sample size reduced, as one lamp not working on delivery (flashing) 2 UK LED 5 - pass 10 - pass 10 - pass 4 Lighting Ever 5 - pass 10 - pass 10 - pass 5 LED Connection 5 - pass 8 - pass 8 - pass Sample size reduced as two lamps did not work on delivery 6 IKEA 5 - pass 10 - pass 10 - pass 7 vosled 5 - pass 10 - pass 10 - pass 8 LED Connection 5 - pass 10 - pass 10 - pass 9 Panasonic 5 - pass 10 - pass 10 - pass 10 Ncc-Licht 5 - pass 10 - pass 10 - pass 11 LED24.cc 5 - pass 8 - fail 8 - fail Two lamps failed during 100 hour burn-in. 12 Star Trading 5 - pass 9 - pass 9 - pass One lamp failed after sphere measurements 13 Star Trading 5 - pass 10 - pass 10 - pass 14 Osram 5 - pass 10 - pass 10 - pass 15 Philips 5 - pass 10 - pass 10 - pass 16 LED Lampen 5 - pass 10 - pass 10 - pass 17 Calex 5 - pass 10 - pass 10 - pass 18 Segula 5 - pass 10 - pass 10 - pass * In the future, failure rates at longer operating hours will be reported, up to 6000 hours. On the switching cycle test, all of the LED lamps that completed testing all survived the 15,000 switching cycles without any issues. Oddly enough, the only lamp to fail the switching cycle test was one halogen lamp (#3, not reported in the above table). On the 200-hour failure rate test, two individual LED lamps sold by ccled (both sample #11) failed during the burn-in. There was only one LED lamp (#12) that experienced failure during testing, and thus was not able to complete the 200-hour testing. Lamp #1 had one defective lamp and #5 had two defective lamps that did not work as intended from the start. These are manufacturing defects 53

87 and would seem to indicate better quality control being needed in the supply chain, however they are not considered premature failures because the lamps were inoperable when removed from the box. For these lamp types, they are simply tested with a smaller sample size. The data shows LED filament lamps complying with switching-cycle tests, but one model experienced premature failure. This doesn t necessarily mean LED filament lamps are worse than other lamps, as the halogen reference lamp also had difficulties with the switching-cycle test. For the consumer, a limited number of early failures should not pose a big problem, where they are covered by commercial or legal minimum product warranties. 6.6 What trends in price and performance of LED filament lamps have been observed in the last two years and what is expected in the future? Although LED filament technology was originally developed in 2008, 30 it hasn t been a popular LED lamp type until recently. The performance of LED filament lamps is linked to the performance of LEDs themselves, which it is shown in Chapter 2 are simply mounted in a chain under the phosphor coating of the filament. These emerging lamp designs have simplified the electronic drivers and the optics, resulting in a mains voltage energy-efficient lamp which exceeds the price and performance that was envisaged in the June 2013 VHK/VITO review study. In addition, the retail LED lamp price of these LED filament lamps is approximately 11 % lower than the forecast and efficacy is 29 % better. Given that the VHK/VITO review study was the basis for the Commission s recent proposal to delay the implementation of Stage 6 of EC No 244/2009 by 2 years, 31 that proposed amendment would now seem to be redundant because the technological progress of LED lamps has exceeded expectations. LED filament lamps are available today that can replace many halogen applications, and are years ahead of the expert projections. 30 Tevaja Lighting corporation, China. See: November 2014, Commission issued an which stated the following: EU TBT notification concerning the Draft Commission Regulation amending Regulation (EC) No 244/2009 has now been published on the WTO website under the following reference: G/TBT/N/EU/248 and can be found here (click on this link) 54

88 Annex A. Announcement to Stakeholders of this Study Mon 15/09/2014 from Bram Soenen, Attaché senior Product policy, DG5 Environment, Product policy; Belgian Federal Public Service, Health, Food Chain Safety and Environment Dear Colleagues, We hope you all had refreshing holidays. It has been a while since we last discussed the review of EC No 244/2009 Stage 6 review for lighting and we wanted to get in touch to inform you about a small LED product testing study that Sweden and Belgium are leading, with support from CLASP and eceee. LED technology continues to evolve at a very rapid pace, and recently, competitively priced (<10 ) LED filament clear non-directional lamps have entered the EU market claiming very high efficacies. If correct, these claims exceed the projected price and performance currently used as a basis for the upcoming revision of the existing lighting regulations. This testing study is intended to provide a market snap-shot from August 2014, looking at price and performance of LED lamps on the EU market. The test results will be presented in a technical / factual report, addressing a set of key questions on performance including efficacy, CRI, CCT, flicker and other important performance metrics. The report will be made publicly available for all members of the Consultation Forum to review. The outline of the study is based on discussions between the parties above, whereas Sweden will provide funding for purchase of lamps as well as conducting tests of the lamps in their lighting laboratory. In contacting you today, we wanted to inform you about this study and ask if any of you have other ideas to contribute at this stage, after looking at the attachment. The budget and timeline for this effort is tight, however there is a possibility of some minor adjustments, so please let us know. In the meantime, if you d like to learn more about these LED filament lamps, please see the following resources: Product example: b.pdf Close-up examination: Explanation on the filaments: We look forward to hearing from you and seeing you soon at a meeting in Brussels. Kind regards, Bram Soenen Peter Bennich Mike Scholand Nils Borg 55

89 Test Report on Clear, Non-Directional LED Lamps This study will assess the current price and performance of mains-voltage, non-directional, clear LED lamps with B22 or E27 sockets in Europe. Motivation / Context: In June 2013, the Review study on the stage 6 requirements of Commission Regulation (EC) No 244/2009 was issued. Table 2 in that report provided a projection of efficacy and price of a 500 lumen LED lamp, as shown below: For 2018, this table presents an efficacy of 105 lumens per watt and 8.50 per 500 lumen lamp. However, the prices and (claimed) efficacy values for clear LED filament lamps in August 2014 appear to already be meeting or approaching those targets. If true, then LED technology is advancing much faster than anyone envisaged and this new evidence needs to be made available to policy makers reviewing Stage 6. Key questions to examine in this study: What are the current cost (lumen/ ) and performance (lm/w) of clear LED lamps? Do they give an aesthetic pleasant light (warm white, high CRI, no flicker)? Are the dimmable lamps compatible with leading edge and trailing edge dimmers? Do these lamps meet the LED quality requirements in EU No 1194/2012? Are LED filament lamps reliable products for consumers? (i.e., failure rate, switching test) What trends in price and performance of LED filament lamps have been observed in the last two years and what is expected in the future? Methodology: The study will be led by Sweden and Belgium with support from CLASP and eceee. The following are the key steps: 1) Purchase 10 units each of 16 different models of clear LED Lamps, and 10 units of one halogen lamp for reference / comparison, for a total of 170 non-directional lamps in the study. 2) The Swedish Energy Agency will test the lamps in their laboratory, conducting the following tests: a. Power consumption, voltage and current, measured separately b. Power factor ratio of real power over apparent power c. Current and voltage harmonics d. Luminous flux total lumens e. Luminous intensity distribution uniformity of light distribution, measurements taken in three vertical symmetric ( C ) planes, 0, 45, 90 and at 1 gamma angles f. Colour rendering index (CRI) and the R9 value 56

90 g. Colour consistency at 100 hours, measurement of 49 coordinate pairs (x,y) and plotting the most deviating pairs in a six step Macadam ellipse. At 1000 hours, measurement of 25 coordinate pairs. Statistical analysis of any deviating data points. h. Correlated colour temperature (CCT) i. Chromaticity tolerance (Duv); allowable deviation in CCT, the distance of a light s chromaticity from the Planckian (black body) locus j. Flicker measure the flicker index k. Temperature measurement measure the surface temperature of the lamp during steady-state operation l. Dimmer compatibility check compatibility with a leading edge and a trailing edge dimmer, only for those models marketed as dimmable m. Switching cycle test number of switching cycles based on rated lifetime, if rated lamp life h otherwise: half the rated lamp life expressed in hours** n. Lumen maintenance test sphere measurements of lumens, CCT and efficacy at 100, 1000, 2000, 3000, 4000, 5000 and 6000h. Goniometer measurement at 6000h (colour consistency and luminous intensity distribution)** o. Dimensions max diameter and length p. Weight grams ** Note: Due to the limitations in sample size, 5 lamps will be subjected to the switching cycle test and 5 lamps will be subjected to the lumen maintenance test. 3) Report based on the test results of the lamps, a report will be created including sections on the following (draft outline): a. Executive Summary b. Introduction and Context c. Lamps Selected and Technical Discussion d. Test Lab and Tests Conducted e. Test Results i. Comparison of variation within the 16 LED models and 10 unit samples ii. Comparison of average values for sample of 16 LED models and 1 halogen f. Discussion of Test Results g. Key Question Examination and Discussion i. (See Key Questions in this memo above) 4) Peer review of draft report prior to being published to the full Consultation Forum. Note that the immediate results will be reported as soon as possible, and the lumen maintenance test results will be reported as updates over the course of the testing. Roles and responsibilities: Sweden will lead the project, including coordinating and overseeing the purchasing of lamps, the testing of the lamps in-house and the analysis and preparation of the report. Belgium will provide guidance on the work and assist with the analysis and reporting. CLASP and eceee will assist with the selection and purchase of the lamps, the analysis and the report. 57

91 Annex B. Detailed Test Results of the Study; 100 hours This Annex provides a summary of the detailed test results (100 h) for the lamps tested in this study. Table B1. Test Results for Wholesale Lighting Mirrorstone / MS-B22-6W-OMNI Manufacturer Wholesale Lighting Parameter Average Value Retailer MacAdam centre x Model MS-B22-6W-OMNI MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) Max ellipses** 3.82 Light output (lumens) 598 CRI CCT (K) 3045 CRI CRI (Ra) 81.5 CRI Voltage (VAC) CRI Current (I ma) 38.1 CRI Wattage (Watts) 4.93 CRI Power Factor (pf) 0.56 CRI Length (mm) 113 CRI Width (mm) 60 CRI Weight (grams) 40 CRI Max Op Temp (C) 43.5 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 58

92 Table B2. Test Results for Maplin LED filament / A15QF Manufacturer UKLED Standard Bulb Parameter Average Value Retailer Maplin UK MacAdam centre x Model LED filament / A15QF MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) Max ellipses** 3.53 Light output (lumens) 659 CRI CCT (K) 2765 CRI CRI (Ra) 81.8 CRI Voltage (VAC) CRI Current (I ma) 53.4 CRI Wattage (Watts) 5.83 CRI Power Factor (pf) 0.47 CRI Length (mm) 102 CRI Width (mm) 60 CRI Weight (grams) 36 CRI Max Op Temp (C) 45.7 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. Updated. 59

93 Table B3. Test Results for Osram Halogen Classic A ECO (46W) Manufacturer Osram Parameter Average Value Retailer Amazon.co.uk MacAdam centre x Model Halogen Classic A ECO MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) 12.8 Max ellipses** 1.73 Light output (lumens) 583 CRI CCT (K) 2747 CRI CRI (Ra) 99.8 CRI Voltage (VAC) CRI Current (I ma) CRI Wattage (Watts) CRI Power Factor (pf) 1.00 CRI Length (mm) 95 CRI Width (mm) 55 CRI Weight (grams) 26 CRI Max Op Temp (C) 89.4 CRI Dimmer - Leading (yes/no) Yes CRI Dimmer - Trailing (yes/no) Yes CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 60

94 Table B4. Test Results for Lighting Ever LED Filament Bulb / WW-EU Manufacturer Lighting Ever Parameter Average Value Retailer MacAdam centre x Model WW-EU MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) 95.6 Max ellipses** 5.02 Light output (lumens) 359 CRI CCT (K) 2730 CRI CRI (Ra) 80.2 CRI Voltage (VAC) CRI Current (I ma) 33.2 CRI Wattage (Watts) 3.76 CRI Power Factor (pf) 0.49 CRI Length (mm) 103 CRI Width (mm) 60 CRI Weight (grams) 34 CRI Max Op Temp (C) 42.2 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.42 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 61

95 Table B5. Test Results for LED Connection Classic LED bulb Manufacturer LED Connection (importer) Parameter Average Value Retailer LED Connection MacAdam centre x Model Classic LED Bulb MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) 67.5 Max ellipses** 1.69 Light output (lumens) 426 CRI CCT (K) 2830 CRI CRI (Ra) 80.4 CRI Voltage (VAC) CRI Current (I ma) 29.1 CRI Wattage (Watts) 6.31 CRI Power Factor (pf) 0.94 CRI Length (mm) 118 CRI Width (mm) 67 CRI Weight (grams) 49 CRI Max Op Temp (C) 60.4 CRI Dimmer - Leading (yes/no) No CRI Dimmer - Trailing (yes/no) Yes CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.40 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 62

96 Table B6. Test Results for IKEA LEDARE / Manufacturer IKEA Parameter Average Value Retailer IKEA MacAdam centre x Model LEDARE / MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) 62.7 Max ellipses** 4.65 Light output (lumens) 596 CRI CCT (K) 2673 CRI CRI (Ra) 90.1 CRI Voltage (VAC) CRI Current (I ma) 44.2 CRI Wattage (Watts) 9.50 CRI Power Factor (pf) 0.93 CRI Length (mm) 120 CRI Width (mm) 60 CRI Weight (grams) 116 CRI Max Op Temp (C) 83.8 CRI Dimmer - Leading (yes/no) Yes CRI Dimmer - Trailing (yes/no) Yes CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 63

97 Table B7. Test Results for Vosla GmbH (DE) vosled-light bulb clear, 5.5W Manufacturer VOSLA Parameter Average Value Retailer VOSLA (Germany) MacAdam centre x Model LED Bulb Clear, 5.5W MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) Max ellipses** 4.55 Light output (lumens) 607 CRI CCT (K) 2761 CRI CRI (Ra) 91.0 CRI Voltage (VAC) CRI Current (I ma) 36.1 CRI Wattage (Watts) 5.53 CRI Power Factor (pf) 0.66 CRI Length (mm) 110 CRI Width (mm) 60 CRI Weight (grams) 39 CRI Max Op Temp (C) 48.4 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 64

98 Table B8. Test Results for LED Connection 8W LED Filament Manufacturer LED Connection Parameter Average Value Retailer LED Connection MacAdam centre x Model 8W LED Filament MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) Max ellipses** 5.63 Light output (lumens) 782 CRI CCT (K) 2889 CRI CRI (Ra) 82.6 CRI Voltage (VAC) CRI Current (I ma) 67.1 CRI Wattage (Watts) 7.61 CRI Power Factor (pf) 0.49 CRI Length (mm) 112 CRI Width (mm) 59 CRI Weight (grams) 42 CRI Max Op Temp (C) 53.8 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 65

99 Table B9. Test Results for Panasonic Nostalgic Clear Manufacturer Panasonic Parameter Average Value Retailer shop.panasonic.fr MacAdam centre x Model Nostalgic Clear MacAdam centre y Parameter Units Average Value Within MacAdam 6 No Efficacy (lm/watt) 82.3 Max ellipses** 7.43 Light output (lumens) 792 CRI CCT (K) 2717 CRI CRI (Ra) 79.5 CRI Voltage (VAC) CRI Current (I ma) 70.6 CRI Wattage (Watts) 9.64 CRI Power Factor (pf) 0.59 CRI Length (mm) 126 CRI Width (mm) 59 CRI Weight (grams) 92 CRI Max Op Temp (C) 77.6 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. Updated. 66

100 Table B10. Test Results for NCC-Licht / LED Filament Glühbirne 6W = 60W E27 Glühlampe Glühfaden warmweiß 2700K 360 A++ Manufacturer Shada Bv LED's Light Parameter Average Value Retailer MacAdam centre x Model LED Filament Glühbirne 6W MacAdam centre y Parameter Units Average Value Within MacAdam 6 Within tolerance Efficacy (lm/watt) Max ellipses** 6.36 Light output (lumens) 707 CRI CCT (K) 2587 CRI CRI (Ra) 79.1 CRI Voltage (VAC) CRI Current (I ma) 56.1 CRI Wattage (Watts) 6.77 CRI Power Factor (pf) 0.52 CRI Length (mm) 104 CRI Width (mm) 60 CRI Weight (grams) 34 CRI Max Op Temp (C) 66.7 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 67

101 Table B11. Test Results for LED24.cc / E27 LED Glühfaden Birne 8w Manufacturer LED24cc Parameter Average Value Retailer MacAdam centre x Model LED Glühfaden Birne 8w MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) 98.4 Max ellipses** 5.43 Light output (lumens) 663 CRI CCT (K) 2909 CRI CRI (Ra) 82.2 CRI Voltage (VAC) CRI Current (I ma) 66.4 CRI Wattage (Watts) 7.53 CRI Power Factor (pf) 0.49 CRI Length (mm) 112 CRI Width (mm) 59 CRI Weight (grams) 40 CRI Max Op Temp (C) 54.4 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.40 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 68

102 Table B12. Test Results for Star Trading (SE) LED filament lampa E27 Nr Manufacturer StarTrading PromoLED 440 lm Parameter Average Value Retailer Sweden Star Trading MacAdam centre x Model LED filament lampa, MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) Max ellipses** 3.38 Light output (lumens) 459 CRI CCT (K) 2731 CRI CRI (Ra) 81.1 CRI Voltage (VAC) CRI Current (I ma) 38.1 CRI Wattage (Watts) 4.12 CRI Power Factor (pf) 0.47 CRI Length (mm) 111 CRI Width (mm) 60 CRI Weight (grams) 38 CRI Max Op Temp (C) 44.1 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 69

103 Table B13. Test Results for Star Trading (SE) LED filament lampa E27 Nr (candelabra) Manufacturer StarTrading Illumination LED Parameter Average Value Retailer Sweden Star Trading MacAdam centre x Model LED filament lampa, MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) 66.2 Max ellipses** 3.3 Light output (lumens) 285 CRI CCT (K) 2825 CRI CRI (Ra) 82.6 CRI Voltage (VAC) CRI Current (I ma) 27.9 CRI Wattage (Watts) 4.31 CRI Power Factor (pf) 0.67 CRI Length (mm) 137 CRI Width (mm) 45 CRI Weight (grams) 49 CRI Max Op Temp (C) 64.2 CRI Dimmer - Leading (yes/no) Yes CRI Dimmer - Trailing (yes/no) Yes CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 70

104 Table B14. Test Results for Osram PARATHOM Classic A ADV 10W 827 Manufacturer OSRAM Parathom Classic A Parameter Average Value Retailer MacAdam centre x Model PARATHOM Classic A 10W 827 MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) 89.5 Max ellipses** 3.33 Light output (lumens) 863 CRI CCT (K) 2739 CRI CRI (Ra) 79.9 CRI Voltage (VAC) CRI Current (I ma) 44.1 CRI Wattage (Watts) 9.65 CRI Power Factor (pf) 0.95 CRI Length (mm) 109 CRI Width (mm) 60 CRI Weight (grams) 153 CRI Max Op Temp (C) 86.5 CRI Dimmer - Leading (yes/no) Yes CRI Dimmer - Trailing (yes/no) No CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 71

105 Table B15. Test Results for Philips Clear LED bulb - GLS 6W A60 E27 Very Warm White 827 Clear Manufacturer Philips Clear LED bulb Parameter Average Value Retailer MacAdam centre x Model GLS 6W A60 E MacAdam centre y Parameter Units Average Value Within MacAdam 6 Within tolerance Efficacy (lm/watt) 84.7 Max ellipses** 6.19 Light output (lumens) 501 CRI CCT (K) 2705 CRI CRI (Ra) 82.1 CRI Voltage (VAC) CRI Current (I ma) 42.8 CRI Wattage (Watts) 5.92 CRI Power Factor (pf) 0.60 CRI Length (mm) 109 CRI Width (mm) 58 CRI Weight (grams) 80 CRI Max Op Temp (C) 77.5 CRI Dimmer - Leading (yes/no) Yes CRI Dimmer - Trailing (yes/no) No CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.40 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 72

106 Table B16. Test Results for Led lampen direct (NL) / Polaris 4 Watt Manufacturer YPHIX 4W 450lm Parameter Average Value Retailer MacAdam centre x Model Polaris 4 Watt MacAdam centre y Parameter Units Average Value Within MacAdam 6 yes Efficacy (lm/watt) Max ellipses** 2.86 Light output (lumens) 462 CRI CCT (K) 2637 CRI CRI (Ra) 79.2 CRI Voltage (VAC) CRI Current (I ma) 32.8 CRI Wattage (Watts) 4.02 CRI Power Factor (pf) 0.53 CRI Length (mm) 110 CRI Width (mm) 49 CRI Weight (grams) 42 CRI Max Op Temp (C) 43.3 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.42 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 73

107 Table B17. Test Results for Calex (NL) LED Filament GLS / Manufacturer Calex Parameter Average Value Retailer Electrocirkel n.v. (BE) MacAdam centre x Model LED Filament GLS / MacAdam centre y Parameter Units Average Value Within MacAdam 6 No Efficacy (lm/watt) 84.5 Max ellipses** 9.48 Light output (lumens) 573 CRI CCT (K) 2671 CRI CRI (Ra) 87.9 CRI Voltage (VAC) CRI Current (I ma) 56.2 CRI Wattage (Watts) 6.78 CRI Power Factor (pf) 0.52 CRI Length (mm) 104 CRI Width (mm) 60 CRI Weight (grams) 38 CRI Max Op Temp (C) 51.9 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.41 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 74

108 Table B18. Test Results for Segula Manufacturer Segula Parameter Average Value Retailer LEDitLight.net (NL) MacAdam centre x Model Model #: MacAdam centre y Parameter Units Average Value Within MacAdam 6 Yes Efficacy (lm/watt) Max ellipses** 5.11 Light output (lumens) 655 CRI CCT (K) 2558 CRI CRI (Ra) 81.4 CRI Voltage (VAC) CRI Current (I ma) 50.4 CRI Wattage (Watts) 5.56 CRI Power Factor (pf) 0.51 CRI Length (mm) 106 CRI Width (mm) 60 CRI Weight (grams) 35 CRI Max Op Temp (C) 45.7 CRI Dimmer - Leading (yes/no) n/a CRI Dimmer - Trailing (yes/no) n/a CRI Min Duv (+ / -)* CRI Max Duv (+ / -)* CRI x CRI y Gamut Point 0.42 * A negative number for the Duv means that the lamp tested is below the Planckian Locus. ** Max ellipses are the number of MacAdam ellipses necessary to contain all test points. 75

109 Annex C. Clarifying LightingEurope s critique of the November Test Report On 10 December 2014 under the Any Other Business point, Peter Bennich of the Swedish Energy Agency gave a presentation on this testing study looking at A-type clear LED lamps that was getting underway. 32 This test study includes 180 lamps, consisting of 10 unit sample sizes of 17 LED models and 1 halogen model. Following Peter s presentation, a representative from Havells-Sylvania gave a presentation that summarised LightingEurope s review of the test report. We are grateful that LightingEurope had done a thorough review of the report, however we thought it would be helpful to address the precision of some of their findings. For example, when LightingEurope concludes that 47% of products tested are not compliant with EU regulations, they do not differentiate between package/labelling issues and product performance issues. 33 First, and foremost, we wish to restate that the purpose of the testing was not to carry out market surveillance activities the sample sizes are too small to determine whether a tested lamp passes or fails to meet the requirements. Having said this, we felt it was necessary to clarify for policy-makers the important difference between package/labelling violations and product performance issues. We have spoken to Market Surveillance Authority officers and they have clarified for us that package/labelling issues are not uncommon and generally, these are easily addressed through a letter to the supplier. Most often, the problem is quickly resolved and the package/label brought into compliance. And of course the main conclusions of this testing study regarding the very rapid reduction in price and accelerated efficacy performance of LED products are not impacted by these package/labelling issues. LightingEurope identified more than 47% of LED lamps as being out of compliance with EU regulations, meaning they had identified issues with 8 out of the 17 LED lamp products sampled. We reviewed each of the 8 violations in LightingEurope s presentation and found that 5 of them simply related to the claim on the packaging not matching the measured values in the laboratory (e.g., lumen output too low, wattage consumption too high). The other LightingEurope issues related to product performance, and these were already identified and discussed in our November 2014 report. However, following some additional statistical analysis of the test results on lamp #2, we amend our previous calculation of the number of MacAdam ellipse steps from 7.58 to Therefore the findings no longer indicate that this lamp may have issues with colour consistency. When preparing this test report considering whether LED technology is ready for Stage 6, we focused on product performance of LED lamps rather than packaging/labelling issues. Although not part of our test sample, we were pleased to find that Havells-Sylvania has recently introduced LED filament lamps to the European market. The price and claimed performance of this Havells-Sylvania lamp represents 3-4 years of acceleration in price and 6-7 years acceleration in 32 Test Report Clear, Non-Directional LED Lamps: A test report prepared for the European Commission and the Consultation Forum on the performance of clear LED lamps in the European Market in the third quarter of By: Swedish Energy Agency, Belgian Federal Ministry for Health, Food Chain Safety and Environment, CLASP and eceee, 19 November 2014 Hyperlink to PDF of report 33 For product performance compliance assessment, sample sizes should be a minimum of 20 units. As stated in our November 2014 report, the findings of this study are meant to be indicative as our sample size was only 10 units and therefore it is not possible to draw a conclusion of pass or failure for product performance requirements under EU No 1194/ If there was a deviating data point from the main grouped data and no other data points between the deviating point and the grouped data, the deviating point was removed from the MacAdam calculation since there was no other statistical confirmation from related data. 76

110 efficacy 35 - which underscores the very reason we had initiated this study in August LED technology has progressed much faster than had been projected in the June 2013 VHK/VITO review study, and thus new evidence needed to be provided to the Consultation Forum and Member State representatives on the Regulatory Committee. The Havells-Sylvania website identifies many of the benefits of this lamp: TOLEDO RETRO A60 - ToLEDo RT A60 640LM B22 SL Using LED Chip technology with a LED filament design creating a warm ambiance similar to traditional lamps Up to 90% energy saving compared to incandescent lamps First lamp of its type to achieve A++ rating efficiency up to 128Lm/W Patent free solution Ultra Wide, uniform light distribution (omnidirectional with 300 degree beam angle) Dimensional compatibility with all fixtures Cooler burning vs standard LEDs Average rated life up to 15,000 hours 3 years warranty Concerning the LightingEurope critique of the November 2014 clear LED lamp test report, on the following pages we have included screen captures of the slides presented by LightingEurope on 10 December, and offer a few clarifications after each slide. The following table provides a summary of the LightingEurope issues raised and the clarifications we would like to make with respect to those issues. In our assessment, 5 of the 8 issues raised by LightingEurope related to declared values on packaging which can be addressed through a letter to the manufacturer. Packaging issues aside, the products tested did not appear to have any issues with the quality requirements of EU No 1194/2012. Of the three of the issues that did indicate there may be problem with product performance, one was on reliability and two on colour consistency (but one of these two lamps tested within compliance limits at 1000-hours). As stated previously, these are not enforcement tests, so they can only be interpreted as indicative of lamp performance. 35 This Havells-Sylvania lamp is for sale in Germany for If the declared lumen output of 640 lumens is correct, then this lamp costs 8.34/500 lumen which is a price point expected between 2018 and 2019 a 3-4 year acceleration in terms of the expected price projection relative to Table 2 from the June 2013 Review Study. If the efficacy is 128 lm/w, this would represent an efficacy expected between 2021 and 2022 a 6-7 year acceleration in terms of efficacy. 77

111 Table C.1. LightingEurope concerns regarding November 2014 Clear LED Lamp Test Report Lamp # Lighting Europe Issue Report Author s Clarification 2 MacAdam ellipse steps measured at 7.6, but maximum is 6.6 steps V halogen lamp measured at 230V, light output -17% below declared value 4 Measured light output was less than the declared value 5 Exceeded the maximum allowable (5%) failures at 200 hours 8 Measured light output was less than the declared value 9 (LE did not comment on Panasonic s lamp which exceeded the maximum of 6 MacAdam Ellipse steps) 10 Measured power consumption was greater than the declared value 11 Exceeded the maximum allowable (5%) failures at 200 hours This is not enforcement testing, thus it is not possible to draw this conclusion. In the November report, we had noted there could be a problem with colour consistency for this lamp, however the test results were reviewed again and if it was found that there was one deviating data point from the main grouped data and no other data points between the deviating point and the grouped data. Thus, the deviating point was removed from the MacAdam calculation since there was no other statistical confirmation from related data and the new number of steps is 3.53, thus indicative of being compliant. We find it unclear whether a lamp can be optimised for specific countries only, while at the same time be known to operate in prevailing conditions in other Member States at efficiencies that could be considered non-compliant. This is an issue for the Ecodesign ADCO Group to address. Nevertheless, we have since measured it at 240V and found the sample average is below the declared value by -10.2%, however this is after the lamps have been aged for 1000 hours at 230V, therefore it is not possible to make any determination whether these results are indicative of compliance or non-compliance. Additional tests on a new sample would be needed to assess compliance. This is a packaging issue that can be corrected with a letter. The lamp #4 sample has passed all the quality requirements of EU No 1194/2012 so far. The concept of premature failure only makes sense when a lamp is working at the beginning of a test. In this sample (lamp #5), two units were not working on arrival at the test laboratory; thus the reported measurements were based on a sample of 8 lamps and there were no failures. Thus, there is no indication of a problem with premature failure for this model. This is a packaging issue that can be corrected with a letter. The lamp #8 sample has passed all the quality requirements of EU No 1194/2012 so far. MacAdam Steps measuring colour consistency were exceeded at 100 hours (7.43 steps), therefore this sample indicates there could be a compliance problem with EU No 1194/2012. However after 1000 hours of testing, the lamp was found to be in compliance (6.43 steps). Additional tests would be needed before making any compliance assessment, but at 1000 hours is indicative of being compliant This is a packaging issue that can be corrected with a letter. The lamp #10 sample has passed all the quality requirements of EU No 1194/2012 so far. This is not enforcement testing, thus it is not possible to draw this conclusion. However, we did find 2 failures at 200 hours which would indicate there are likely to be reliability problems for this model. Additional tests would be needed on a larger sample of these lamps before making any compliance assessment. 78

112 Lamp # Lighting Europe Issue Report Author s Clarification 13 Measured light output was less than the declared value 17 Measured light output was less than the declared value; MacAdam ellipse steps exceeded. This is a packaging issue that can be corrected with a letter. The lamp #13 sample has passed all the quality requirements of EU No 1194/2012 so far. The light output declaration is a packaging issue which could be corrected with a letter. The MacAdam Steps measuring colour consistency was exceeded, but again this is not enforcement testing and thus no compliance-related conclusions can be drawn. Additional tests would be needed to determine compliance. In summary, after 1000 hours of testing, we find: 5 packaging/labelling issues that were identified by LightingEurope and would need to be addressed; 2 LED lamps tested that may have product performance compliance issues (i.e., 1 on premature failure and 1 on colour consistency) larger test samples would be needed to make a definitive compliance assessment; and 15 out of 17 LED lamps tested that do not indicate any product performance concerns relative to the quality requirements in EU No 1194/2012 after 1000 hours (88% of the models in our sample). Thus, in this sample of lamps after 1000 hours of testing, we continue to find what was stated in November 2014, that there are many good quality LED lamps in the market. At this time, 88% of our LED lamps are preliminarily in compliance with the LED quality requirements EU No 1194/2012 after 1000 hours of testing. 79

113 Figure C-1. Lamp #2 exceeds the maximum allowance of MacAdam Steps First, we need to restate that the sample size was too small to draw a conclusion about whether or not this lamp is out of compliance with the colour consistency requirements which call for Variation of chromaticity coordinates within a six-step MacAdam ellipse or less. (EU No 1194/2012) Second, we had already noted in our November 2014 test report that the test results seemed to indicate that colour consistency requirements could be an issue for this lamp. However, having conducted additional analysis on the test results it was found that there was one deviating data point from the main grouped data and no other data points between the deviating point and the grouped data. Thus, the deviating point was removed from the MacAdam calculation since there was no other statistical confirmation from related data. This resulted in a correction to the MacAdam ellipse steps from 7.58 to 3.53, thus this lamp is now considered compliant. Its measurement at 1000 hours (3.1 MacAdam steps) was also found to be in compliance. Please see Figures 4-1 and 4-2 in section 4.9 of this report for an illustration of this statistical recalculation. 80

114 Figure C-2. Lamp #3 was measured at the wrong operating voltage The nominal voltage across all of Europe is 230 V ±10 % according to EN Thus, we find it unclear whether a lamp can be optimised for specific countries only, while at the same time be known to operate in prevailing conditions in other Member States at efficiencies that could be considered non-compliant. This is an issue for the Ecodesign ADCO Group to address. Nevertheless, we have since measured it at 240V and found the sample average is below the declared value by -10.2%, however this is after the lamps have been aged for 1000 hours at 230V, therefore it is not possible to make any determination whether these results are indicative of compliance or non-compliance. Additional tests on a new sample would be needed to assess compliance. 81

115 Figure C-3. Lamp #4 measured light output was less than the declared value LightingEurope states that this product is Not CE compliant, however the sample size for this test report was not sufficient to make a definitive statement like this. However, if a larger sample size did confirm that the measured luminous flux was lower than the declared value, then this would be considered a labelling violation which the Market Surveillance Authority (in this case the UK) could address with a letter to the manufacturer. When preparing this test report considering whether LED technology is ready for Stage 6, we focused on product performance of LED lamps rather than packaging/labelling issues. 82

116 Figure C-4. Lamp #5 exceeds the maximum allowable (5%) failures at 200 hours On page 67 of the November 2014 test report, we made the following statement: Lamp #1 had one defective lamp and #5 had two defective lamps that did not work as intended from the start. These are manufacturing defects and would seem to indicate better quality control being needed in the supply chain, however they were not premature failures that occurred due to operating the lamp. Thus, this lamp only had a total sample size of 8 units, not 10 and all eight of those working units passed the 200 hour (and more recently, the 1000 hour mark) without a problem. The indication presented in the figure above, therefore, is that this is not a violation of the maximum premature failure allowance. In a real-life situation, the two non-functional units would have been returned to the manufacturer for replacement. 83

117 Figure C-5. Lamp #8 measured light output was less than the declared value For this lamp, we note that the retailer s name is LED Connection rather than LED Collection as it is shown in this slide. LightingEurope states that this product is Not CE compliant, however the sample size for this test report was not sufficient to make a definitive statement like this. However, if a larger sample size did confirm that the measured luminous flux was lower than the declared value, then this would be considered a labelling violation which the Market Surveillance Authority (in this case the UK) could address with a letter to the manufacturer. When preparing this test report considering whether LED technology is ready for Stage 6, we focused on product performance of LED lamps rather than packaging/labelling issues. Packaging issues aside, the sample of lamps tested offer excellent performance, with no failures after 1000 hours of testing, an efficacy greater than 100 lumens per Watt and a warm colour temperature with a good CRI and R09 score. 84

118 Figure C-6. Lamp #10 exceeds power rating allowance LightingEurope states that this product is Not CE compliant, however the sample size for this test report was not sufficient to make a definitive statement like this. However, if a larger sample size did confirm that the measured power consumption was higher than the declared value, then this would be considered a labelling violation which the Market Surveillance Authority (in this case Germany) could address with a letter to the manufacturer. When preparing this test report considering whether LED technology is ready for Stage 6, we focused on product performance of LED lamps rather than packaging/labelling issues. 85

119 Figure C-7. Lamp #11 exceeds the maximum allowable (5%) failures at 200 hours Lamp #11 did have reliability problems during testing, and thus the preliminary results indicate this lamp might fail a market surveillance test with a larger sample size. This lamp was sold in Germany and some compliance testing by the German authorities may be warranted. 86

120 Figure C-8. Lamp #13 measured light output was less than declared value LightingEurope states that this product is Not CE compliant, however the sample size for this test report was not sufficient to make a definitive statement like this. However, if a larger sample size did confirm that the measured luminous flux was lower than the declared value, then this would be considered a labelling violation which the Market Surveillance Authority (in this case the Sweden) could address with a letter to the manufacturer. When preparing this test report considering whether LED technology is ready for Stage 6, we focused on product performance of LED lamps rather than packaging/labelling issues. 87

121 Figure C-9. Lamp #17 measured light output was less than declared value, max ellipse exceeded LightingEurope states that this product is Not CE compliant, however the sample size for this test report was not sufficient to make a definitive statement like this. However, if a larger sample size did confirm that the measured luminous flux was lower than the declared value, then this would be considered a labelling violation which the Market Surveillance Authority (in this case the Netherlands) could address with a letter to the manufacturer. Concerning colour consistency, as stated earlier, the sample size was too small to draw a formal conclusion about the lamp being in or out of compliance with the colour consistency requirements of EU No 1194/2012. We had already noted in our November 2014 test report that there were indicative findings ( Unofficial Quality Check, see Table 5-1) that colour consistency requirements could be an issue for this model. 88

122 European LED Market Evolution and Policy Impacts European LED Market Evolution and Policy Impacts A paper prepared for the European Commission, Member States and the Consultation Forum on the evolution of the LED market in Europe and how this affects the evidence base associated with the policy decision on Stage 6 of EC regulation No 244/2009. Prepared by: Danish Energy Agency Energy Piano CLASP European Programme 16 March 2015

123 European LED Market Evolution and Policy Impacts Executive Summary The adjacent paper on European LED Market Evolution and Policy Impacts has been initiated by the Danish Energy Agency and CLASP s European Programme. The work behind the report has been performed by CLASP s European Programme and by the consultancy company Energy piano. The purpose of this work is to update some of the findings published in a Review Study of Stage 6 of European Commission (EC) regulation No 244/2009. In updating those earlier findings with new data, this paper has three objectives: 1) Provide new information on the evolution of prices of Light Emitting Diode (LED) lamps 2) Provide new energy savings estimates associated with Stage 6 scenarios 3) Evaluate the prevalence of dimmers and if it presents a barrier to Stage 6 The main conclusions in the report are given below with cross-references to the findings presented in this report: Evolution of Price and Quality in the LED Lamp Market LED lamps have become much more affordable than was projected in the LightingEurope forecast included in the June 2013 Review Study 1. Current (2014) pricing of LED lamps tested by PremiumLight and national testing in Austria, Denmark and Sweden found that half of the LED lamps are achieving price points expected in 2020, 2022, 2024 and 2025 (see Section 2.1). This 10 year acceleration in affordability of LED lamps available today from major European manufacturers offer consumers payback periods of less than a 1 year in sockets used 3 hours per day (see Section 2.2). All of the LED lamps included in this report s price study have been tested by accredited lighting laboratories. Shape, size and light quality are acceptable. Concerns about size, weight, and quality of light, including correlated colour temperature and colour rendering index, have been shown to be addressed in both a Danish study 2 and Swedish test report 3. These studies published in 2014 have found LED lamps that meet the shape, size and light quality of the tungsten filament lamps they are replacing (see the two reports available on line). Consumer and professional lighting companies switching: IKEA 4, a global retailer specialising in household furnishings, announced they will only sell LED lamps starting in Erco 5, a professional luminaire manufacturer, announced that from January 2015 they will only supply luminaires that use LED as the light source. 1 NDLS STAGE 6 REVIEW - FINAL REPORT - Review study on the Stage 6 requirements of Commission Regulation (EC) No 244/2009, by VHK (pl)/ VITO for the European Commission. Delft/Brussels, 14 June Availability of non-directional LED replacement lamps, Energy piano & ÅF Lighting, , for Danish Energy Agency 3 Test Report Clear, Non-Directional LED Lamps: A test report prepared for the European Commission and the Consultation Forum on the performance of clear LED lamps in the European Market in the third quarter of 2014; Swedish Energy Agency, Belgian Federal Ministry for Health, Food Chain Safety and Environment, CLASP and eceee; 19 Nov IKEA announced that customers will only be able to buy LED lamps by 2016, and they intend to install large numbers of LED lamps in their stores and warehouses. Link to press release 5 Architectural luminaire maker Erco, one of the oldest companies in the business and brand of choice for museums and galleries around the world, has gone 100% LED in all of their nearly 5,000 luminaires and light sources. Link to article 1

124 European LED Market Evolution and Policy Impacts Energy Saving Scenarios Related to Stage 6 Significant energy savings for Europe: the electricity savings and carbon dioxide (CO 2 ) emissions reduction associated with keeping Stage 6 in 2016 are significant. Compared with the Commission s proposal for a two year delay, keeping Stage 6 in 2016 would over a ten year period from 2016 through 2026 save an additional 33 TWh of electricity nearly equal to Denmark s total annual (2012) electricity consumption with savings on electricity bills of approximately 6.6 billion Euro. If Stage 6 in 2016 were to be shifted to require A-class to avoid any B-class halogen lamps entering the European market, the savings would be 79 TWh more than the Commission s proposal or nearly 15.8 billion Euro over ten years (see the scenarios in Section 3.5, and Annex A). Risk of B-class Halogens entering the market: B-class halogens are still available for purchase in France, Germany, the Netherlands and the UK, and a non-european wholesaler has been identified offering B-class omnidirectional lamps from which lamp suppliers could outsource production. If B-class halogen lamps expand their share of the European market significantly at Stage 6, it could eliminate half of the expected energy savings between 2016 and 2026 (See Section 3.5, Scenario 2 and Scenario 5). Dimmer Compatibility Dimmer compatibility is not a problem for well-designed LED Lamps. The Swedish test report found that two out of the five dimmable LED Lamps tested were compatible with both trailing-edge and leading-edge dimmers, and the others dimmed on one or the other (see Section 4). This research indicates that relative to the schedule presented in the June 2013 Review Study, which was a key input to the Commission s proposal of a two year delay, LED technology is ready for consumers from both a technological and affordability point of view. Through the use of LED lighting, significant energy savings and benefits will accrue to European households and the Union. During 2014, the LED market has started to become a mass market, and this will continue to develop between now and September 2016, the start of Stage 6 in EC No 244/2009. We encourage European policy-makers to review this new and updated evidence when taking into consideration the critical questions concerning Stage 6. 2

125 European LED Market Evolution and Policy Impacts Table of Contents EXECUTIVE SUMMARY INTRODUCTION RAPID EVOLUTION OF LED LAMP PRICES LED LAMP PRICES IN EUROPE PAYBACK PERIOD FOR CONSUMERS UPDATE TO ENERGY SAVINGS CALCULATIONS AND SCENARIOS VHK/VITO REVIEW STUDY ON STAGE NEW DATA IEA 4E MAPPING & BENCHMARKING METHODOLOGY FOR REVISED EU SHIPMENT ESTIMATE EC NO 244/2009 STAGE 6: B-CLASS OR A-CLASS? ENERGY SAVING SCENARIOS DISCUSSION ON ENERGY SAVINGS SCENARIOS DIMMER COMPATIBILITY AND CONSUMER ACCEPTANCE IN EUROPE DIMMERS IN EUROPE HOW LARGE IS THE DIMMER COMPATIBILITY BARRIER IN EUROPE? US TESTING OF DIMMER CHARACTERISTICS OF 14 LED A LAMPS AND 4 DIMMERS ANNEX A. ELECTRICITY CONSUMPTION SCENARIOS REPORTED IN CHAPTER ANNEX B. EXPLANATION FOR USE OF GFK DATA OVER DRAFT VHK MODEL ANNEX C. INFORMATION ON LED LAMP PRICE ANALYSIS List of Tables TABLE 2-1. ACTUAL PRICES FOR LED LAMPS TESTED BY PREMIUMLIGHT, AEA AND DTU PHOTONIC... 7 TABLE 2-2. SIMPLE PAYBACK PERIOD FOR CFL AND LED LAMPS COMPARED TO HALOGEN, 3 HOURS/DAY TABLE 2-3. SIMPLE PAYBACK PERIOD FOR CFL AND LED LAMPS COMPARED TO HALOGEN, 1 HOURS/DAY TABLE 3-1. JUNE 2013 REVIEW STUDY METHODOLOGY FOR CALCULATING STOCK OF HALOGENS IN TABLE 3-2. DENMARK-CLASP UPDATED STOCK MODEL (BASED ON GFK SALES DATA) TABLE 3-3. EVIDENCE OF B-CLASS HALOGENS IN EUROPE AND FROM NON-EUROPEAN WHOLESALERS * TABLE 3-4. DESCRIPTION OF ENERGY SAVING SCENARIOS CONSIDERED IN THIS PAPER TABLE 3-5. ELECTRICITY SAVINGS FROM STAGE 6 SCENARIOS COMPARED TO SCENARIO 1 (SC1) TABLE 4-1. DIMMER COMPATIBILITY CHECK FOR FIVE DIMMABLE LED LAMPS

126 European LED Market Evolution and Policy Impacts List of Figures FIGURE 2-1. LED PRICE AND PERFORMANCE FORECAST FROM THE JUNE 2013 REVIEW STUDY... 6 FIGURE 2-2. LED PRICE AND PERFORMANCE FOR 2014 CLEAR LED LAMPS PLOTTED AGAINST PROJECTIONS FROM THE JUNE 2013 REVIEW STUDY... 6 FIGURE 2-3. LED LAMPS FOR SALE IN THREE DIFFERENT LARGE CHAIN STORES IN DENMARK... 8 FIGURE 2-4. LED LAMPS FOR SALE IN CZECH REPUBLIC, FINLAND, GERMANY, ITALY, LATVIA, SPAIN AND UK... 9 FIGURE 2-5. PHOTOGRAPHS OF RETAIL DISPLAY OF CREE LED LAMPS IN USA FIGURE 2-6. EXAMPLE OF THE NEW GENERATION LED FILAMENT LAMPS WITH VERY HIGH PERFORMANCE FIGURE 3-1. COMPARISON OF SHIPMENTS OF NON-DIRECTIONAL MAINS-VOLTAGE LAMPS ( ) FIGURE 3-2. NDLS INCANDESCENT AND MV HALOGEN SALES DATA FOR ALL EU, BUSINESS AS USUAL FIGURE 3-3. CUMULATIVE ENERGY CONSUMPTION, 10 YEARS, FIVE SCENARIOS Acronyms and Abbreviations 4E Energy Efficient End-use Equipment (IEA Annex) AEA Austrian Energy Agency CCT Correlated Colour Temperature CENELEC European Committee for Electrotechnical Standardisation CFL Compact Fluorescent Lamp CO 2 Carbon Dioxide CRI Colour Rendering Index DEA Danish Energy Agency DOE U.S. Department of Energy DTU Danish Technical University EC European Commission EU European Union EUR Euro (currency of the EU) EUROSTAT EC Statistics GfK Gesellschaft für Konsumforschung (International market research company) IEA International Energy Agency IEC International Electrotechnical Commission IEE Intelligent Energy Europe LED Light Emitting Diode lm Lumen NDLS Non Directional Lighting Sources OEM Original Equipment Manufacturer STEM Swedish Energy Agency TWh Terawatt-hours UK United Kingdom US United States / United States of America VITO Flemish Institute for Technological Research NV VHK Van Holsteijn en Kemna BV VAT Value Added Tax W Watts 4

127 European LED Market Evolution and Policy Impacts 1 Introduction In June 2013, the European Commission published an extensive technical study 6 prepared by consultants (VHK/VITO) to review the feasibility of keeping in place the Ecodesign regulatory measure EC No 244/2009 adopted in 2009 for non-directional household lamps (hereafter referred to as the June 2013 Review Study ). On the basis of this study, and in conjunction with input from other stakeholders, the Commission proposed a two-year delay to the final stage of the European regulation on non-directional household lighting, referred to as Stage 6. The 2013 Review Study estimated the energy savings potential associated with Stage 6, based on estimates of the installed stock of incandescent and halogen lamps in Europe. In late 2014, the International Energy Agency (IEA) Energy Efficient End-use Equipment (4E) Mapping and Benchmarking Annex published an update to its non-directional, household lamp report for Europe 7, providing non-directional household lamp sales data on 7 major European Member States representing nearly half of the total EU population. This update was based on GfK sales data in these countries, and it was found that sales of mains-voltage halogen lamps were considerably higher than were predicted in the June 2013 Review Study. Thus, it became clear that in order for policy makers to make an informed decision on whether to keep, amend or delay Stage 6 of EC No 244/2009, an update to the price progression and the energy savings associated with Stage 6 would be necessary. It is hoped that this study on the evolution of LED technology across Europe will prove useful to policy makers in making a decision regarding Stage 6. This report presents updated price information for LEDs in the European market, as well as six new scenarios for Stage 6 and associated energy savings. Dimmer compatibility of LED lamps is also addressed. The report is structured as follows: Chapter 1. Introduction this chapter provides the background and motivation for the study. Chapter 2. Rapid Evolution of LED Lamp Prices this chapter conducts a pricing survey of LED lamps. This survey is compared to the price/performance forecast in the June 2013 Review Study. The lamps included in this survey were tested by the Austrian Energy Agency, the IEE PremiumLight Programme, the Swedish Energy Agency and the Danish Technical University (DTU). Chapter 3. Update to Energy Savings Calculations and Scenarios this chapter establishes a new stock estimate for 2016 based on recently published GfK sales data for 7 major European countries, and provides an update to the estimate of the energy savings potential associated with Stage 6 that was originally published in the June 2013 Review Study. Chapter 4. Light Dimmer Circuits in Europe this chapter provides a discussion on dimmers in Europe, based on market research done previously by the Intelligent Energy Europe (IEE) PremiumLight programme. 6 NDLS STAGE 6 REVIEW - FINAL REPORT - Review study on the Stage 6 requirements of Commission Regulation (EC) No 244/2009, by VHK (pl)/ VITO for the European Commission. Delft/Brussels, 14 June IEA Mapping and Benchmarking report Domestic Lighting Update, September See: 5

128 European LED Market Evolution and Policy Impacts 2 Rapid Evolution of LED Lamp Prices 2.1 LED Lamp Prices in Europe The June 2013 Review Study provided a forecast of the LED efficacy (lm/w) and price (Euro incl. value added tax [VAT] per 500 lumen [lm] light output) for the period 2012 to The efficacy projection was adopted from a 2013 CLASP publication 8 which itself was based on US Department of Energy s Multiyear Programme Plan for Solid State Lighting, while the price projection were provided by Lighting Europe up to 2020 and extrapolated to 2030 by VHK/VITO. Figure 2-1. LED Price and Performance Forecast from the June 2013 Review Study The test report on clear, non-directional LED lamps prepared by Swedish Energy Agency, Belgian Federal Ministry for Health, Food Chain Safety and Environment, CLASP and eceee 9 found that the price and performance of approximately 50% of the mains-voltage LED lamps purchased and tested in 2014 already exceeded the projected 2016 price and performance levels in the June 2013 Review Study. One model even exceeded the anticipated 2018 level on efficacy and the 2020 level on price. Figure 2-2. LED Price and Performance for 2014 Clear LED Lamps Plotted Against Projections from the June 2013 Review Study 8 European non-directional lamps market model, version 1.1 (Microsoft Excel workbook); Pernille Schiellerup, Marie Baton and Michael Scholand, CLASP Europe; 14 May 2013, Brussels. 9 Test Report Clear, Non-Directional LED Lamps: A test report prepared for the European Commission and the Consultation Forum on the performance of clear LED lamps in the European Market in the third quarter of By: Swedish Energy Agency, Belgian Federal Ministry for Health, Food Chain Safety and Environment, CLASP and eceee, 19 November 2014 Hyperlink to PDF of report 6

129 European LED Market Evolution and Policy Impacts This study seeks to give an update on the price and technology evolution of LEDs in Europe. The approach was to gather current prices and performance data for 19 LED lamp products tested by lighting laboratories involved in the IEE PremiumLight project, the Austrian Energy Agency (AEA) and the Danish Technical University (DTU). For each product, a sample of 3-5 lamps was tested. The lamps ranged from 660 to 1660 lumens, which can replace Watt incandescent lamps. The table below presents the results with a comparison to the price projection from the June 2013 Review Study (the table shown above in Figure 2-1). For 68% of the products shown, the current price level is ahead of the progression published in the June 2013 Review Study. For half of the products, the current price level is 5-11 years ahead. It should be noted the table covers LED lamps that can replace incandescent lamp ranging from 25W to 100W. Table 2-1. Actual Prices for LED Lamps Tested by PremiumLight, AEA and DTU Photonic Brand Model Measured Lumens Price per 500 lm Price in 2013 Review Study Actual price Acceleration Posco LED 9W Osram LED Superstar Classic A 10W IKEA Ledera 13W dimmable Verbatim LED Classic 9,5W IKEA Ledare 10 W IKEA Led circular 16W dimmable Osram 10W dimmable Philips LED 13W years ahead 10 years ahead 8 years ahead Philips Master LEDbulb 12W years ahead Soft LED LED Glühfaden Birne 6W years ahead Megaman LED Classic 16.5W years ahead GE LED Energy Smart 10W years ahead XAVAX LED Lampe 11W dimmable years ahead Panasonic LDAHV10L27CGEP 10W Osram 6W dimmable Verbatim 4W Luxinia LED SunFlux 11W dimmable Megaman 10W On time OSRAM LED Star Classic B 4W years behind All lamps included in Table 2-1 were tested as mentioned above and were of good quality. The process of testing (selecting, procuring, testing and documenting) takes time, and therefore all lamps in Table 2-1 were at least one year old. If the most recent versions of lamps had been included, the efficacy would have been higher and the price per 500 lm would have been lower. For example, PremiumLight published test results for a Sunflux E27 7.5W LED lamp in July This lamp provided 470 lm, 63 lm/w, 2700 K, Ra 95 and 270 light distribution. A year later, this product is about to be taken off the market and is being replaced by a new product that costs less and offers a 50% improvement in efficacy. The new specification for this new lamp from SunFlux is 5W, 450 lm, 90 lm/w, 2700K, Ra>90 and 360 light distribution. Tested products that are about to be taken of the market are not included in Table

130 European LED Market Evolution and Policy Impacts At the Strategies in Light Europe 2013 conference, a representative of Philips Lighting 10 reported that LED technology had reached a point by the middle of 2013 where the quality, size and shape of LED retrofit lamps would be acceptable to consumers. Furthermore, Philips Lighting expected that the on-going reduction in LED lamp prices would start to enable mass market LED penetration in Europe starting at the end of The results presented in this paper, including the findings from the above table, show that Philips forecast was correct. In January 2015, Danish consumers were able to buy LED lamps providing 400 lumens of light for only EUR 2.90, and Philips brand LED lamps with 470 lm for EUR 6.50 and with 806 lm for EUR (note: one year ago, the price for these same lamps was double or more). This development, coupled with market moves by companies like IKEA 11, are indicative of the fact that the LED market is becoming an affordable mass market for European consumers, with benefits for households, energy security and the environment. Figure 2-3. LED Lamps for sale in three different large chain stores in Denmark Similar price reduction as shown above for Denmark can be found around in EU. Figure 2-4 includes a sample of lamps for sale in seven EU countries: Megaman brand LED lamp with 810 lumens for EUR 8.99 for sale in Finland. Philips brand LED lamp with 806 lm for EUR 7.10 for sale in Czech Republic. This is the same as sold in Denmark (see Figure 2-3) but for a price much higher in Denmark at EUR Below you can see the same lamp is even sold cheaper in Germany for EUR LED lamp with 470 lm for EUR 8.20 in UK. Philips brand LED lamp with 1055 lm for EUR 7.90 for sale in Italy. OSRAM brand LED lamp with 806 lm for EUR 7.55 for sale in Spain Philips brand LED lamps with 1055 lm for EUR 9.95 (cheaper to buy in the Italian shop above) and with lm 470 for EUR 5.49 for sale in Latvia. Philips brand LED lamp with 806 lm for EUR 6.39 for sale in Germany. 10 LED Market Transformation: Managing the Second Phase, Annetta Kelso, Senior Marketing Manager OEM Channel Europe, Philips Lighting, and the Netherlands 11 IKEA announced that customers will only be able to buy LED lamps by 2016, and they intend to install large numbers of LED lamps in their stores and warehouses. Click here for the article. 8

131 European LED Market Evolution and Policy Impacts Figure 2-4. LED Lamps for sale in Czech Republic, Finland, Germany, Italy, Latvia, Spain and UK When the perspective shifts to the market outside of Europe, it seems that Europe is actually behind the development of LED markets in both Japan and USA. In Japan, a LED mass market appeared in 2012, where LED sales constituted 40% of sales of lighting sources 12. In 2013, LED luminaire sales in Japan were approximately 60% of national luminaire sales 13. Since the start of 2012, the Japan has installed 73 million LED lamps 14 nationwide, which represents 30% of all bulbs sold in Japan over that period. According to the Institute of Energy Economics in Japan, switching all of Japan s lighting to LEDs would save about 92.2 terawatt hours of electricity, 9 percent of Japan s total annual consumption. Hiroshi Amano, who shared last year s Nobel Prize for physics, stated that Japan could cut annual electric spending by as much as 1 trillion yen ($8.4 billion) within five years by using more LEDs. In the USA, the mass market for LED retrofit lamps appeared around 2013 when CREE announced 60W and 40W equivalent dimmable quality LED lamps for retail prices around US$10.00 (EUR 8.85) 12 Presentation by the Japanese Strategic Council on SSL at the IEA 4E SSL Annex Expert meeting in Seoul, Korea in September Presentation by the Japanese Strategic Council on SSL at the IEA 4E SSL Annex Expert meeting in Delft, The Netherlands, April

132 European LED Market Evolution and Policy Impacts see Figure 2-5. Current prices are now US$ (EUR ), and can be found even lower when combined with an electric utility rebate scheme (e.g., US$2.97 [EUR 2.63] in Connecticut in April 2013). Figure 2-5. Photographs of Retail Display of Cree LED Lamps in USA Figure 2-6 shows an example of a new generation of LED lamps entering the European market. This technology has considerably higher performance than halogen, and payback times are becoming shorter. By September 2016 we will even have taken one more step in improved performance. Figure 2-6. Example of the new generation LED filament lamps with very high performance The lamp in Figure 2-6 provides: Shape and size like an incandescent/halogen; direct mains-voltage screw-in replacement 360 light distribution through clear glass envelope (i.e., sparkle effect for certain light fixtures) 15 Current (viewed 25 January 2015) pricing of Cree LED lamps at Home Depot in the USA. To view the Home Depot ads for Cree lamps, click on this link and click on this link. 10

133 European LED Market Evolution and Policy Impacts 120 lm/w (ten times better than incandescent lamps and two times better than CFL) Warm-white light K, same as incandescent/halogen lamps High colour rendering, CRI Ra > 90 Long lifetime 15,000 hours (7 times longer than halogen) 2.2 Payback Period for Consumers Lower-priced LED lamps offer consumers shorter payback periods which will trigger higher market penetration and energy savings. Taking two LED lamps from Table 2-1 with light output levels that are comparable to a 60W incandescent / 52W halogen lamp, and one LED Lamp from the Swedish Testing study 16 with approximately the same light output, a simple payback period was calculated. These calculations are shown in the following two tables, the first for light sockets operated 3 hours per day and the second for sockets operated 1 hour per day. LED-1: Osram, LED Superstar Classic A 60 advanced 10W Weblink LED-2: Verbatim, LED Classic 9.5W Weblink LED-3: Osram PARATHOM Classic A ADV 10W 827 Weblink Table 2-2. Simple Payback Period for CFL and LED lamps compared to Halogen, 3 Hours/Day Lamp Type Wattage Daily Use Efficacy Light Output Cost per Lamp Energy Use Electricity Price Simple Payback (Watts) (hours/day) (lumens/watt) (lumens) ( ) (kwh/yr) ( /kwh) (years) Halogen CFL LED LED LED Table 2-3. Simple Payback Period for CFL and LED lamps compared to Halogen, 1 Hours/Day Lamp Type Wattage Daily Use Efficacy Light Output Cost per Lamp Energy Use Electricity Price Simple Payback (Watts) (hours/day) (lumens/watt) (lumens) ( ) (kwh/yr) ( /kwh) (years) Halogen CFL LED LED LED The payback for these three LED lamps at current prices is less than one year in sockets operated 3 hours per day, and approximately 2.5 years for sockets operated 1 hour per day. After that, consumers can enjoy many years of savings, as these same lamps claim to have operating lives of 20,000 hours, equal to approximately 20 years at 3 hours per day or 60 years at 1 hour per day. 16 LED-3 was taken from the results of the study: Test Report Clear, Non-Directional LED Lamps: A test report prepared for the European Commission and the Consultation Forum on the performance of clear LED lamps in the European Market in the third quarter of By: Swedish Energy Agency, Belgian Federal Ministry for Health, Food Chain Safety and Environment, CLASP and eceee, 19 November 2014 Hyperlink to PDF of report 11

134 European LED Market Evolution and Policy Impacts 3 Update to Energy Savings Calculations and Scenarios In the June 2013 Review Study 17, VHK/VITO prepared an estimate of the mains-voltage halogen sales and stock for the EU as well as two scenarios that depicted the savings potential, one abolishing Stage 6 and one keeping Stage 6. In this chapter, we follow the same methodology used in their calculation, but with an updated installed stock of incandescent and halogen lamps to reflect the European GfK sales data published by the IEA 4E Mapping and Benchmarking Annex. New scenarios are assessed, including a one and two year delay to Stage 6, as well as two scenarios for keeping Stage 6 in 2016: B-class as in the current regulation and an upgrade to A-class. This chapter begins with background information about constructing the scenarios of energy for lighting. 3.1 VHK/VITO Review Study on Stage 6 As part of the review of EC 244/2009, the European Commission contracted VHK/VITO to conduct a review study on the feasibility of Stage 6. This resulted in a report issued in June 2013 (called the June 2013 Review Study in this report) providing the best information available at that time. That analysis included estimates of the halogen shipments and calculations of energy savings for two different scenarios: SC1 - Abolishing Stage 6 requirements SC2 - Keeping Stage 6 requirements These two scenarios relied on calculating the energy consumed by the estimated installed stock of mains-voltage halogen lamps in 2016, the effective year of Stage 6. Whether the Commission kept Stage 6 in 2016, or abolished it, was calculated against that estimated installed stock of halogen lamps. The figure below is a screen-capture of the table appearing in the June 2013 Review Study 18 (called Table 6 on page 25 of the report), where the methodology used to arrive at a stock estimate of halogens in 2016 is shown. Table 3-1. June 2013 Review Study Methodology for Calculating Stock of Halogens in NDLS STAGE 6 REVIEW - FINAL REPORT - Review study on the Stage 6 requirements of Commission Regulation (EC) No 244/2009, by VHK (pl)/ VITO for the European Commission. Delft/Brussels, 14 June Ibid. 12

135 European LED Market Evolution and Policy Impacts This methodology was based on the assumption that CFLs would represent the main replacement for frosted incandescent lamps, limiting the sales volume of mains voltage halogen lamps. The difference between the two scenarios presented in the June 2013 Review Study was 9.4 TWh of additional savings in 2020 from SC2 (keep Stage 6 in 2016). On a cumulative basis, when compared with abolishing Stage 6, the Review Study estimated the electricity savings over 10 years from keeping Stage 6 in 2016 to be 43.2 TWh. Based on the June 2013 Review Study and other input from stakeholders, the Commission proposed a two year delay to the implementation of Stage New Data IEA 4E Mapping & Benchmarking In September 2014, the IEA 4E Mapping and Benchmarking Annex published a report that updated all their shipment information on the European lighting market based on GfK lamp sales data. 20 This report included sales estimates for 7 major economies (i.e., Austria, Belgium, France, Germany, Great Britain, Italy and the Netherlands) and covered the following technologies, which also fall under EC 244/2009: mains-voltage incandescent, mains-voltage halogen, single-ended self-ballasted CFL and retrofit-led lamps. The data included sales in these countries from 2007 through The data indicate that integrally ballasted CFL sales peaked in 2010 and have been in decline ever since. Actual CFL sales in 2013 are lower than they were in 2007 for these European markets, prior to the adoption of regulation EC 244/2009. In contrast, over that time period, sales of mains voltage halogen lamps have grown by 477%. Figure 3-1 compares the GfK sales estimates to the expected shipments published in , when the regulation was adopted. The contrast is clearly visible: the anticipated switch to CFL in 2012 after implementation of Stage 5 of 244/2009 did not occur. Instead the market has selected halogen lamps. 22 This is despite the fact that replacing frosted incandescent with CFL was deemed cost effective for most households 23. The GfK data show that clear halogen lamp sales were 4 times larger than CFLs in 2013 and CFL sales have decreased during the period when incandescent was phased out November 2014, Commission issued an which stated the following: EU TBT notification concerning the Draft Commission Regulation amending Regulation (EC) No 244/2009 has now been published on the WTO website under the following reference: G/TBT/N/EU/248 (Web link to the draft regulation) 20 IEA Mapping and Benchmarking report Domestic Lighting Update, September (Web link to the report). The GfK data can be found on page 5 of the IEA M&B Annex Domestic Lighting Report, September Final report, Lot 19: Domestic lighting prepared by VITO for European Commission, 2009/ETE/R/069; October Annexe 8-6: Main economic and environmental data for the scenario Option 2 Clear B Slow. 22 It was decided not to use the shipment estimates published in the draft Task 2 of Lot 8/9/19 report. See Annex B. 23 Full Impact Assessment, Commission Staff Working Document, on ecodesign requirements for non-directional household lamps, Quote on page 16: In the frosted lamps category, the analysis has shown that it is cost-effective to only allow class A level lamps (= CFLs). 13

136 European LED Market Evolution and Policy Impacts (a) 2009 Projection of Shipments 21 (b) Actual Sales Data from GfK 20 Figure 3-1. Comparison of Shipments of Non-Directional Mains-Voltage Lamps ( ) Given this substantial (and unanticipated) market shift, the energy savings estimates presented in the June 2013 Review Study needed to be revisited in the light of this new data. The GfK data show a market situation quite different from what was expected when the policy was adopted. There are still many incandescent lamps being sold and mains-voltage halogen lamps have supplanted the expected CFL sales. 3.3 Methodology for Revised EU Shipment Estimate GfK estimates that the lamp shipment data they provided for this time period represents, on average, 70% of the overall lighting market in the seven countries covered in the years reported, including 40% in Belgium and Netherlands, 70% in Austria and Germany and 85% in France, Great Britain and Italy. The populations of these 7 countries were multiplied by each country s indicated market coverage percentages in order to calculate the total number of people approximately million covered by GfK s data (2012). In order to calculate an estimate of the total proportion of the European lighting market represented in the GfK data, the total EU population of million (2012) was used to calculate a multiplier of (= 233.5/505.6), and this multiplier was then used to scale-up the GfK sales data to the total EU. A second adjustment to the GfK data was made in order to ensure that the correct lamp types were used in the updated energy savings model. The GfK sales data for single-ended mains voltage halogen published in the IEA 4E Mapping and Benchmarking Annex report did not exclusively represent non-directional household lamps. This group contained both non-directional household lamps as well as directional lamps (e.g., MR-16 lamps with a GU10 base). Therefore GfK lamp sales data of single-ended mains voltage halogen for one of the Member States were used to estimate the proportion of directional to non-directional lamps within the single-ended mains voltage halogen category. It was found that the proportions were one-third directional lamps and two-thirds nondirectional. This proportion was then used to reduce the EU-wide scaled GfK sales data from the IEA 4E Mapping and Benchmarking Annex report by one third to arrive at an estimate of the singleended mains-voltage non-directional household lamps for the EU. The figure below provides GfK s incandescent and halogen lamp shipment data, adjusted for population and directional single-ended lamps. These halogen sales are then projected forward, assuming the 2013 GfK estimate represents a near-peak in demand and that shipments soon start to 14

137 European LED Market Evolution and Policy Impacts decline under a business as usual scenario (i.e., how the market is expected to behave if there is no Stage 6). Shipments peak at around 480 million units in 2015 and start to decline thereafter as LED alternatives become more and more cost competitive. This graph also shows incandescent sales reported in GfK, which are presumed to decline rapidly as this technology is phased out and market surveillance authorities work to ensure compliance with the regulation. Figure 3-2. NDLS Incandescent and MV Halogen Sales Data for All EU, Business as Usual These shipments of incandescent and MV halogen lamps are used to calculate a new installed stock of tungsten filament-based lamps in the European market in The methodology followed in preparing this stock estimate is consistent with the methodology used in the 2013 Review Study: halogen lamps have an average lifetime of 2000 hours and the average operation time is 500 hours of use per year (i.e., 1.4 hours / day). The halogen lamps thus last in the stock for an average of 4 years before being replaced. The same methodology is applied to the sales of incandescent lamps, which are assumed to have an average lifetime of 1000 hours and 333 hours of use per year (i.e., 1 hour/day), such that they last an average of 3 years in the stock model. Table 3-2 presents the new estimate of the installed stock of incandescent and halogen lamps across Europe in Table 3-2. Denmark-CLASP Updated Stock Model (based on GfK sales data) Year Incandescent Sales Incandescent discarded after 3 years Incandescent Stock MV-Halogen Sales (NDLS) MV-HL discarded after 4 years MV-HL Stock (units) (million lamps) (million lamps) (million lamps) (million lamps) (million lamps) (million lamps) , , , , , , ,789 15

138 European LED Market Evolution and Policy Impacts Table 3-2 shows that the update of the sales of mains-voltage incandescent and halogen lamps, based on GfK data results in a higher estimate of the installed stock of tungsten filamentbased lamps in With this new sales data, it would appear that there are approximately 2 billion incandescent and halogen sockets in Europe, whereas the June 2013 Review Study had estimated 1.3 billion. Due to this higher installed base of inefficient lighting in Europe, it should be noted that any policy-measures applied to non-directional household lamps would have an even greater impact on the resulting energy savings. 3.4 EC No 244/2009 Stage 6: B-class or A-class? EC regulation No 244/2009 established six stages of requirements, five of which are already completed. Stage 6 is scheduled to take effect on 1 September 2016 and will phase-out mainsvoltage clear halogen lamps (D-class) by requiring all clear glass non-directional household lamps to achieve B-class. 24 Although commonly referred to in the media as a ban on halogen, strictly speaking, this isn t a ban on halogen lamps because low-voltage, infrared-reflective coating halogen technology can achieve B-class. It was recently learned that B-class lamps are still offered for sale in Europe and are advertised by companies in China see the table below and associated hyperlinks. Table 3-3. Evidence of B-class halogens in Europe and from non-european wholesalers * Retailer Lamp Weblink / Strictly Lamps Other wholesale Manufacturer: Qianhui Lighting Electrical Appliance Co. Philips Master Classic 20W ECO Boost Energy Saving GLS; B-class Halogen; 3.99 Philips 20w ECO Master Classic Candle Halogen Energy Saving; B-class Halogen; 3.99 Philips Ampoule MASTER Classic 30W E27 A55 230V; B-class Halogen; Philips lm MasterClassic Halogen 30W E27 230V; B-class Philips MasterClassic 30W E27 230V; B-class Low-voltage halogen lamp Sparkling, crisp light 50% energy saving Higher luminous efficacy Voltage: V (E27 base) Lifetime: 2000 hours CCT: 2,800K Click on this link Click on this link Click on this link Click on this link Click on this link Click on this link Note: minimum order 1000 pieces. * Note that while the validity of the claim of B-class for these wholesalers has not been tested. 24 EC No 244/2009, Annex II, Section 1, Table 1: Clear lamps Stage 6: Power max = 0,6 * (0,88 Ф+0,049Ф) where Ф is the measured light output. 16

139 European LED Market Evolution and Policy Impacts Thus, when Stage 6 takes effect requiring B-class, there is the possibility that the market could experience a widespread introduction of B-class halogen lamps, even though all the analysis and discussions surrounding Stage 6 to date has focused on whether LED lamps will be ready. Lamp manufacturing in the past was often done by the major brand names, but now there has been a trend toward contract manufacturing and branding; (i.e., outsourcing the manufacturing). It is in this context that the discovery of at least one non-european wholesale manufacturer is of concern. If a retailer, importer or lamp manufacturer in Europe wants to import B-class halogen lamps, there would be little capital investment compared to commissioning their own manufacturing line, as the company could simply outsource the lamp manufacturing. Therefore a more widespread introduction of B-class halogen lamps is possible. EC No 244/2009 split the incandescent lighting market into frosted and clear lamps with different energy-efficiency requirements for these two categories. The intention of this policy measure was that frosted incandescent lamps would be replaced by compact fluorescent lamps (CFLs, which are A-class) and clear incandescent lamps would be replaced by mains-voltage halogen lamps (D-class), with these lamps being phased out at Stage 6. Recital 20 of the regulation (EC No 244/2009) reads: A review of this measure should take particular note of the evolution of sales of special purpose lamp types so as to verify that they are not used for general lighting purposes, of the development of new technologies such as LEDs and of the feasibility of establishing energy efficiency requirements at the A class level as defined in Commission Directive 98/11/EC of 27 January 1998 implementing Council Directive 92/75 with regard to energy labelling of household lamps (3). The review completed in 2014 by the Commission and which the June 2013 Review Study was a part of is intended to satisfy the requirements of Recital 20. Recital 20 does not contemplate a delay to Stage 6, but rather whether A-class was warranted in place of B-class. Recital 20 specifically mentions LED technology as one of the unknown variables that could be a driver behind the decision to establish A-class as the Stage 6 requirement. However, the Commission s proposal does not raise Stage 6 to an A-class, but instead delays the onset of B-class lamp technology for two years. In the next subsection, we present some scenarios that look at the energy savings associated with Stage 6, based on the new baseline derived from the aforementioned GfK data. These scenarios consider maintaining Stage 6 with a B-class requirement, Stage 6 with an A-class requirement, and postponing Stage 6 by one or two years. 17

140 European LED Market Evolution and Policy Impacts 3.5 Energy Saving Scenarios For the calculations presented in this section, the following six scenarios are considered: Table 3-4. Description of Energy Saving Scenarios Considered in this Paper Scenario Short Title Description SC1 Abolish Stage 6 Assumes Stage 6 is abolished and no further regulatory action taken to advance the market for energy-efficient non-directional household lamps. Market evolves gradually to LED over time. SC2 Keep Stage 6; keep B-class SC3 Keep Stage 6, move to A-class SC4 Delay Stage 6 to 2017; move to A-class SC5* Delay Stage 6 to 2018; keep B-class SC6 Delay Stage 6 to 2018; move to A-class Assumes Stage 6 takes effect in September 2016 and 50% of replacement sockets switch to B-class halogens. The other 50% is apportioned between CFL/alternatives (using the same proportions as in the June 2013 Review Study 25 ) and LED lamps. Assumes Stage 6 takes effect in September 2016 and the minimum requirement changes to A-class. The market shifts according to the same CFL/alternatives technology mix as in the June 2013 Review Study. 26 Assumes Stage 6 is delayed one year to September 2017 and the requirement changes to A-class; the market shifts according to the same mix technologies used in the June 2013 Review Study. Assumes Stage 6 takes effect in September 2018 and 40% of replacement sockets switch to B-class halogens. The other 60% is apportioned between CFL/alternatives (using the same proportions as in the June 2013 Review Study) and LED lamps. Assumes Stage 6 takes effect in September 2018 and the requirement changes to A-class; the market shifts according to the same mix technologies used in the June 2013 Review Study. * Scenario 5 is intended to represent the savings scenario associated with the European Commission s proposal to delay Stage 6 at B-class by 2 years. In Annex A to this report, six tables are presented which provide the actual calculations for these scenarios. As much as possible, these calculations follow the same methodology and use the same assumptions as the tables published in the June 2013 Review Study. This includes, for example, the operating hours, wattages, lamp lifetimes, LED lamp efficacies and natural replacement rates. Based on this analysis, Figure 3-3 presents the cumulative electricity consumption over ten years for the nearly 2 billion sockets that will be operating mains-voltage non-directional halogen and incandescent lamps in Scenario 6 represents the Commission s proposal of a two year delay at B-class. 25 The mix of technologies includes 75% CFLs (9W); 25% G9+adapter (40W); 25% special purpose GLS (54W); weighted average of 27W 26 It is important to note that although the June 2013 Review Study did not contemplate an increase in label class in their keep Stage 6 scenario, their calculation effectively assumes A-class as they did not consider any B-class lamps in their calculations. This scenario is the closest comparable scenario to that of the June 2013 Review Study. 18

141 European LED Market Evolution and Policy Impacts Figure 3-3. Cumulative Energy Consumption, 10 Years, Five Scenarios The table below provides the annual electricity savings relative to Scenario 1 (i.e., abolish Stage 6). The bottom of the table sums together those annual figures, giving the cumulative electricity and CO 2 savings over the ten-year analysis period. Table 3-5. Electricity Savings from Stage 6 Scenarios compared to Scenario 1 (SC1) Year SC2 SC3 SC4 SC5 SC & 50% B-class 2016 & A-class 2017 & A-class 2018 & 40% B-class 2018 & A-class Units (TWh) (TWh) (TWh) (TWh) (TWh) Total (TWh) Total (CO 2 ) The CO 2 emissions are presented in mega-tonnes of CO 2 savings derived from the electricity savings and using the same CO 2 intensity factor that was used in the June 2013 Review Study (i.e., 0.35 g CO 2 /kwh). 19

142 European LED Market Evolution and Policy Impacts Over the ten year period , the results of these modelling scenarios are as follows: 1. The highest level of energy consumption is SC1, which contemplates abolishing Stage SC2 represents a situation where B-class halogens are introduced into the European market in 2016, which roughly halves the energy savings of SC3, achieving only 59 TWh of savings. 3. The most efficient scenario is SC3 (Stage 6 in 2016 with A-class). SC3 will yield 105 TWh of electricity savings compared to SC1 over the 10 year analysis period. 4. SC4 presents the savings associated with a one year delay of Stage 6, which captures 74 TWh and thus a further 21 TWh of electricity savings compared to SC6. 5. SC5 reflects the Commission s proposal of a two year delay and B-class lamps. This is the least attractive option in terms of energy savings, with just 26 TWh, roughly half of an A- class in 2018 (SC6). 6. SC6 considers a two year delay as proposed by the Commission, however this scenario assumes shifts the market to A-class, so there are no B-class lamps in the market. Compared to SC1, this scenario results in approximately 52 TWh of electricity savings over the 10 year analysis period. Comparing the Commission s proposal (SC5) to the regulation already in place (SC2), the two year delay at B-class will increase energy consumption across Europe by approximately 33 TWh over the ten-year analysis period. This represents approximately 6.6 billion Euro in higher electricity bills at an average electricity price of 0.20/kWh. 3.6 Discussion on Energy Savings Scenarios Three of the energy saving scenarios considered in the previous section evaluate the policy option where Stage 6 is upgraded from B-class to A-class. A-class is the normal rating for CFL lamps and is the minimum class for LED lamps most LEDs are A+ class and some are now A++. Taken in combination with the current market information presented in section 3.4, the scenarios indicate that there is risk associated with maintaining stage 6 at a B-class level as it could result in the introduction of B-class lamps in Europe and undermine the energy savings potential of Stage 6. The following are some of the issues that policy makers may wish to consider when discussing Stage 6: 1) There is a risk of a more widespread and quick introduction of B-class halogen lamps to the European market based on sub-suppliers already capable of producing these products. B- class halogen lamps are still sold in the UK, France, Germany and elsewhere in Europe. By establishing A-class as the requirement at Stage 6, the European market will be assured of a shift toward CFL and LED technology, guaranteeing the energy savings and removing the risk to companies investing in LED products that their investments may be undermined, at least for several years. 2) Given the higher-than-expected sales of mains-voltage halogen and the persistence of incandescent lamps in the European market, the energy savings to date from the implementation of regulation EC No 244/2009 have been lower than were anticipated by the Impact Assessment. An upgrading of Stage 6 to A-class could help to off-set some of the lost energy savings experienced so far, and put Europe back on an efficient-lighting track. 20

143 European LED Market Evolution and Policy Impacts 3) The actual discussion in the Consultation Forum has been about whether LED lamps will be ready for Stage 6. This aspect was already evident from the material presented in the June 2013 Review Study, which focused on the readiness of LED technology. A study provided by the Danish Energy Agency in February showed examples of LED lamps which are available for nearly all original non-directional GLS and halogen applications. A testing study provided by the Swedish government in November has independently verified the quality and performance of many LED lamps available in today s European market, and lifetesting is ongoing. Due to the fact that today s LED technology easily achieves A-class (most are A+ and some A++), Stage 6 would be stronger and more appropriate if it was set at A- class. It would provide more certainty to manufacturers and retailers, and eliminate the risk of a B-class product introduction. This upgrading of Stage 6 would also be consistent with Recital 20 from EC No 244/2009 which suggested that the Commission s review of the regulation in 2014 should consider the development of new technologies such as LEDs and of the feasibility of establishing energy efficiency requirements at the A class level. 4) Chapter 2 of this study shows that LED lamp prices are now decreasing to a much more affordable level, offering consumers very short payback periods followed by years of savings. 28 Availability of non-directional LED replacement lamps, Energy piano and ÅF Lighting, , Study done for Danish Energy Agency. 29 Test Report Clear, Non-Directional LED Lamps: A test report prepared for the European Commission and the Consultation Forum on the performance of clear LED lamps in the European Market in the third quarter of By: Swedish Energy Agency, Belgian Federal Ministry for Health, Food Chain Safety and Environment, CLASP and eceee, 19 November 2014 Hyperlink to PDF of report 21

144 European LED Market Evolution and Policy Impacts 4 Dimmer Compatibility and Consumer Acceptance in Europe 4.1 Dimmers in Europe The idea that many dimmers and controls designed for incandescent lamps don t function for LED and CFL lamps is often mentioned as a potential barrier to greater LED market penetration in Europe. To quantify this barrier, the IEE PremiumLight project conducted a comprehensive market survey in 2012 which included detailed mapping of dimmers and controls in the different rooms of the home. 30 Twelve European countries participated, representative of 80% of the households across the EU. The survey was limited to answers from a statistical sample of 500 households in each country. The survey found that there is a very limited use of controls in European households, as indicated by these findings: 55% have no dimmers and 30% have 1-2 dimmers; 85% use no movement sensors for automatic control and 10% have 1-2 sensors; and 65% use no outdoor daylight sensors for automatic control and 25% have 1-2 sensors. Below is shown the distribution for each country on numbers of dimmers, the number of households per country, and the calculation used to determine the total distribution for all 12 countries. Table 4-1. PremiumLight mapping of use of dimmers in 12 EU countries which together cover 80% of the households in EU According to Eurostat, the EU has approximately 199 million households. A simple scale-up calculation from the 170 million households represented in the PremiumLight survey (the 12 countries) to all EU gives a total use of 188 million dimmers in EU, and an average use of 0.95 dimmers per household. Thus, it appears that the incompatibility of LED and CFL lamps with dimmers and controls designed for incandescent lamps is a limited problem, as many LED lamps are compatible with dimmers and it is only a fraction of these consumers who may have to replace their dimmer(s) with a new dimmer when they shift from using tungsten filament lamps to LED or CFL. 4.2 How large is the dimmer compatibility barrier in Europe? This is an issue that requires further research, however it is already clear that there are LED lamps which will operate correctly on the most common types of dimmers found in Europe today. In the 30 Assessment of the initial situation in the participating countries, PremiumLight, IEE/11/941/SI , Casper Kofod, Energy piano,

Miljöanpassad upphandling av Utomhusbelysning Eva Dalenstam, Miljöstyrningsrådet

Miljöanpassad upphandling av Utomhusbelysning Eva Dalenstam, Miljöstyrningsrådet Miljöanpassad upphandling av Utomhusbelysning Eva Dalenstam, Miljöstyrningsrådet Innehåll Varför miljöanpassa upphandling av utomhusbelysning? Exempel på miljövinster Miljöstyrningsrådets upphandlingsverktyg

Läs mer

Vägledning för miljöanpassad utomhusbelysning Miljöstyrningsrådet

Vägledning för miljöanpassad utomhusbelysning Miljöstyrningsrådet Vägledning för miljöanpassad utomhusbelysning Miljöstyrningsrådet Innehåll: Introduktion Projektering viktiga beslut Gaturum och gestaltning Investering och återbetalning Ljuskällor olika faktorer Armaturer

Läs mer

Belysningsprogram. Augusti 2011

Belysningsprogram. Augusti 2011 Belysningsprogram Augusti 2011 INNEHÅLLSFÖRTECKNING Syfte/ inledning / avgränsning Områdeskarraktärer GC-vägar Bostadsområden - villaområden Bostadsområden flerbostadshus Parker och grönområde Tunnlar

Läs mer

Miljökrav i belysningsupphandlingen

Miljökrav i belysningsupphandlingen Miljökrav i belysningsupphandlingen Eva Dalenstam, projektledare energi, Miljöstyrningsrådet Hösten 2009 Lys upp upphandlingen med miljökrav! Dagens innehåll: Kort om MSR och hur man hittar verktyget Kort

Läs mer

AGROTEKTBYRÅN -projektering av lantbruksbyggnader

AGROTEKTBYRÅN -projektering av lantbruksbyggnader AGROTEKTBYRÅN -projektering av lantbruksbyggnader Belysning Linköping, 20 maj 2019 Helena Olsson Hägg, Agrotektbyrån helena@agrotektbyran.se 0703-680866 Åtgärder Belysning Utnyttja naturligt ljus Rengör

Läs mer

COBRA. Lars Gunnarsson Vattenfall Service. Vattenfall AB

COBRA. Lars Gunnarsson Vattenfall Service. Vattenfall AB COBRA Lars Gunnarsson Vattenfall Service Varför har vi gatljus För att se För att synas För säkerheten För tryggheten 2 COBRA Ljuskällan Ett flertal rapporter visar på samma resultat. Det mänskliga ögat

Läs mer

18W 35W 70W. Power. M a d e i n S w e d e n

18W 35W 70W. Power. M a d e i n S w e d e n 18W 35W 70W High Power LED M a d e i n S w e d e n High Power LED EuroStreetLight, High Power LED är de första svenskutvecklade och svenskproducerade armaturerna för offentliga utemiljöer. EuroStreetLight

Läs mer

Ljusflöde, källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => lm

Ljusflöde, källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => lm Fotometri Ljusflöde, Mängden strålningsenergi/tid [W] från en källa viktad med ögats känslighetskurva. Mäts i lumen [lm] Ex 60W glödlampa => 600-1000 lm Ögats känslighetsområde 1 0.8 Skotopisk V' Fotopisk

Läs mer

Riktlinjer för offentlig belysning. Bilaga 1. Ljus och belysning

Riktlinjer för offentlig belysning. Bilaga 1. Ljus och belysning Riktlinjer för offentlig belysning Bilaga 1. Ljus och belysning Innehåll 1. Ljus och belysning...1 1.1 Funktioner...1 1.1.1 Gestaltning...1 1.1.2 Säkerhet, trygghet och tillgänglighet...1 1.2 Egenskaper...1

Läs mer

AGROTEKTBYRÅN -projektering av lantbruksbyggnader

AGROTEKTBYRÅN -projektering av lantbruksbyggnader AGROTEKTBYRÅN -projektering av lantbruksbyggnader Belysning Energikollen grundkurs Linköping, 7 februari 2018 Helena Olsson Hägg, Agrotektbyrån helena@agrotektbyran.se 0703-680866 Vad är ljus? Den elektromagnetiska

Läs mer

BELYSNINGSPROGRAM BELYSNINGSANLÄGGNING

BELYSNINGSPROGRAM BELYSNINGSANLÄGGNING 1 (11) 2014-09-01 BELYSNINGSPROGRAM BELYSNINGSANLÄGGNING Dessa anvisningar avser att vägleda till en personsäker, funktionell, driftsäker, underhållsvänlig och hållbar gatubelysning. SIG100, v2.0, 2010-02-26

Läs mer

Erfarenheter från ett vägbelysningsprojekt i norra Sverige 2013

Erfarenheter från ett vägbelysningsprojekt i norra Sverige 2013 Gott exempel på miljövinst för utomhusbelysning Här beskriver vi ett exempel på hur miljönyttan vid utbyte av belysningssystem tydligt framkommer och kan jämföras genom användning av livscykelkostnadsanalys

Läs mer

GUIDE LJUSKÄLLOR Fo Karolinska

GUIDE LJUSKÄLLOR Fo Karolinska GUIDE LJUSKÄLLOR Fo Karolinska Innehållsförteckning REFERENSER... 2 INLEDNING... 3 AVFALLSHANTERING... 3 MILJÖ... 3 FARA FÖR BRAND... 3 BEGREPP... 4 UTFASADE GLÖDLAMPOR... 5 HALOGENLAMPOR... 6 LÅGENERGILAMPOR...

Läs mer

Ny teknik för utomhusbelysning och hur kommer människan in i detta.

Ny teknik för utomhusbelysning och hur kommer människan in i detta. Ny teknik för utomhusbelysning och hur kommer människan in i detta. Peter Bennich / Kalle Hashmi Seminarium om energieffektiv utomhusbelysning Karlskrona 2010-03-30 Innehåll Krav på vägbelysning Vad innebär

Läs mer

Ljusflöde - Lumen. Ljusflödet bestämmer. Små intensiva ljuskällor är. Möjliga luxnivåer Antal armaturer. Lättare att styra Svårare att avblända

Ljusflöde - Lumen. Ljusflödet bestämmer. Små intensiva ljuskällor är. Möjliga luxnivåer Antal armaturer. Lättare att styra Svårare att avblända Philips Lighting Ljusflöde - Lumen Ljusflödet bestämmer Möjliga luxnivåer Antal armaturer Små intensiva ljuskällor är Lättare att styra Svårare att avblända Ljusutbyte - Lumen / Watt Elförbrukning står

Läs mer

Arbetsplatsbelysning

Arbetsplatsbelysning Arbetsplatsbelysning Rätt belysning vid arbetsplatsen har mycket större betydelse för arbetsförhållandena än vad många tror, hälsan påverkas i hög grad. Bra ljusförhållande minskar risken för onödiga besvär

Läs mer

BELYSNINGSPROGRAM BOTKYRKA KOMMUN

BELYSNINGSPROGRAM BOTKYRKA KOMMUN BELYSNINGSPROGRAM BOTKYRKA KOMMUN Innehåll Bakgrund 3 Generella principer 3 Befintlig belysning 4 Utgångspunkter för god belysning 4 - Armaturer 4 - Bländning 4 - Ljusnivå 5 - Light pollution 5 - Färgåtergivning

Läs mer

LAMPGUIDEN. Så sparar du energi med LED SPOTLIGHT LED ILLUMINATION LED

LAMPGUIDEN. Så sparar du energi med LED SPOTLIGHT LED ILLUMINATION LED LAMPGUIDEN Så sparar du energi med LED ILLUMINATION LED DECORATION LED SPOTLIGHT LED PROMO LED LED - framtidens belysning LED (Ljus-Emitterande Diod) är en modern teknik för att producera ljus med elektricitet.

Läs mer

den nya upplysningstiden

den nya upplysningstiden den nya upplysningstiden Det är dags att släcka glödlampan och byta till bättre alternativ. Vi har koll på vad som gäller och hur mycket du kan spara. Välkommen in! ett bra byte för både plånboken och

Läs mer

EKONOMI OCH UNDERHÅLL

EKONOMI OCH UNDERHÅLL EKONOMI OCH UNDERHÅLL Att räkna ut hur mycket en belysningsanläggning kostar att anlägga, driva och underhålla är ett ganska omfattande arbete, men det är inte särskilt komplicerat. Det som däremot kan

Läs mer

Stads- och parkbelysning. TrueForce LED. Det perfekta bytet från Kvicksilver till LED NYHET! Ett kostnadseffektivt LED-alternativ för stadsbelysning

Stads- och parkbelysning. TrueForce LED. Det perfekta bytet från Kvicksilver till LED NYHET! Ett kostnadseffektivt LED-alternativ för stadsbelysning Stads- och parkbelysning TrueForce LED Det perfekta bytet från Kvicksilver till LED NYHET! Ett kostnadseffektivt LED-alternativ för stadsbelysning TrueForce. Spara energi och behåll den unika känslan Nu

Läs mer

effektivitet, komfort och enkelhet

effektivitet, komfort och enkelhet UM UM effektivitet, komfort och enkelhet UM-sortimentet innehåller diffusorer med MesoOptics -teknik. Fördelarna med den här tekniken högeffektiv och optimerad ljusfördelning i kombination med en modern

Läs mer

Lighting the Future. Väg- och parkbelysning Skapa säkerhet, trygghet och stämning med den rätta utomhusbelysningen

Lighting the Future. Väg- och parkbelysning Skapa säkerhet, trygghet och stämning med den rätta utomhusbelysningen 5 16 Lighting the Future Väg- och parkbelysning Skapa säkerhet, trygghet och stämning med den rätta utomhusbelysningen Minskar energiförbrukningen - och kostnaderna Energiförbrukningen frän vägbelysning

Läs mer

Framtidens belysning och ljuskällor

Framtidens belysning och ljuskällor Framtidens belysning och ljuskällor Belysningsteori Ljuskällor och dess egenskaper Kort repetition FÄRGÅTERGIVNING Mäts i R a R a -värdet = genomsnittsavvikelsen Vid noggrannare planering se spektraldiagram

Läs mer

Fotbollsförbundet sid 1 (8) Riktlinjer och anvisningar belysning 2009-05-06

Fotbollsförbundet sid 1 (8) Riktlinjer och anvisningar belysning 2009-05-06 Fotbollsförbundet sid 1 (8) Förord Denna dokumentation för belysning av fotbollsplaner är upprättad för Svenska Fotbollsförbundet och utgör underlag för planering och projektering av belysning. Den innehåller

Läs mer

Belysningsstrategin. Belysningsstrategins syfte är att åstadkomma en effektivare förvaltning av Vägverkets belysningsanläggningar.

Belysningsstrategin. Belysningsstrategins syfte är att åstadkomma en effektivare förvaltning av Vägverkets belysningsanläggningar. Belysningsstrategin Belysningsstrategins syfte är att åstadkomma en effektivare förvaltning av Vägverkets belysningsanläggningar. Belysningsstrategin Belysningsstrategins övergripande målsättning är: Minskad

Läs mer

lunova Visuell komfort för människor i rörelse

lunova Visuell komfort för människor i rörelse lunova Visuell komfort för människor i rörelse Visuell komfort sätter människan i centrum Alla utomhusmiljöer bör planeras med människan i fokus och med hänsyn till hur människor reagerar och fungerar.

Läs mer

KÖPGUIDE. LED Dimning. Färgtemperatur

KÖPGUIDE. LED Dimning. Färgtemperatur LED Dimning Viktigt är att observera att LED belysningsprodukter som är dimbara skall ha en specifik produktmärkning. Det är dock ingen garanti att dimbara LED-produkter fungerar felfritt med olika dimrar

Läs mer

Arbetsplatsoptometri för optiker

Arbetsplatsoptometri för optiker Arbetsplatsoptometri för optiker Peter Unsbo KTH Biomedical and x-ray physics Visual Optics God visuell kvalitet (Arbets-)uppgiftens/miljöns visuella krav

Läs mer

PHOENIX LED-ARMATUR! PRODUKTINFORMATION

PHOENIX LED-ARMATUR! PRODUKTINFORMATION PHOENIX LED-ARMATUR PRODUKTINFORMATION MondeVerde AB Östhammarsgatan 74 115 28 Stockholm +46 8 760 80 50 info@mondeverde.com www.mondeverde.se sida "1 Innehåll Phoenix LED-armatur 3 Maximal energibesparing

Läs mer

ORDLISTA - Grundbegrepp inom ljus

ORDLISTA - Grundbegrepp inom ljus ORDLISTA - Grundbegrepp inom ljus Sammanställning av begrepp som kan förekomma vid arbete med belysning. A Adaptation/adaption Adaptiv belysning (Styrning) Allmänbelysning Armatur Armaturverkningsgrad

Läs mer

Lär dig. Din guide till rätt ljuskälla >>>>>>>>>>>>>>>>> Spara. Energi

Lär dig. Din guide till rätt ljuskälla >>>>>>>>>>>>>>>>> Spara. Energi 2011 Energi PHILIPS LJUSGUIDE 2011 Välj rätt lj s DIMBARA LED-NYHETER! Sid 4 Vad är luminans? Vad innebär den tredje receptorn. Vad talar man egentligen om när man säger ljusflöde? Vi ger dig svaren Lär

Läs mer

LUMA. För en säkrare väg

LUMA. För en säkrare väg LUMA För en säkrare väg För en säkrare väg Det ställs höga krav på belysning för stora trafikerade leder, bland annat vad gäller ljusflödet. Det har tidigare varit svårt att ta fram LED-belysning som klarar

Läs mer

lunova Visuell komfort för människor i rörelse

lunova Visuell komfort för människor i rörelse lunova Visuell komfort för människor i rörelse Visuell komfort sätter människan i centrum Alla utomhusmiljöer bör planeras med människan i fokus och med hänsyn till hur människor reagerar och fungerar.

Läs mer

LAMPGUIDEN. Vi hjälper dig hitta rätt ljuskälla!

LAMPGUIDEN. Vi hjälper dig hitta rätt ljuskälla! LAMPGUIDEN Vi hjälper dig hitta rätt ljuskälla! RÄTT LJUSKÄLLA FÖR DINA BEHOV Dekorationsljust En ljuskälla där det viktigaste är hur lampan ser ut, inte att lysa upp rummet. Ljuset ger ett behagligt varmt

Läs mer

vialume 1 Gatubelysning med visuell komfort

vialume 1 Gatubelysning med visuell komfort vialume 1 Gatubelysning med visuell komfort En ny nordisk klassiker är född Vi är stolta över att få presentera vår första egentillverkade gatubelysningsarmatur. Vialume 1 har ett organiskt formspråk och

Läs mer

Rätt ljus på rätt plats

Rätt ljus på rätt plats Utomhus CityTouch Sala Case study Rätt ljus på rätt plats Europas största anläggning med webbaserad intelligent gatubelysning växer fram i Sala. Belysningen kan enkelt styras och kontrolleras via datorn.

Läs mer

LED information från branschen. Belysningsbranschens LED sektion

LED information från branschen. Belysningsbranschens LED sektion LED information från branschen Belysningsbranschens LED sektion LED i press och oseriös marknadsföring LED ersätter alla andra ljuskällor 100-200.000 h livslängd Optimala ljuskällan O.s.v LED branschen

Läs mer

E6 Belysning för parkeringshus och tekniska utrymmen

E6 Belysning för parkeringshus och tekniska utrymmen ETAP 2 Belysning för parkeringshus och tekniska utrymmen E6-serien har inte bara utformats särskilt för allmänbelysning i parkeringshus, tekniska utrymmen och källare, utan också för lätt industri och

Läs mer

Studie nybyggnation Gudmundstorp

Studie nybyggnation Gudmundstorp Studie nybyggnation Gudmundstorp 1. BAKGRUND Gudmundstorps Gård AB bygger nytt stall för ungdjur. Stallet mäter ca 27x70 m och rymmer bland annat djupströbäddar för kalvar och bås med skrapgångar för kvigor.

Läs mer

Trygghetsbelysning på parkvägar. Slutredovisning

Trygghetsbelysning på parkvägar. Slutredovisning Dnr Sida 1 (5) 2016-02-16 Handläggare Per-Erik Wikström 08-508 262 89 Till Trafiknämnden 2016-03-10 Trygghetsbelysning på parkvägar. Slutredovisning Förslag till beslut 1. Trafiknämnden godkänner slutredovisning

Läs mer

Lys upp vägen mot framgång!

Lys upp vägen mot framgång! Public lighting TrueForce Road Lys upp vägen mot framgång! Riktiga proffs förlitar sig på Philips TrueForce LED Road - ett kostnadseffektivt LED-alternative för gatubelysning NY! s Philips TrueForce LED

Läs mer

MARKNADSUNDERSÖKNING: UTOMHUSBELYSNING

MARKNADSUNDERSÖKNING: UTOMHUSBELYSNING Miljöstyrningsrådet Rapport 2009:E2 : Eva Dalenstam MILJÖSTYRNINGSRÅDET DATUM 2009-06-26 SIDOR 2 (8) SAMMANFATTNING Inom belysningsbranschen existerar idag ett brett spektrum av inställningar till miljöfrågor.

Läs mer

Belysningsplan för offentlig belysning

Belysningsplan för offentlig belysning Belysningsplan för offentlig belysning Dokumentnamn Dokumenttyp Fastställd/upprättad Beslutsinstans Belysningsplan för offentlig belysning Plan/Program Dokumentansvarig/processägare Version Senast reviderad

Läs mer

Studie nybyggnation Ulfsgården

Studie nybyggnation Ulfsgården Studie nybyggnation Ulfsgården 1. UTFORMNING AV BELYSNING Grundkrav Belysningen skall i möjligaste mån uppfylla dessa krav: Minst 150 lux* under 16 timmar (för lakterande kor) Max 10 lux nattetid Jämnhet

Läs mer

GE ConstantColor CMH StreetWise

GE ConstantColor CMH StreetWise GE ConstantColor CMH Naturligt bättre, naturligt säkrare. CMH: det framtidssäkra valet Gatubelysning Europeiska unionen fortsätter att trycka på för att eliminera föråldrad, ineffektiv belysning. Enligt

Läs mer

Jonny Petersson Philips Professional Lighting. - energiseminarium våren 2010

Jonny Petersson Philips Professional Lighting. - energiseminarium våren 2010 Jonny Petersson Philips Professional Lighting - energiseminarium våren 2010 Philips sektorer Healthcare Lighting Consumer Lifestyle Philips Professional Lighting 2 Fakta om belysning Belysning använder

Läs mer

U7/R7 Avancerad belysning i unik design

U7/R7 Avancerad belysning i unik design U7/R7 U7/R7 Avancerad belysning i unik design 2 ETAP U7/R7 U7 och R7 tar med sig morgondagens belysning till ditt hem. Båda armaturerna har med hjälp av LED+LENS -tekniken, utvecklats för allmänbelysning

Läs mer

Energioptimering av gatubelysning, lysrörsarmaturer och elmotorer. optimering av elmotorer. styrning av gatubelysning. effektiv indutribelysning

Energioptimering av gatubelysning, lysrörsarmaturer och elmotorer. optimering av elmotorer. styrning av gatubelysning. effektiv indutribelysning energistyrning ett kostnadseffektivt sätt att spara på naturens resurser! optimering av elmotorer styrning av gatubelysning effektiv indutribelysning energioptimering av belysning smart adapter för lysrör

Läs mer

Belysningsplan för offentlig belysning

Belysningsplan för offentlig belysning Belysningsplan för offentlig belysning Bilaga 2, Belysningsprinciper Innehållsförteckning Inledning 3 Rekomenderade armaturer och ljuskällor 3 Belysningsprinciper 3 Gång- och cykelvägar samt vägar i parker

Läs mer

Varför ska jag planera ny belysning?

Varför ska jag planera ny belysning? Färgåtergivning En ljuskällas färgåtergivning beror på dess spektralfördelning. Färgåtergivning förklarar hur väl en ytfärg återges i den belysningen. Solen återger alla färger perfekt och den är vår referensram.

Läs mer

ClearFlood Large Optimal 1:1-ersättning för konventionella armaturer

ClearFlood Large Optimal 1:1-ersättning för konventionella armaturer Lighting ClearFlood Large Optimal 1:1-ersättning för konventionella armaturer ClearFlood Large ClearFlood Large är en flexibel strålkastare avsedd för användning i ett stort antal användningsområden, försedd

Läs mer

3. BELYSNINGSPLANERING...

3. BELYSNINGSPLANERING... Innehåll 1. GRUNDBEGREPP... 2 1.1. Lampsocklar... 2 1.2. Effekt = Watt... 2 1.3. Ljusflöde = Lumen... 3 1.4. Belysningsstyrka = Lux... 3 1.5. Färgtemperatur = Kelvin... 4 1.6. Färgåtergivningsindex...

Läs mer

MASTER. Perfect light, perfect sense

MASTER. Perfect light, perfect sense VÄLJ PHILIPS NYA LJUSKÄLLOR FÖR BÅE IG OH Fördelar för dig som installatör u fokuserar på dina kunders behov och blir förstavalsleverantör. Philips MASTER PL ger en ljuskvalitet som är bäst i sin klass.

Läs mer

MileWide² design möter effektivitet

MileWide² design möter effektivitet Lighting MileWide² design möter effektivitet MileWide² Många kommunala myndigheter har tagit till sig fördelarna med modern utomhusbelysning. Dessa omfattar en mer attraktiv stadsmiljö och större komfort,

Läs mer

SUNBURST LED-ARMATUR! PRODUKTINFORMATION

SUNBURST LED-ARMATUR! PRODUKTINFORMATION !! SUNBURST LED-ARMATUR! PRODUKTINFORMATION MondeVerde AB Östhammarsgatan 74 115 28 Stockholm +46 8 760 80 50 info@mondeverde.com www.mondeverde.se sida "1 Innehåll SunBURST LED-armatur 3 Maximal energibesparing

Läs mer

Belysningsplanering. SS-EN 12 464-1 Arbetsplatser inomhus Belysningsguide Ljus och Rum

Belysningsplanering. SS-EN 12 464-1 Arbetsplatser inomhus Belysningsguide Ljus och Rum Belysningsplanering SS-EN 12 464-1 Arbetsplatser inomhus Belysningsguide Ljus och Rum Planeringsstruktur Analysera Planera Granska Dokumentera Utvärdera Analysera Rummets användning Kapslingsklass Val

Läs mer

Arbetsplatsens utformning ur Arbetsmiljöverkets AFS 2000:42 och AFS 2003:1

Arbetsplatsens utformning ur Arbetsmiljöverkets AFS 2000:42 och AFS 2003:1 Allmänbelysning Allmänbelysningen skall ge tillräcklig belysning såväl i det inre som det yttre och perifiera synfältet. För att undvika direkt bländning mot ögat bör ljuskällorna vara avskärmade. Belysningen

Läs mer

Flare. Effektivitet och komfort med LED

Flare. Effektivitet och komfort med LED Flare Effektivitet och komfort med LED Flare Downlights och spotlights med LED-teknik Flare, ett unikt designkoncept Produktdesign Mun* Flare är en komplett familj runda downlights och spotlights. De ger

Läs mer

10.00 Ljus och hälsa. Utbildning i bra och energieffektiv belysning Jämtlands och Västernorrlands län 2012-05-10.

10.00 Ljus och hälsa. Utbildning i bra och energieffektiv belysning Jämtlands och Västernorrlands län 2012-05-10. Utbildning i bra och energieffektiv belysning Jämtlands och Västernorrlands län 2012-05-10 Energimyndigheten Agenda 10.00 Ljus och hälsa - Ljusets direkta och indirekta påverkan på oss människor - Synergonomi,

Läs mer

7 Utformning av belysningsanläggning

7 Utformning av belysningsanläggning 7 Utformning av belysningsanläggning 7.1 Regler och föreskrifter Allt material i belysningsanläggningar ska vara utförd i enlighet med gällande lagar och förordningar samt uppfylla gällande svenska normer

Läs mer

Energieffektiv belysning. Milstolpar energibesparing med modern belysning. Belysning i offentliga verksamhetslokaler

Energieffektiv belysning. Milstolpar energibesparing med modern belysning. Belysning i offentliga verksamhetslokaler Energieffektiv belysning Milstolpar energibesparing med modern belysning Lysrör + magnetiska driftdon Lysrör + energieffektiv a magnetiska driftdon Lysrör + elektroniska driftdon Dimbara elektroniska driftdon

Läs mer

Klimatsmart belysning - med bibehållen ljuskvalitet

Klimatsmart belysning - med bibehållen ljuskvalitet Klimatsmart belysning - med bibehållen ljuskvalitet 21 januari 2014 Energi och klimatrådgivare Markus Lundborg 031 368 08 29 energiradgivningen@kom.goteborg.se Vanliga frågor till energirådgivningen Ersätta

Läs mer

Hinderbelysning. Stephanie Sales WSP Ljusdesign

Hinderbelysning. Stephanie Sales WSP Ljusdesign Hinderbelysning Stephanie Sales WSP LJUSDESIGN utför tjänster inom: Belysningsplanering Ljusgestaltning Belysningsteknik Visuell komfort Dagsljusplanering Energieffektivisering Ekonomi, livscykelkostnader

Läs mer

arealbelsyning ClearFlood Fördelar Funktioner

arealbelsyning ClearFlood Fördelar Funktioner Lighting ClearFlood - LEDlösning för sport- och arealbelsyning ClearFlood ClearFlood är en serie flexibla strålkastare som låter dig välja exakt rätt ljusflöde för ditt specifika användningsområde. Toppmodern

Läs mer

Energieffektiv ersättning för kvartsmetallhalogener

Energieffektiv ersättning för kvartsmetallhalogener Lighting Energieffektiv ersättning för kvartsmetallhalogener MASTERColour CDM MW Eco Keramiska metallhalogenlampor med tubformade eller belagda ellipsformade klara ytterkolvar skräddarsydda för att ersätta

Läs mer

Vattenresistant och robust

Vattenresistant och robust KB Vattenresistant och robust KB är en damm- och vattenresistant (IP68) nödljusarmatur med ett robust armaturhus. Den är utvecklad speciellt för den tunga industrin. De hårda tillverkningsmaterialen som

Läs mer

SS-EN 12464-1 och LJUS & RUM

SS-EN 12464-1 och LJUS & RUM Nya riktlinjer för belysning LJUS & RUM SS-EN 12464-1 och LJUS & RUM Emil Welin Börje Beronius Innehåll Europeisk och svensk belysningsstandard SS-EN 12464-1 LJUS & RUM - Planeringsguiden Hjälpmedel för

Läs mer

RIKTLINJER GATUBELYSNING. Antagna av kommunstyrelsen , 72 AK KS 2015/

RIKTLINJER GATUBELYSNING. Antagna av kommunstyrelsen , 72 AK KS 2015/ RIKTLINJER GATUBELYSNING 2 Innehållsförteckning RIKTLINJER GATUBELYSNING... 1 Innehållsförteckning... 2 Riktlinjer angående gatubelysning för Älvdalens Kommun allmänt... 3 Ansvar... 3 Riktlinjer... 4 Basvillkor

Läs mer

Luma visionen har blivit verklighet

Luma visionen har blivit verklighet Lighting Luma visionen har blivit verklighet Luma Micro Luma är en högpresterande vägbelysningsarmatur med tydlig designprofil, effektiv kylning och minimalt underhåll. Ljusflödet, livslängden och energiprofilen

Läs mer

Belysning - Ett nödvändigt ont eller en tillgång? Presentation av Frida Wallin

Belysning - Ett nödvändigt ont eller en tillgång? Presentation av Frida Wallin Belysning - Ett nödvändigt ont eller en tillgång? Presentation av Frida Wallin AGENDA Miljöfokus och Eco designdirektivet Belysningsunderhåll & Energibesparing Q&A Kort om Aura Light Grundades i Stockholm

Läs mer

Proffs på sensor-produkter LED NYHETER

Proffs på sensor-produkter LED NYHETER LED NYHETER Sensorarmatur RS PRO LED RS PRO LED är en nyutvecklad armatur som är helt optimerad och anpassad för LED i kombination med sensor- och radioteknik. Vid konstruktionen av RS PRO LED har Steinels

Läs mer

evolume Teknisk belysning utan krusiduller

evolume Teknisk belysning utan krusiduller evolume Teknisk belysning utan krusiduller Teknisk fulländning för gator och vägar Evolume kombinerar utmärkta ljusegenskaper och visuell komfort med en modern kostnadseffektiv design. Tack vare sitt platta

Läs mer

LED-belysning för stora utrymmen

LED-belysning för stora utrymmen LED-belysning för stora utrymmen Lightline-system med LED ETAP's E4, E5 och E7 består av ett omfattande sortiment av LED-belysning för stora utrymmen med högt i tak, t.ex. industrihallar, lager, butiker

Läs mer

upphandlingsguide för utomhusbelysning

upphandlingsguide för utomhusbelysning upphandlingsguide för utomhusbelysning Information från Vi vet erfarenhetsmässigt att användningstiden för en anläggning för väg- och gatubelysning är mycket lång, i de allra flesta fall hela 25 30 år.

Läs mer

CoreLine High-bay G3 - överlägsen ljuskvalitet med sänkta energi- och underhållskostnader

CoreLine High-bay G3 - överlägsen ljuskvalitet med sänkta energi- och underhållskostnader Lighting CoreLine High-bay G3 - överlägsen ljuskvalitet med sänkta energi- och underhållskostnader CoreLine Highbay CoreLine High-bay gjorde ett framgångsrikt intåg på marknaden 2013 och har sedan dess

Läs mer

ProAir en unik kombination av ljuskvalitet och effektivitet

ProAir en unik kombination av ljuskvalitet och effektivitet Lighting ProAir en unik kombination av ljuskvalitet och effektivitet ProAir Du som jobbar med butiksdesign eller äger en egen butik behöver en spot som smälter perfekt in i designen, ger ljus av högsta

Läs mer

OptiFlood. OptiFlood Mini MVP504. Fördelar. Funktioner. Användning. specifikationer

OptiFlood. OptiFlood Mini MVP504. Fördelar. Funktioner. Användning. specifikationer Lighting OptiFlood OptiFlood Mini MVP504 Strålkastare MVP 504 är kompakt med horisontell ljusöppning. Finns med två optiksystem, asymmetrisk ljusfördelning med kontrollerad ljusbild utan spilljus ovanför

Läs mer

SlimBlend kvadratisk Hög prestanda, avancerad kontroll

SlimBlend kvadratisk Hög prestanda, avancerad kontroll Lighting SlimBlend kvadratisk Hög prestanda, avancerad kontroll SlimBlend kvadratisk, infälld Belysning med god ljuskvalitet som uppfyller kontorsnormerna efterfrågas. Dessutom finns det ett ökat behov

Läs mer

U2 Diffusorarmaturer

U2 Diffusorarmaturer Diffusorarmaturer 2 ETAP Diffusorarmaturer Diffusorbelysning har blivit ett absolut måste för allmänbelysning på kontor och offentliga byggnader, vilket är rimligt då diffusorer ger bekväm och behaglig

Läs mer

Det perfekta bytet från. kvartsmetallhalogen, högtrycksnatrium och kvicksilver till LED NYHET!

Det perfekta bytet från. kvartsmetallhalogen, högtrycksnatrium och kvicksilver till LED NYHET! Industri och butiksbelysning TrueForce NYHET! Det perfekta bytet från kvartsmetallhalogen, högtrycksnatrium och kvicksilver till LED Det första LED-alternativet med plug-and-play-lösning för belysning

Läs mer

Fl ndt. Flindt pollare. Design: Christian Flindt

Fl ndt. Flindt pollare. Design: Christian Flindt Fl ndt Flindt pollare. Design: Christian Flindt 2 Ett rent snitt. Inspiration är förmågan att se möjligheterna i det enkla. 3 4 Övning ger färdighet Christian Flindt hade redan vid projektstarten en vision

Läs mer

LJUSAMALLEN UTOMHUS. Rekommendationer för en enhetlig redovisning av belysningsarmaturer och belysningsberäkningar.

LJUSAMALLEN UTOMHUS. Rekommendationer för en enhetlig redovisning av belysningsarmaturer och belysningsberäkningar. LJUSAMALLEN UTOMHUS Rekommendationer för en enhetlig redovisning av belysningsarmaturer och belysningsberäkningar Information från Utgåva 1 2015 Inledning Innehållsförteckning För att man ska kunna jämföra

Läs mer

FAQ om LED. Nedan följer lite frågor och svar om LED: Vad är fördelarna med LED jämfört med andra ljuskällor? Svar:

FAQ om LED. Nedan följer lite frågor och svar om LED: Vad är fördelarna med LED jämfört med andra ljuskällor? Svar: FAQ om LED Den nya moderna ljuskällan LED, är en energieffektiv och långlivad ljuskälla. Den utvecklas ständigt och förväntningarna på den är stora och ryktena många. Det som är intressant med LED, är

Läs mer

RIKTLINJER FÖR OFFENTLIG BELYSNING I UPPVIDINGE KOMMUN

RIKTLINJER FÖR OFFENTLIG BELYSNING I UPPVIDINGE KOMMUN 1(7) RIKTLINJER FÖR OFFENTLIG BELYSNING I UPPVIDINGE KOMMUN Framtagen av: Förvaltningschef, Samhällsserviceförvaltningen Godkänd och fastställd av: Kommunstyrelsen Implementeras av: Avdelningschef, Tekniska

Läs mer

/ NYX. Design: Vilhelm Lauritzen Architects

/ NYX. Design: Vilhelm Lauritzen Architects MED FOCUS PÅ VÄGEN / NYX I DEN GREKISKA MYTOLOGIN ÄR NYX NATTENS GUDINNA SOM HÄRSKAR ÖVER MÖRKRET. I DAGENS STAD ÄR NYX GATANS DROTTNING SOM GER OSS ETT BEHAGLIGT LJUS OCH MEDVERKAR TILL EN TRYGG OCH SÄKER

Läs mer

Utomhusbelysning och trygghet

Utomhusbelysning och trygghet Utomhusbelysning och trygghet Varför ser man bättre i vitt ljus jämfört med gul- orange ljus? Skillnad mellan glödlampans ljus och ljuset från LED Hur skall man tänka beträffande utomhusbelysning och trygghet

Läs mer

trafiksäkerhet i nytt ljus Vi hjälper dig att skapa en tryggare väg

trafiksäkerhet i nytt ljus Vi hjälper dig att skapa en tryggare väg trafiksäkerhet i nytt ljus Vi hjälper dig att skapa en tryggare väg Säkerhet på väg Vägbelysningen finns till för att man som trafikant och fotgängare ska kunna upptäcka faror och bedöma risker i tid.

Läs mer

Checklista Energieffektivisera gatubelysning

Checklista Energieffektivisera gatubelysning Checklista Energieffektivisera gatubelysning Denna broschyr och checklistor kan användas som ett stöd för att komma i gång med arbetet att energieffektivisera och renovera befintlig utomhusbelysning. Checklistan

Läs mer

Civic. En ny standard för enkelhet och prestanda

Civic. En ny standard för enkelhet och prestanda Civic En ny standard för enkelhet och prestanda Civic den nya generationen Huvudkraven på bra vägbelysning d v s hög prestanda och lång livslängd ändras aldrig. I en värld där det är viktigt att begränsa

Läs mer

Fortsätta slösa eller minska utgifterna?

Fortsätta slösa eller minska utgifterna? CorePro LED PLC och PLL Fortsätta slösa eller minska utgifterna? Phillips CorePro LED PLC och LED PLL Äkta proffs använder Philips LED-ljuskällor NYHET! s Det första LED-alternativet av Philips kvalité

Läs mer

NOW! LED NOW! Belysning som betalar sig själv. Avbetalning

NOW! LED NOW! Belysning som betalar sig själv. Avbetalning NOW! Belysning som betalar sig själv. Vinst Konventionell NOW! Avbetalning LED Du behöver inte köpa armaturer längre! Med NOW! erbjuder vid dig belysning som en tjänst. Du får det bästa ljuset för dina

Läs mer

CoreLine Wall-mounted rätt val för LED

CoreLine Wall-mounted rätt val för LED Lighting CoreLine Wall-mounted rätt val för LED CoreLine Wall-mounted Oavsett om du renoverar eller bygger nytt vill kunderna ha belysning som ger hög ljuskvalitet och sänker energi- och underhållskostnaderna.

Läs mer

SER DU FLICKAN I TID? RÄTT LJUS RÄDDAR BÅDE LIV OCH MILJÖN!

SER DU FLICKAN I TID? RÄTT LJUS RÄDDAR BÅDE LIV OCH MILJÖN! SER DU FLICKAN I TID? RÄTT LJUS RÄDDAR BÅDE LIV OCH MILJÖN! RÄTT LJUS RÄDDAR LIV Att kunna reagera snabbt i trafiken är avgörande för säkerheten på våra vägar. Att kunna orientera sig och få rätt delar

Läs mer

Kontakt. lars.gunnarsson@prismalence.se peter.lindberg@prismalence.se 090-14 20 71, 070-386 01 88 090-14 20 70, 070-260 79 70

Kontakt. lars.gunnarsson@prismalence.se peter.lindberg@prismalence.se 090-14 20 71, 070-386 01 88 090-14 20 70, 070-260 79 70 Prismalence är ett Svenskt företag som startade 2003 och har fram till idag levererat över 120 000 armaturer Vi har kunder i 37 länder spridda över alla kontinenter Vi säljer energieffektiv belysning baserad

Läs mer

PRIMES. produktgrupp utomhusbelysning. Energikontor Sydost

PRIMES. produktgrupp utomhusbelysning. Energikontor Sydost produktgrupp utomhusbelysning Energikontor Sydost Översikt Miljöpåverkan Rättslig bakgrund Rekommenderade kriterier för grön offentlig upphandling Goda exempel Bra länkar Photo courtesy of Vichaya Kiatying-Angsulee

Läs mer

ljusservice Vi vet hur du underhåller en säljande belysning

ljusservice Vi vet hur du underhåller en säljande belysning ljusservice Vi vet hur du underhåller en säljande belysning 1 Detta är ljusservice Regelbundet underhåll är viktigt för att säkerställa en optimalt fungerande butiksbelysning. Ljusservice erbjuder den

Läs mer

vialume 1 Gatubelysning med visuell komfort

vialume 1 Gatubelysning med visuell komfort vialume 1 Gatubelysning med visuell komfort En ny nordisk klassiker är född Vi är stolta över att få presentera vår första egentillverkade gatubelysningsarmatur. Vialume 1 har ett organiskt formspråk och

Läs mer

Produkt. MASTER SON-T PIA Plus. Fördelar. Funktioner. Användning

Produkt. MASTER SON-T PIA Plus. Fördelar. Funktioner. Användning Lighting Produkt MASTER Plus Högtrycksnatriumlampa i tubformat utförande med klart ytterglas, högt lumenvärde och lång pålitlig livslängd Fördelar PIA-teknik för ökad tillförlitlighet, färre tidiga lampbortfall

Läs mer

Den enklaste övergången till behagligt vitt ljus

Den enklaste övergången till behagligt vitt ljus Lighting Den enklaste övergången till behagligt vitt ljus MASTER CityWhite CDO-TT Keramisk metallhalogenlampa med klar ytterkolv för behagligt vitt ljus utomhus Fördelar Varmvitt ljus för komfort och säkerhet

Läs mer