Lärare 5 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Att jämföra i tid och rum
|
|
- Åsa Åkesson
- för 8 år sedan
- Visningar:
Transkript
1 1 Lärare 5 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Att jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag Störande faktorer Hypotestester Placebo effekt Blind/dubbelblindtest Lärare 3 Vetenskap och pseudovetenskap Hur man inte ska avfärda Lärare 3 (fort.) Att känna igen pseudovetenskap Poissonfördelning Simulering av vardagliga problem Tillämpnig på trafikflöde Lärare 4 Binomialfördelning: användningsområde Normal fördelning vs binomial Att jämföra två mätningar Signifikans och p-värde Testa medicin / kontrollgrupp Övning Lärare 5 Analys av en statisktisk undersökning Bemöta spådomar om världens undergång Analys av protokollet för ett test av rutgängare Analys av en recension och stickprovmetodik
2 Analys av en statisktisk undersökning Vi förfogar över statistik om dödorsaker i Sverige mellan 1992 och 2008, se följande tabeller. Vi vill analysera om vissa skillnader mellan år är statistiskt säkerställda och om det finns säkerställda skillnader mellan män och kvinnor. 2
3 Data för analysen Källor: Dödorsak, Socialstyrelsen Befolkningsstatistik, SCB aspx 3
4 4
5 5
6 6
7 Utdrag ur SCB befolkningsstatistik 7
8 Frågor och analys 1) Vilken fördelning följer antalet omkomna av en viss orsak? 2) Varför spelar befolkningsmängden roll i analysen? 3) År 1992 dog män av tumör, medan år Kan man tolka detta som att män har större sannolikhet att dö av tumör 2008 jämfört med 1992? Vissa att fördelningen kan approximeras på ett lämplige sätt. 4) Använd tabellerna och kommentera: Antalet män som dog 2008 av tumör i bröstkörtel minskade med 60% jämfört med Detta beror förmodligen på en ny behandling som kan markant minska dödligheten. Tips: vi antar att vi kan fortsätta använda samma approximation som i fråga 3. 5) Använd tabellerna och kommentera: Män har statistiskt säkerställt högre sannolikhet för att råka illa ut i en transportolycka. Är år 1994 statistikst skild från dem andra åren? 8
9 Ni får för mer data än vad som behövs, ofta så i verkliga situationer är att hitta just den relevant informationen. På samma sätt får ni här fyra sidor med data, men bara en del är relevant. Det är en del av uppgiften att extrahera den relevanta biten för att lösa uppgiften. 9
10 Frågor och analys (2) 1) Vilken fördelning följer antalet omkomna av en viss orsak? Sannolikheten är samma för varje individ, det kallar vi p. Motsvarar dragning med återläggning. Ja/nej typ av resultat. En given sannolikhet p (som är orsak beroende). Binomialfördelning 10
11 Frågor och analys (3) 2) Varför spelar befolkningsmängden roll i analysen? Om befolkningsmängden är större då skulle antalet dödsfall kunna vara större, trots samma sannolikhet för varje individ. Om vi ska jämföra från år till år, så behöver vi ta hänsyn till att befolkningsmängden ändras. 11
12 Frågor och analys (4) 3) År 1992 dog män av tumör, medan år Kan man tolka detta som att män har större sannolikhet att dö av tumör 2008 jämfört med 1992? Vi vill veta om sannolikheten är samma år 1992 och år Vi har 2 binomalfördelningar med sannolikhetsvärden: p 1992 och p 2008 Vi har inte tillgång till det sanna värdet av dessa men en mätning p 1992 =11013 / = p 2008 =11673 / =
13 p 1992 =11013 / =0, p 2008 =11673 / =0, Vi behöver räkna felen. Kan fördelningen approximeras med normalfördelning? Är np(1-p)>10? T.ex. 1992: n= p= np(1-p)= x 1 x = >> Skulle vi inte få använda normalfördelning, då blir det svårt att räkna. skulle behöva räkna saker som B n,p (s) = n p s (1 p) n s s och t.ex vilket blir nästan noll gånger ett väldigt stort tal. ett tecken på att man är på fel spår
14 Vi approximerar bonomialfördelningen med normalfördelning 14 medelvärde standardavvikelse np σ = np(1 p) 1992 σ = , = σ = , =108 p 1992 = N 1992 /N(1992,tot) = ± p 2008 = N 2008 /N(2008,tot) = ± Ingen säkerställd signifikans! N 1992 =11013 ±105 N 2008 =11673 ±108 när vi väl räknat felet ser man att de är samma inom felen. Här behöver inte räkna en signifikans, de är ju mindre än en sigma ifrån varandra
15 Frågor och analys (5) 4) Använd tabellerna och kommentera: Antalet män som dog 2008 av tumör i bröstkörtel minskade med 60% jämfört med Detta beror förmodligen på en ny behandling som kan markant minska dödligheten. Tips: vi antar att vi kan fortsätta använda samma approximation som i fråga 3. N2007=18 befolkning= N2008=10 befolkning= Vi fortsätter med normalfördelning som approximation enligt texten. 15
16 N2007=18 befolkning= p(2007)= N2008=10 befolkning= p(2008)= σ = np(1 p) σ(2007) = = 4.2 σ(2008) = = 3.2 N2007=18±4 befolkning= p(2007)= ± N2008=10±3 befolkning= p(2008)= ± p(2007)=(2.0±0.5) 10-6 p(2008)=(1.1±0.3)
17 p(2007)=(2.0±0.5) 10-6 p(2008)=(1.1±0.3) 10-6 Beräkna signifikansen t: t= ( )/ ( ) = 1.54 arean mellan och är 87% alltså det är 13% sannolikhet att få t > 1.54 eller t < inte särskilt osannolikt att skillnaden mellan 2007 och 2008 beror på den begränsade statistiken. 17
18 Frågor och analys (6) 5) Använd tabellerna och kommentera: Män har statistiskt säkerställt högre sannolikhet för att råka illa ut i en transportolycka. 18
19 Frågan är litet oklar eftersom det finns flera år man kan titta på. Antingen kan man göra medelvärdet på flera år tillsammans för män och kvinnor separat eller jämföra enskilda år verkar vara ovanligt. 19
20 Vi tittar först på 1994 och jämför med dem andra åren. Vi börjar först med att jämföra medelvärdet mellan eftersom vi har data för det för både kvinnor och män. medelvärdet för kvinnor = medelvärdet för män = Obs vi ignorerar 2004, 2005 eftersom vi saknar data för kvinnor dessa år, och vill undvika att snedvrida resultatet. Vi börjar med att anta att alla år kommer från samma sannolikhetsfördelning. Från binomialfördelningen kan vi härleda den statistiska osäkerheten för ett enstaka år. Medelsnitt år har 191 fall, så blir felet (Ntot * p (1-p)) ~ (Nolyckor)= 191=13.8 Felet på medelvärdet (12 mätningar) är då 13.8/ 12 = 4 För män =6 20 medelvärdet för kvinnor = 191±4 medelvärdet för män = 467±6
21 Medelvärdet för kvinnor = 191±4 Medelvärdet för män = 467±6 Vi tittar nu på signifikansen mellan 1994 och andra åren: För kvinnor 479 ± 22 Signifikansen t(kvinnor) =( )/ ( ) = 13 För män 635 ± 25 Signifikansen t(män) =( )/ ( ) = 6 Det är mycket höga signifikanser är inte jämförbar med andra åren. 21
22 Vi tittar nu på signifikansen mellan män och kvinnor: Medelvärdet för kvinnor = 191±4 Medelvärdet för män = 467±6 Signifikansen t(kvinnor- män) =( )/ ( ) = 38 Det är mycket hög signifikans Skillnaden mellan män och kvinnor är statistiskt säkerställd. 22
23 Bemöta spådomar om världens undergång Världens undergång förutspås nästa varje år! Det finns flera webbplatser som håller reda på dem. Tex. Jordens magnetfält höll på att byta riktning och att detta skulle orsaka världens undergång! Hur kan man bemöta sådana påståenden? 1) Det har ofta sagts att världen skulle gå under men det händer inte. 2) Titta närmare på påståenden När det gäller 21 maj 2011 då var det baserat på numerologiska observationer. 23 Det stämmer att jordens magnetfält byter riktning, det har hänt förrut under geologiska tider. Det sker väldigt långsamt. På samma sätt skulle man i så fall oroa sig för att tex kontinenterna rör sig. Men det gör man inte trots att det händer hela tiden.
24 Vi kan hitta på vilken betydelse som helst mha numerologi Bygger på handplockade exempel, dvs man kan konstruera det man bestämt sig på ett sätt som passar syftet. Auktoritetstro: den som är tillräcklig insatt kan komma fram till slutsatsen men ingen Det är inte svårt att själv bygga egna spådomar (som slår fel) Låt oss titta på dagens datum: 21 november (11)-2013 Primtalsfaktorisering ger: 21 = 3 x 7, 11, 2013 =3 x 11 x 61 Exempel på att man kan hitta på vilken mening som helst till vilket datum som helst 24
25 21 november x x 11 x 61 Exempel på att man kan hitta på vilken mening som helst till vilket datum som helst (fort.) 3= divine, trinity (3 x 11 x 61 ) ( 7= mystery / hidden 3=divine / trinity 11=disorder, disintegration 6 = humanity 1= new beginning 61= auspicous new beginning ( 25
26 21 november x x 11 x 61 beginning god s mystery god destruction destroy humanity 61= also new beginning God will destroy mankind and this will lead to an auspicious new beginning! and it is going to happen today Exempel på att man kan hitta på vilken mening som helst till vilket datum som helst (fort.) Har hittills lyckats skapa liknande meningar varje år kursen har gått trots att det var olika datum varje gång (både år och dag). 26
27 Analys av en recension och stickprovmetodik Baserat på 222 Stockholmspojkar. En socialpsykiatrisk undersökning av pojkar i skolåldern av Gustav Jonsson, Anna-Lisa Kälvesten 1964 Stockholmia Förlag: 27
28
29 SYFTE
30 Några av många resultaten som återfinns i boken
31 Utdrag ur recension i dagspressen: Om man betänker att Gustav Jonssons och Anna-Lisa Kälvestens uppmärksammade undersökning av attityder bland stockholmspojkar, publicerad 1964, byggde på 222 fall får man kanske inte säga något om att den av N.N. offentliggjorda kartläggningen av ett aktuellt konfirmandmaterial i skriften utgår från sammanlagt endast 384 läsbarn, en tämligen blygsam del av de skaror som årligen konfirmeras. Annars kunde man beklaga, att resurerna uppenbarligen inte räckt till för en mer eller mindre total inventering Nu tar man med intresse del av resultaten av undersökningen men står ändå frågande inför värdet av de generella slutsatser man frestas draga. 31 Baserad på materialet på följande sidor: 1) Är 222 ett tillräckligt stort underlag för att dra en slutsats om Stockolmspojkar? 2) Förutom antalet pojkar i undersökningen, vad i metodiken kan påverka resultatet markant? 3) Uttala dig om stickprovsmetodiken i denna undersökning. 4) Är det viktigt att 95% av de tillfrågade familjerna svarade på undersöknigen? Varför? 5) Vad skulla man vinna med en total inventering av konfirmander enligt recensionen?
32 Utdrag ur recension i dagspressen: Om man betänker att Gustav Jonssons och Anna-Lisa Kälvestens uppmärksammade undersökning av attityder bland stockholmspojkar, publicerad 1964, byggde på 222 fall får man kanske inte säga något om att den av N.N. offentliggjorda kartläggningen av ett aktuellt konfirmandmaterial i skriften utgår från sammanlagt endast 384 läsbarn, en tämligen blygsam del av de skaror som årligen konfirmeras. Annars kunde man beklaga, att resurerna uppenbarligen inte räckt till för en mer eller mindre total inventering Nu tar man med intresse del av resultaten av undersökningen men står ändå frågande inför värdet av de generella slutsatser man frestas draga. Baserad på materialet på följande sidor: 1) Är 222 ett tillräckligt stort underlag för att dra en slutsats om Stockolmspojkar? Hur är detta relevant eller ej? 2) Vilka andra faktorer kan påverka undersökningen förutom storleken för det statistiska underlaget? 32
33 3) Identifiera populationen 4) Stickprov storlek? 5) Kan man prata om kontrollgrupp och testgrupp? Och i så fall hur skulle man definiera dem? 33
34 6) Är det ett sannolikhetsurval? 7) för varje adjektiv nedan, argumentera om vi har att göra med ett sådant urval eller ej. Representativt? Snedvridet? Systematiskt? Stratiferiat? 8) Stickprov av 238 pojkar, men endast 222 till slut medverkade. Är det inte onödigt att beskriva i så mycket detalj vilka familjer hittades/ merdverkade eller inte? 9) Är det viktigt att ange siffran att 95% av det urspungliga stickprovet fick vara med? Varför? 34
35 10) Vad skulla man vinna med en total inventering enligt recensionens förslag? 35
36 36
Lärare 5. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 5 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Lärare 4. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
1 Lärare 4 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 1 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Lärare 2. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 2 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Kap 6: Normalfördelningen. Normalfördelningen Normalfördelningen som approximation till binomialfördelningen
Kap 6: Normalfördelningen Normalfördelningen Normalfördelningen som approximation till binomialfördelningen σ μ 1 Sats 6 A Om vi ändrar läge och/eller skala på en normalfördelning så har vi fortfarande
Lärare 2. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 2 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
Föreläsning 7 FK2002
Föreläsning 7 FK2002 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Vi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
Kap 3: Diskreta fördelningar
Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
1) I följande studier a) och b) identifiera populationen, stickprovet, stickprovs egenskap, rådata och populationsegenskap.
1) I följande studier a) och b) identifiera populationen, stickprovet, stickprovs egenskap, rådata och populationsegenskap. a) Astronomer bestämmer avståndet till en fjäran galax genom att mäta avståndet
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Föreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Jörgen Säve-Söderbergh
SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller
F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.
Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Binomialfördelning, två stickprov
Diskreta data Binomialfördelning, två stickprov Hypotesprövning måste inte grunda sig på normalfördelning 1948 visste man inte om streptomycin var effektivt mot tuberkulos, men man misstänkte det. För
2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Föreläsning G60 Statistiska metoder
Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Föreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Kap 2. Sannolikhetsteorins grunder
Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
LKT325/LMA521: Faktorförsök
Föreläsning 2 Innehåll Referensfördelning Referensintervall Skatta variansen 1 Flera mätningar i varje grupp. 2 Antag att vissa eekter inte existerar 3 Normalfördelningspapper Referensfördelning Hittills
FK2004. Normalfördelningstabell Formelsamling Provtenta
FK2004 Normalfördelningstabell Formelsamling Provtenta Normalfördelningen Korrelationstabellen Formelsamling för FK2002 och FK2004 24 Betrakta ett experiment som består av n försök varav ν är lyckade försök.
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
Målet för D3 är att studenterna ska kunna följande: Dra slumptal från olika sannolikhetsfördelningar med hjälp av SAS
Datorövning 3 Statistisk teori med tillämpningar Simulering i SAS Syfte Att simulera data är en metod som ofta används inom forskning inom ett stort antal ämnen, exempelvis nationalekonomi, fysik, miljövetenskap
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning
Föreläsning G60 Statistiska metoder
Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
TMS136. Föreläsning 11
TMS136 Föreläsning 11 Andra intervallskattningar Vi har sett att vi givet ett stickprov och under vissa antaganden kan göra intervallskattningar för väntevärden Man kan även gör intervallskattningar för
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se
Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 23 e mars 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
LMA521: Statistisk kvalitetsstyrning
Föreläsning 1 Dagens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från boken.
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 2018-09-19 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Hypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
LMA522: Statistisk kvalitetsstyrning
Föreläsning 1 Föreläsningens innehåll 1 Kvalitet 2 Acceptanskontroll enligt attributmetoden 3 Enkel provtagningsplan 4 Design av enkel provtagningsplan med binomialnomogram 5 Genomgång av problem 1.5 från
Finansiell Statistik (GN, 7,5 hp,, VT 2009) Föreläsning 2. Diskreta Sannolikhetsfördelningar. (LLL Kap 6) Stokastisk Variabel
Finansiell Statistik (GN, 7,5 hp,, VT 009) Föreläsning Diskreta (LLL Kap 6) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course, 7,5 ECTS,
Uppgift a b c d e Vet inte Poäng
TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Tentamen i Statistik, STG A01 och STG A06 (13,5 hp) Torsdag 5 juni 2008, Kl
Karlstads Universitet Avdelningen för Nationalekonomi och Statistik Tentamen i Statistik, STG A0 och STG A06 (3,5 hp) Torsdag 5 juni 008, Kl 4.00-9.00 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
π = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.
Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting
SF1901: Sannolikhetslära och statistik. Mer om Approximationer
SF1901: Sannolikhetslära och statistik Föreläsning 7.A Mer om Approximationer Jan Grandell & Timo Koski 10.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 10.02.2012 1 / 21 Repetition CGS Ofta
Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända
Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling
Uppgift 1 (14p) lika stor eller mindre än den förväntade poängen som efterfrågades i deluppgift d? Endast svar krävs, ingen motivering.
Uppgift 1 (14p) I en hockeymatch mellan lag A och lag B leder lag A med 4-3 när det är en kvart kvar av ordinarie matchtid. En oddssättare på ett spelbolag behöver bestämma sannolikheten för de tre matchutfallen
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
Föreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Parade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
LMA521: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
Vetenskaplig metod och Statistik
Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 10 e januari 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.
Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga
Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
7.3.3 Nonparametric Mann-Whitney test
7.3.3 Nonparametric Mann-Whitney test Vi har sett hur man kan testa om två populationer har samma väntevärde (H 0 : μ 1 = μ 2 ) med t-test (two-sample). Vad gör man om data inte är normalfördelat? Om vi
OBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-09-28 Tillåtna
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Hypotestest och fortsättning av skattningar och konfidensintervall
Hypotestest och fortsättning av skattningar och konfidensintervall Repetition från förra gången Kända fördelningar ger konfidensintervall I klarspråk: Om vi har oberoende observationer x1,...,xn från N(μ,σ2),
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Bilaga 6 till rapport 1 (5)
till rapport 1 (5) Bilddiagnostik vid misstänkt prostatacancer, rapport UTV2012/49 (2014). Värdet av att undvika en prostatabiopsitagning beskrivning av studien SBU har i samarbete med Centrum för utvärdering
Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.
KOD: Kurskod: PC1244 Kursnamn: Metod Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2014-11-08 Tillåtna hjälpmedel: Miniräknare Tentan består av 13 frågor, totalt 40 poäng. Det krävs
Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Välkommen till Matematik 3 för lärare!
Välkommen till Matematik 3 för lärare! Nu: Statistik för lärare + Linjär algebra + datorlabbar Antagen? Registrerad? För er som läser första ämnet nu (MAxx eller FYMA): Hållbar Utveckling med Människan
Föreläsningsanteckningar till kapitel 8, del 2
Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.
Autokorrelation och Durbin-Watson testet. Patrik Zetterberg. 17 december 2012
Föreläsning 6 Autokorrelation och Durbin-Watson testet Patrik Zetterberg 17 december 2012 1 / 14 Korrelation och autokorrelation På tidigare föreläsningar har vi analyserat korrelationer för stickprov