Föreläsning 7 FK2002
|
|
- Rut Sundberg
- för 9 år sedan
- Visningar:
Transkript
1 Föreläsning 7 FK2002
2 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes
3 Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har diskreta värden (lyckade, inte lyckade). T.ex. att kasta en tärning, att flippa ett mynt. Det finns en viss sannolikhet p att ett vi får ett lyckat försök 1 1 t.ex. vi kasta en "tre" ( p = ), vi får klave inte krona ( p = ) 6 2 q=sannolikheten att vi inte får ett lycket försök =1- p Vad är sannolikheten att få ν lyckade försök i n försök? n! ν P( n, ν ) = Bn, p ( ν ) = p q ν!( n ν )! B binomial n ν
4 Fråga Man drar ett kort från en kortlek och tittar på det. Sedan lägger man tillbaka kortet. Man gör detta fyra gånger. Vad är sannolikheten att dra minst tre hjärter? n! ν n ν 1 3 P = p q ; n = 4, p =, q = ν!( n ν )! ! 1 3 sannolikheten att få 3 hjärter: ν = 3 P = = 0.05 = 5% 3!1! ! 1 3 sannolikheten att få 4 hjärter: ν = 4 P = = = 0.4% 4!0! 4 4 sannolikheten att få minst 3 hjärter=5+0.4=5.4%
5 Egenskaper av en binomialfördelning (1) Betrakta en binomialfördelning B ν för ett ( ) ( ) n, p X, σ ( ν X ) 2 2σ 2 n, p ( ) visst värde av p. Om n är stor (>~20) blir binomialfördelningen normalfördelningen B G X = ν G ν normalfunktion= Ae =medelvärdet, σ = standardavvikelsen, A=konstant (2) Standardavvikelsen av antalet lyckade försök: σ ν = np(1 p)
6 En jämförelse mellan en binomial-och Normalfördelningen normalfördelning Binomialfördelningen När nblir stor blir Normalfördelning ~ binomialfördelning
7 Att testa en hypotes En vaxtillverkare vill testa en ny typ av vax som används mellan en skid och marken. Hur kan han/hon bestämma om vaxet fungerar. En allmänn princip för att utföra ett statistiskt test: (1) Uppskatta sannolikheten att resultatet av testet är konsekvent med den s.k. nollhypotesen dvs att vaxet inte fungerar. (2) Om sannolikheten är mindre än en sannolikhetsgräns (t.ex. 5%) säger vi att det finns starka bevis för att vaxet fungerar.
8 Att testa vaxet Betrakta ett test som består av 10 skidlopp. Nollhypotesen innebär att sannolikheten att en 1 behandlad skid skulle vinna: p =. 2 Sannolikheten att de behandlade skidorna skulle vinna ν skidlopp 10 10! 1 P = B 10, 1 ( ν ) = 2 ν!(10 ν )! 2 Sannolikheten att de behandlade skidorna skulle vinna 10 skidlopp 10! 1 P = B 10, 1 (10) = = 0.1%. 2 10!(10 10)! 2 10
9 Sannolikheten att de behandlade skidorna skulle vinna minst 8 skidlopp P = B (8) + B (9) + B (10) 10, 1 10, 1 10, ! 1 10! 1 10! 1 = + + = 5.5% 8!(10 8)! 2 9!(10 9)! 2 10!(10 10)! 2 Tillverkaren kan kvantifiera hur framgångsrikt sitt vax är!
10 Ett annat exempel Två kandidater deltar i ett val. Kandidat-1 påstår att sin opinionsundersökning visar att 60% av väljare ska rösta på honom. Kandidat-2 vill kolla detta påstående. Hon gör sin egen opinionsundersökning. Hon frågor 600 väljare som slumpmässigt valdes ut. Om 330 väljare säger att de ska rösta på kandidat-1 är detta konskevent med hans påstående?
11 Sannolikheten att ν väljare ska rösta på kandidat 1 = P B n, p ( ν ) Detta exempel handlar om en binomialfördelning med en stor n (600) normalfördelning binomialfördelning. Medelvärdet av X = = 360 Standardavvikelsen σ = np(1 p) = (1 0.6) = = 30 = 2.5σ
12 Använd tabellen: Vi behöver arean under fördelningen för ν < X 2.5 σ. Andelen av arean= Sannolikheten 1% Det är väldigt osannolikt att kandidat-1 har rätt.
13 Poissonfördelning Sannolikheten att ett antal oberoende händelser t.ex. radioaktiva sönderfall äger rum inom ett visst tidsintervall eller inom en viss volym. Poissonfördelningen: ν µ µ Pµ ( ν ) = e ν! µ = medelvärdet av antalet händelser ; ν = antalet händelser. Standardavvikelser = µ. Obs! En Binomialfördelning Poissonfördelning när sannolikheten p av en händelse är liten och antalet prov är 20 stort. T.ex. ett radioaktivt prov består av 10 kärnor och sannolikheten att en av dem ska sönderfalla inom ett visst 20 intervall är 10.
14 Radioaktivt sönderfall Ett radioaktivt prov emitterar alfapartiklar : 2 alfapartiklar per minut. (a) Om antalet alfapartiklar som emitteras inom två minuter räknas vad är det förväntade resultatet för medelvärdet? (b) Vad är sannolikheten att ett experiment skulle finna att antalet alfapartiklar =medelvärdet? (c) Vad är sannolikheten för att observera ν alfapartiklar om ν = 0,1, 2,3, 4 och för ν 5?
15 (a) Det förväntade resultatet : medelvärdet µ = 2 x 2 =4 Sannolikheten att få ν partiklar: Prob( ν partiklar)= P 4 ν ( ) = 4 e 4 ν! ν
16 (b) Sannolikheten att få ν partiklar: 4 ν e 4 Prob( ν partiklar)= P ( ) 4 ν = ν! 4 4 e 4 Prob(4 partiklar)= = ! e 4 e 4 (c) Prob(0)= = 0.02 ; Prob(1)= = 0.07 ; 0! 1! e 4 e 4 Prob(2)= = 0.15 ; Prob(3)= = ! 3! e 4 e 4 e 4 Prob( ν 5)= = ! 6! 7!
17 Poissonfördelningar Varje kärna har en viss sannolikhet att sönderfalla inom ett tvåminutesintervall Poissonfördelningar är diskreta och osymmetriska (för µ< 5)
18 Ett exempel till 18 hönor bor i ett hönshus. Varje höna i hönshuset lägger ett ägg om dagen i genomsnitt. (a)om jag kollar hönorna varje timme och tar bort ägg som jag hittar vad är medelvärdet av antalet ägg som jag hittar när jag besöker hönshuset? (b) Vad är sannolikheten att jag skulle hitta 0,1,2,3 eller fler än 3 ägg.
19 (a) Medelvärdet av antalet ägg jag skulle förvänta mig att hitta varje timme: 1 µ = 18 = e 0.75 (b) Prob(0 ägg)= P0.75 ( 0) = = ! e 0.75 Prob(1 ägg)= P0.75 ( 1 ) = =0.35 1! e 0.75 Prob(2 ägg)= P0.75 ( 2 ) = =0.13 2! e 0.75 Prob(3 ägg)= P0.75 ( 3 ) = =0.03 3! e 0.75 e 0.75 Prob( 4 ägg)= = ! 5!
20 i= 1 Standardavvikelse Standardavvikelsen av en Poissonfördelning med medelvärdet µ N 1 σ = ( ν ) 2 i µ = µ N 1 Man tolkar σ som ett fel i en individuell mätning. T.ex. om man mäter N radioaktivt sönderfall inom ett visst tidsintervall är mätningen: N ± N. Det är lättare att göra en kvantitativ tolkning av hur N kan betraktas som ett fel i en mätning när µ blir stor (nästa sidan).
21 Poisson-och normalfördelningar P ν 9 ( ) Normal: X = 9, σ =3 Poisson: µ =9 När µ blir stor (> ~5) ν Poissonfördelning = Normalfördelning ( ) ( ) P ν = G ν där X = µ och σ = µ µ X, σ Detta betyder att vi kan använda normalfördelningen för att tolka osäkerheter. T.ex. en 68% sannolikhet att en mätning ligger mellan µ - σ < µ < µ + σ.
22 Ett exempel Student A påstår att han har gjort en mätning av medelvärdet av kosmisk strålning dvs partiklar som träffar en detektor inom ett visst tidsintervall. Han har hittat i genomsnitt 9 partiklar per minut med en försummbart osäkerhet. (a) Student B räknar antalet partiklar inom en minut. Hon mäter 12 partiklar. Är hennes mätningar konsekvent med student As resultat? (b) Student C räknar 115 partiklar inom 10 minuter. Är student Cs mätningar konsekvent med student As resultat?
23 (a) Mätningen av medelvärdet (av student A) ger 9 partiklar per minut. Vi antar att osäkerheten är försummbar. Om student As resultat är korrekt: Felet i en individuell mätningen = 9 = 3 Student Bs mätning : P ν 9 12 ± 3 partiklar inom en minut. Konsekvent med student A. ( ) Det korrekta värdet av student A Student Bs värde ν
24 (c) Student A s medelvärde över ett intervall av 10 minuter: µ =10 9 = 90 Felet i en individuell mätning över 10 minuter σ = Student C mäter 115 ± 10. Det är en stor skillnad (2. 5 σ ). Sannolikheten att göra en mätning större än µ +2.5σ Det är väldigt osannolikt att mätningarna är konsekventa.
25 Radioaktiva sönderfall med bakgrund En student undersöker ett radioaktivt prov. Han mäter 2540 sönderfall inom 10 minuter. Han tar bort provet och mäter 95 sönderfall inom 3 minuter. Vad är antalet sönderfall per minut från provet? Signal + bakgrund inom 10 minuter =2540 ± ± 2540 Signal + bakgrund per minut = = 254 ± 5 10 Bakgrund inom 3 minuter =95 ± ± 95 Bakgrund per minut = = 32 ± 3 3 Antalet sönderfall per minut = ( 254 ± 5) ( 3 ) 2 ± 3 = 222 ± 6
26 Normal-, Binomial- och Poissonfördelningar Fördelningen Funktion Standardevvikel se (eller felet i en individuell mätning ) När uppstår denna fördelning? Normal Binomial Poisson G= Ae B n, p P ( ν ) µ ( ν X ) 2 2σ 2 n! ν = p q ν!( n ν )! ( ν ) n ν σ np(1 p) ν µ µ = e µ ν! En viss mätning ν kan ha kontinuerliga värdenoch det finns att antal olika mätfel som förklarar varför mätningen inte har medelvärdet. Två möjliga diskreta värden (t.ex. krona,klave). Vi vill beräkna sannolikheten att få t.ex. ν kronor efter n prov om sannolikheten att få ett lyckat försök är p. Två möjliga diskreta värden (t.ex. en kärna sönderfäller eller sönderfäller inte) eller. Vi vill beräkna sannolikheten att få t.ex. ν sönderfallna kärnor om medelvärdet är µ. En Binomial -> Poissonfördelning när p är lite n och när stor.
27 Bn, p ν ( ) n=3 Binomalfördelning P ( ) µ ν n p blir stor blir liten. µ blir stor Normalfördelning P ν 9 ( ) Poissonfördelning ν ν
28 2006 En gammal tentafråga
29 2005 En gammal tentafråga
30
31 Tentan Om ett ämne är i boken men dök inte upp på föreläsningarna kommer det inte att dyka upp på tentan. På webben: Gamla tentafrågor Räkneövning: 2011/12/6 en fullständig gammal tenta. Kan anordna en extra räkneövning om detta behövs. Lycka till!
32 Sammanfattning Binomialfördelningen är en speciell funktion som tillämpas för diskreta yes/no mätningar Poissonfördelningen är en gränsfunktion av binomialfördelningen Både fördelningar blir normalfördelningar under vissa förhållanden. Med tanken på den lämpligaste fördelningen kan man göra hypotestester.
Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 1 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
4.1 Grundläggande sannolikhetslära
4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan
Grundläggande matematisk statistik
Grundläggande matematisk statistik Diskreta fördelningar Uwe Menzel, 2018 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
Lärare 4. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
1 Lärare 4 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Lektion 7. Radioaktivt sönderfall Bakgrundsräkning Vad är en hypotes? χ 2 -test (chi-kvadrattest) Fysikexperiment, 7.
Lektion 7 Radioaktivt sönderfall Bakgrundsräkning Vad är en hypotes? χ 2 -test (chi-kvadrattest) 2010-11-15 Fysikexperiment, 7.5 hp 1 1 Radioaktivt sönderfall För varje specifik isotop gäller att sannolikheten
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Föreläsning 2 (kap 3): Diskreta stokastiska variabler
Föreläsning 2 (kap 3): Diskreta stokastiska variabler Marina Axelson-Fisk 20 april, 2016 Idag: Diskreta stokastiska (random) variabler Frekvensfunktion och fördelningsfunktion Väntevärde Varians Några
4.2.1 Binomialfördelning
Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)
Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är
Föreläsning 3. Sannolikhetsfördelningar
Föreläsning 3. Sannolikhetsfördelningar Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Slumpvariabel? Resultatet av ett slumpmässigt försök utgörs
Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning
Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
TAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning P-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/33
TAMS65 - Föreläsning 6 Hypotesprövning
TAMS65 - Föreläsning 6 Hypotesprövning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Exempel Allmän beskrivning p-värde Binomialfördelning Normalapproximation TAMS65 - Fö6 1/36
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 20 september 2017 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/20 : Poisson & Binomial för diskret data Johan
Exempel för diskreta och kontinuerliga stokastiska variabler
Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Repetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel
Matematisk statistik 9hp Föreläsning 2: Slumpvariabel Anna Lindgren 6+7 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp Utfall
Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.
KOD: Kurskod: PC1244 Kursnamn: Metod Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2014-11-08 Tillåtna hjälpmedel: Miniräknare Tentan består av 13 frågor, totalt 40 poäng. Det krävs
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Tentamen består av 12 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.
KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2013-09-27 Tillåtna hjälpmedel: Miniräknare Tentamen består
Föreläsningsanteckningar till kapitel 9, del 2
Föreläsningsanteckningar till kapitel 9, del 2 Kasper K. S. Andersen 17 oktober 2018 1 Hur väljar man hypotes och mothypotes? Allmänt finns två möjliga resultat av en statistik test: Nollhypotesen H 0
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Introduktion till statistik för statsvetare
"Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Föreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Mer om slumpvariabler
1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Föreläsning 2, FMSF45 Slumpvariabel
Föreläsning 2, FMSF45 Slumpvariabel Stas Volkov 2017-09-05 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F2: Slumpvariabel 1/23 Begrepp Samband Grundläggande begrepp och beteckningar Utfall resultatet
Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.
Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret
Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.).
STOKASTISKA VARIABLER Resultat till ett försök är ofta ett tal. Talet kallas en stokastisk variabel (kortare s. v.). Definition 1. En reellvärd funktion definierad på ett utfallsrum Ω kallas en (endimensionell)
Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-08-22 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Jourhavande lärare: Mykola
Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5
Finansiell Statistik (GN, 7,5 hp, HT 2008) Föreläsning 2
Finansiell Statistik (GN, 7,5 hp, HT 008) Föreläsning Diskreta sannolikhetsfördelningar (LLL kap. 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
EXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.
Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna
Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar
Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden
Syfte: o statistiska test om parametrar för en fördelning o. förkasta eller acceptera hypotesen
Uwe Menzel, 2017 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Syfte: o statistiska test om parametrar för en fördelning o förkasta eller acceptera hypotesen hypotes: = 20 (väntevärdet är 20)
OBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna
Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler
Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga
2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Statistiska metoder för säkerhetsanalys
F3: Slumpvariaber och fördelningar Diskret Kontinuerlig Slumpvariabler Slumpvariabler = stokastiska variabler = random variables = s.v. Heter ofta X, Y, T. Diskreta kan anta ändligt eller uppräkneligt
Föreläsning 5: Hypotesprövningar
Föreläsning 5: Hypotesprövningar Johan Thim (johan.thim@liu.se) 24 november 2018 Vi har nu studerat metoder för hur man hittar lämpliga skattningar av okända parametrar och även stängt in dessa skattningar
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Lärare 5 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Att jämföra i tid och rum
1 Lärare 5 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Att jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska
1. Du slår en tärning två gånger. Låt A vara händelsen att det första kastet blir en sexa och låt B vara händelsen att summan av kasten blir sju.
Projekt MVE49 Del 1 Det är tillåtet att sammarbeta, men alla lösningar skall lämnas in individuellt. Sista inlämningsdag är 4de oktober på föreläsningen. Det är ok att lämna in elektroniskt genom att maila
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
Forskningsmetodik 2006 lektion 2
Forskningsmetodik 6 lektion Per Olof Hulth hulth@physto.se Slumpmässiga och systematiska mätfel Man skiljer på två typer av fel (osäkerheter) vid mätningar:.slumpmässiga fel Positiva fel lika vanliga som
1 Bakgrund DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF Något om Radon och Radonmätningar. 1.2 Statistisk modell
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 3 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för punkt- och intervallskattningar.
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler. Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 3 Diskreta stokastiska variabler Jörgen Säve-Söderbergh Stokastisk variabel Singla en slant två gånger. Ω = {Kr Kr, Kr Kl, Kl Kr, Kl Kl}
TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess
Matematisk statistik 9 hp Föreläsning 8: Binomial- och Poissonfördelning, Poissonprocess Anna Lindgren 4+5 oktober 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F8: Binomial och Poisson 1/18 N(μ, σ)
SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande
Kort om mätosäkerhet
Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 10 e januari 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Binomialfördelning, två stickprov
Diskreta data Binomialfördelning, två stickprov Hypotesprövning måste inte grunda sig på normalfördelning 1948 visste man inte om streptomycin var effektivt mot tuberkulos, men man misstänkte det. För
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.
Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms
Föreläsning 2, Matematisk statistik för M
Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 21 september 2016 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/21 för diskret data : Poisson & Binomial för
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
EXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Föreläsning 12, FMSF45 Hypotesprövning
Föreläsning 12, FMSF45 Hypotesprövning Stas Volkov 2017-11-14 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F12: Hypotestest 1/1 Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt
Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.
KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2014-09-26 Tillåtna hjälpmedel: Miniräknare Tentan består av
Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Föreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
Repetition 2, inför tentamen
Repetition 2, inför tentamen Styrka Styrkefunktionen π(θ) är en funktion av det sanna parametervärdet och definieras som sannolikheten att förkasta nollhypotesen om θ är det sanna parametervärdet. I ett
Tentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Extrauppgifter - Statistik
Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,
SF1922/SF1923: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 14 maj 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14-15 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 14 maj 2018 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametriska metoder. (Kap. 13.10) Det
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?
Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
histogram över 1000 observerade väntetider minuter 0.06 f(x) täthetsfkn x väntetid
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 4, 28-3-27 EXEMPEL: buss. Från en busshållplats avgår en buss var 2 min (inga
OBS! Vi har nya rutiner.
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2011-11-12 Tillåtna hjälpmedel:
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Tentan består av 15 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 33 poäng för att få välgodkänt.
Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod OCH Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2010-09-23 kl. 09:00 13:00
Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess
Repetition Binomial Poisson Stokastisk process Föreläsning 8, FMSF45 Binomial- och Poissonfördelning, Poissonprocess Stas Volkov 217-1-3 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F8: Binomial- och