Markavbildning med adaptiva SAR-algoritmer
|
|
- Stefan Karlsson
- för 6 år sedan
- Visningar:
Transkript
1 Markavbildning med adaptiva SAR-algoritmer Flygteknik /10 Patrik Dammert, Hans Hellsten, Anders Åhlander (Saab EDS) Annelie Wyholt, Lars Ulander (Inst. för Rymd- och Geovetenskap, Chalmers Tekniska Högskola)
2 Markavbildning med adaptiva SARalgoritmer Syntetisk Apertur Radar Inversionstransform och SAR fokuseringsalgoritmer Nya möjligheter Högpresterande autofokus Rörliga mål Underjordskartering Sammanfattning
3 Avbildning med radar Real beam mapping Antennlob Ingen diskriminering av objekt inom radarantennens huvudlob Upplösning begränsad av antennens fysiska utsträckning
4 Avbildning med radar Syntetisk aperturradar (SAR) Syntetisk antennlob Diskriminering av objekt inom radarantennens huvudlob Upplösning begränsad av den syntetiska antennens utsträckning Syntetisk apertur
5 Avbildning med radar Syntetisk aperturradar (SAR) SAR-bilden Syntetisk innebär en antennlob transform av registrerade radarekon Pulseko nr En stor mängd fokuseringsalgoritmer existerar Radarekon Avstånd Syntetisk apertur Transform Fokusering, processning, kompression etc... Diskriminering av objekt inom radarantennens huvudlob SAR-bild Upplösning begränsad av den syntetiska antennens utsträckning Avstånd Azimut
6 Avbildning med radar Syntetisk aperturradar (SAR) SAR-bilden innebär en Syntetisk antennlob transform av registrerade radarekon En stor mängd fokuseringsalgoritmer existerar Diskriminering av objekt inom radarantennens huvudlob Generella algoritmkrav 1. Avvikelse från Upplösning rakbana begränsad inget hinder av 2. Beräkningseffektiva den syntetiska antennens 3. Kompakt beskrivning utsträckningav algoritmapproximationer
7 SAR: Fokuseringsalgoritmer Seismik Våtfilm + linser Doppler Polär Range Migration Fourier Hankel M4 M2 M3 M1 Fourier 1951 SAR Inversionsteori Krokiga banor Hög upplösning + stor täckning Tomografi BP GBP FFB ~1980 ~1990 ~2000 Tid
8 SAR: Inversion vid ideal rakbana Algoritmer: Fourier-Hankel, Range migration etc. Egenskaper: Oberoende av upplösning, våglängd, täckning Rakbana krav Rak flygbana
9 SAR: Inversion vid krokig bana Om rakbana antas defokuseras SAR-bilden Rakbana kan användas vid Måttlig upplösning Liten täckning (+trad. autofokus) Krokig flygbana
10 SAR: Inversion vid krokig bana Algoritm: Global bakåtprojektion (GBP) Egenskaper: Oberoende av upplösning, våglängd, täckning Mycket beräkningstung Krokig flygbana
11 SAR: Inversion vid krokig bana Algoritm: Faktoriserad bakåtprojektion (FFB) Egenskaper: Oberoende av upplösning, våglängd, täckning Beräkningsbörda jmfbar med fouriermetoder Krokig flygbana
12 Fast Factorized Backprojection - base 2 shown I t e r a t i o n e r S i d u p p l ö s n i n ng S u b a p e r t u r e r
13 FFB egenskaper Generella SAR algoritmkrav 1. Avvikelse från rakbana inget hinder 2. Beräkningseffektiva 3. Kompakt beskrivning av algoritmapproximationer FFB ü ü ü (Inherent) (N 2 logn) (Grad av faktorisering) + Beräkningseffektiv implementering av 1. Högpresterande autofokus 2. Avbildning och detektion av rörliga mål 3. Avbildning och kartering av objekt under markytan
14 FFB: Högpresterande autofokus Grundläggande ide: Rekonstruera flygbanan (trad. algoritmer skattar residualer från bild) Subapertursammanslagning Bas 2 A Ny subapertur Supapertur 1 - Fokuserad Subapertur 2 - Fokuserad B Vid sammanslagning variera banparametrar (4 : 2 primära, 2 sekundära) som påverkar fokuseringen Faktoriseringen reducerar kraftigt! beräkningskomplexitet hos autofokus
15 FFB: Högpresterande autofokus Operationer vid sammanslagning Fokuseringsparametrar: 1. Polvinkel 2. Medellängd 3. Vinkel markplan 4. Skillnad i längd Fokuseringskriterium: 1. Entropi 2. Koherenskvot 3. Bildkorrelation Prel. konvexa egenskaper Nav system data Geometriantagande Fokuseringskriterium Sammanslagning Subaperturbild Bildtransform iterationer
16 FFB: Högpresterande autofokus Resultat GPS-data - vanlig FFB Felaktiga GPS-data + FFB autofokus SAR-data från Carabas-II
17 FFB: Rörliga mål Defokuserad skenbar position i SAR-bild Korrekt position och fokus i SAR-bild förutsätter stationära objekt Rörliga mål felplaceras och defokuseras Syntetisk apertur y a r v r Faktisk position FFB: Introducera kanaler för olika rörelsehypoteser i sådan takt att fokusering behålls för ökande subaperturlängder
18 FFB: Rörliga mål Exempel Standard SAR channel SAR bilder a v Standard SAR channel 2 x 2 mover channels ti n t e g r a t i o n s t i d 4 x 4 mover channels FFB iter. nr Integr. tid [s] Summa processade kanaler Bearbetningstid Hast. tolerans [m/s] Acc. tolerans [m/s 2 ] Hast. kan. # Acc. kan. # Beräkningsbörda är 28 ggr större jmf med (1-kanals) normal SAR för 256 kanaler. Total kan. #
19 FFB: Rörliga mål Resultat Saab EDS SAR/GMTI X-band Experiment System 3 m avst uppl. (20 / 3 /.8 m) 0.5 s integrationstid 15 km avstånd ( km) 80 m/s plattformsfart A z i i m u t A v s t å n d Objekt i rörelse Simulering SAR data Rörliga objekt Amplitud [db] Amplitude [db]
20 FFB: Rörliga mål Resultat Saab EDS SAR/GMTI X-band Experiment System 3 m avst uppl. (20 / 3 /.8 m) 0.5 s integrationstid 15 km avstånd ( km) 80 m/s plattformsfart A z i i m u t A v s t å n d Objekt i rörelse Simulering SAR data 11 db 6 db
21 FFB: Objekt under markytan Våglängd i fri rymd Struktur mindre än våglängd påverkar inte spridningen (ytan optisk jämn, skrovlighet < λ/8) Vid Brewstervinkeln bryts hela vågen ner i marken Våglängd i mark Den förändrade vågutbredningen i marken defokuserar objekt under markytan
22 FFB: Objekt under markytan Graden av defokusering beror på aktuell SAR upplösning (subaperturlängd) samt objektets djup under markytan FFB Iterationsnivå (= subaperturlängd) Fokuserat markskikt Objektets djup under ytan påverkar fokuseringen FFB: Introducera kanaler (markskikt) i sådan takt att fokuseringen behålls för ökande subaperturlängder
23 Sammanfattning Faktoriserad bakåtprojektion FFB en god grund för beräkningseffektiva algoritmer vid markavbildning Högpresterande autofokus Oberoende av dyra (och exportkontrollerade) TN/NAV-system Rörliga mål Förbättrad känslighet för rörliga mål Objekt under markytan Avbildning och detektion Ett nära samarbete med Chalmers Tekniska Högskola och FOI (samt med Högskolan i Halmstad och Linköpings Universitet)
24
file:///c:/users/engström/downloads/resultat.html
M 6 0 M F Ö R S Ö K 1 2 0 1 2-0 1-2 1 1 J a n W o c a l e w s k i 9 3 H u d d i n g e A I S 7. 0 9 A F 2 O s c a r J o h a n s s o n 9 2 S p å r v ä g e n s F K 7. 2 1 A F 3 V i c t o r K å r e l i d 8
Demonstration av storskalig kartering av virkesförråd med radarinterferometri
Demonstration av storskalig kartering av virkesförråd med radarinterferometri Maciej Soja, Lars Ulander Chalmers tekniska högskola, Göteborg Johan Fransson, Mats Nilsson, Henrik Persson Sveriges lantbruksuniversitet,
Optisk bänk En Virtuell Applet Laboration
Optisk bänk En Virtuell Applet Laboration Bildkonstruktion med linser. Generell Applet Information: 1. Öppna en internet läsare och öppna Optisk Bänk -sidan (adress). 2. Använd FULL SCREEN. 3. När applet:en
DIGITAL FÄRGRASTRERING
DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral
DIGITAL FÄRGRASTRERING FÄRG. SPD Exempel. Sasan Gooran (HT 2003) En blåaktig färg
DIGITAL FÄRGRASTRERING Sasan Gooran (HT 2003) 2006-08-18 Grafisk teknik 1 FÄRG Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral
Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)
Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young
NORA III, en mångkanals AESA-radar
NORA III, en mångkanals AESA-radar Flygtekniska Föreningen, Flygteknik 2010 Michael Granström Saab AB Electronic Defence Systems NORA III Agenda Bakgrund / Syfte Operativ nytta med AESA Sammanfattning
Robust navigering med ett tätt integrerat GPS/INS och adaptiv lobformning. Johan Malmström 14 april 2003
1 Robust navigering med ett tätt integrerat GPS/INS och adaptiv lobformning 2 Syfte Skapa en simuleringsmiljö för en tät integrering mellan ett tröghetsnavigeringssystem och GPS Modellera och implementera
Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så
Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser.
Föreläsning 7 Kromatisk aberration Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser. Dispersion: n ändras med våglängden
Elektronik. Dataomvandlare
Elektronik Dataomvandlare Johan Wernehag Institutionen för elektro- och informationsteknik Lunds universitet 2 Översikt Analoga och digitala signaler Nyquistteorem Kvantiseringsfel i analog-till-digital
F3: Schrödingers ekvationer
F3: Schrödingers ekvationer Backgrund Vi behöver en ny matematik för att beskriva elektroner, atomer och molekyler! Den nya fysiken skall klara av att beskriva: Experiment visar att för bundna system så
Reglerteknik I: F10. Tillståndsåterkoppling med observatörer. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F10 Tillståndsåterkoppling med observatörer Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 2 / 14 F9: Frågestund F9: Frågestund 1) När ett system är observerbart då
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1 2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Denna våg är. A. Longitudinell. B. Transversell. C. Något annat
Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare
Optik, F2 FFY091 TENTAKIT
Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31
Astronomin och sökandet efter liv där ute. Sofia Feltzing Professor vid Lunds universitet
Astronomin och sökandet efter liv där ute Sofia Feltzing Professor vid Lunds universitet Sofia Feltzings vanliga forskning 250 miljoner år Drakes ekvation!"#"$" "%"!"#$%& "&"'()*" "%""+," "%"+$&%""+-%$&."+,"
3) Sag formeln ger r=y 2 /(2s). y=a/2=15 mm, s=b c=4,5 mm ger r=25 mm. Då blir F=(n 1)/r=(1,5 1)/0,025=20 D
Facit: en avbildning Sfärisk gränsyta 1) l= 2,0 mm, n=4/3 och n =1. m=l/l =nl /(n l)=1,25 ger l = 1,875 mm. Avbildningsformeln för sfärisk gränsyta L =L+(n n)/r ger r= 2,5 mm. 2) Bilden måste hamna på
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
1 Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus kan ses so elektroagnetiska vågor so rör sig fraåt. När vi ritar strålar
Strömning och varmetransport/ varmeoverføring
Lektion 9: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värme kan överföras från en kropp till en annan genom strålning (värmestrålning). Det är därför vi kan känna solens
I 1 I 2 I 3. Tentamen i Fotonik , kl Här kommer först några inledande frågor.
FAFF25-2014-03-14 Tentamen i Fotonik - 2014-03-14, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden
Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Johan Jansson November 29, 2010 Johan Jansson () M6 November 29, 2010 1 / 26 Table of contents 1 Plan och Syfte
Tentamen i Fotonik , kl
FAFF25-2015-05-04 Tentamen i Fotonik - 2015-05-04, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.
CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics
A1S Kamera Bildsensorenhet Bildstorlek 1/3-tums CCD 1/3-tums CCD 3CCD med horisontell pixelförskjutning
Tekniska DATA Canons HD-videokamera XH G1S Canons HD-videokamera XH A1S Kamera Bildsensorenhet Bildstorlek 1/3-tums CCD 1/3-tums CCD System 3CCD med horisontell pixelförskjutning 3CCD med horisontell pixelförskjutning
About the optics of the eye
About the optics of the eye Peter Unsbo Kungliga Tekniska Högskolan Biomedical and x-ray physics Visual Optics Innehåll Optiska begränsningar i ögat Hur mäter man ögats aberrationer? Hur skriver man vågfrontsrecept?
TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
Vågrörelselära & Kvantfysik, FK2002 29 november 2011
Räkneövning 5 Vågrörelselära & Kvantfysik, FK00 9 november 0 Problem 35.9 En dykare som befinner sig på djupet D 3 m under vatten riktar en ljusstråle (med infallsvinkel θ i 30 ) mot vattenytan. På vilket
15 september, Föreläsning 5. Tillämpad linjär algebra
5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess
Vågrörelselära & Kvantfysik, FK2002 1 december 2011
Räkneövning 6 Vågrörelselära & Kvantfysik, FK2002 december 20 Problem 36.23 Avståndet mellan två konvexa linser i ett mikroskop, l = 7.5 cm. Fokallängden för objektivet f o = 0.8 cm och för okularet f
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
TFEI02: Vågfysik. Tentamen : Lösningsförslag
160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan
1. (a) Lös ekvationen (2p) ln(x) ln(x 3 ) = ln(x 6 ). (b) Lös olikheten. x 3 + x 2 + x 1 x 1
Högskolan i Halmstad Tentamensskrivning 6 hp ITE/MPE-lab MA2047 Algebra och diskret matematik Mikael Hindgren Onsdagen den 26 oktober 2016 035-167220 Skrivtid: 9.00-13.00 Inga hjälpmedel. Fyll i omslaget
Föreläsning 11 (kap i Optics)
45 Föreläsning 11 (kap 5.7-5.8 i Optics) Hittills har vi behandlat avbildningen i sig, dvs. var bilden av ett objekt hamnar och vilken förstoring det blir. Det finns också andra krav man kan ställa på
λ = T 2 g/(2π) 250/6 40 m
Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten
OPTIK läran om ljuset
OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte
3. Mekaniska vågor i 2 (eller 3) dimensioner
3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Global Positionering System (GPS)
Global Positionering System (GPS) Sadegh Jamali Baserat på material från: Mohammad Bagherbandi, Stig-Göran Mårtensson, Faramarz Nilfouroushan (HIG); Lars Ollvik och Sven Agardh (LTH) 1 Traditionella metoder
Kalla Vindar ( och Heta Galaxkärnor) Susanne Aalto Rymd och Geovetenskap Chalmers
Kalla Vindar ( och Heta Galaxkärnor) Susanne Aalto Rymd och Geovetenskap Chalmers Herschel Space Observatory Massa: ca 3400 kg vid uppskjutning Dimensioner: 7.5m hög, 4m 4m tvärsnitt Våglängder: Infrarött
Vindkraftverks störningar på sjöfartsradar och GPS Martin Tagesson och Per Ek
1.9.2 GPS- skugga Fyra vindkraftverk i mitten av parken användes för att försöka skugga delar av himmeln. Båten med de två GPS-systemen var placerade precis intill vindkraftverken under försöken. Vindkraftverks
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Tentamen i Fotonik , kl
FAFF25-2012-04-10 Tentamen i Fotonik - 2012-04-10, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?
1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat
Alla svar till de extra uppgifterna
Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0
Analys/syntes-kodning
Analys/syntes-kodning Många talkodare bygger på en princip som kallas analys/syntes-kodning. Istället för att koda en vågform, som man normalt gör i generella ljudkodare och i bildkodare, så har man parametrisk
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
LABORATION 2 MIKROSKOPET
LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX 1 (6) LABORATION 2 MIKROSKOPET Att läsa i kursboken: sid. 189-194 Förberedelseuppgifter:
Vad är ljus? Fundamental krafter. James Clerk Maxwell. Kapitel 3, Allmänna vågekvationen. Maxwells ekvationer i vakuum FAF260
FA0 Vad ä ljus? FA0 Lunds Univesitet 016 Fundamental kafte FA0 Lunds Univesitet 016 James Clek Maxwell FA0 Lunds Univesitet 016 Gavitatin Elektmagnetism föenades på 1800 talet Staka känkaften Svaga känkaften
Global Positioning System GPS i funktion
Global Positioning System GPS i funktion Martin Åhlenius ECOP mas00001@student.mdh.se Andreas Axelsen ECOP aan00006@student.mdh.se 15 oktober 2003 i Sammanfattning Denna rapport försöker förklara funktionen
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare
7 Olika faltningkärnor. Omsampling. 2D Sampling.
7 Olika faltningkärnor. Omsampling. D Sampling. Aktuella ekvationer: Se formelsamlingen. 7.. Faltningskärnors effekt på bilder. Bilden f(, y) ska faltas med olika faltningskärnor, A H, se nedan. f(,y)
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 3
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 3 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen for Elektro- och informationsteknik Lunds universitet Oktober 2014 Outline 1 Introduktion
Föreläsning 8: Linsdesign
1 Föreläsning 8: Linsdesign Linsdesign Att välja linser med rätt krökningsradier på ytorna och av rätt material. Förutom paraxiala egenskaper såsom objekt- och bildavstånd och förstoring, så ställs andra
FÄRG. Färg. SPD Exempel FÄRG. Stavar och Tappar. Ögats receptorer. Sasan Gooran (HT 2003) En blåaktig färg
FÄRG Färg Sasan Gooran (HT 2003) Det mänskliga ögat kan uppfatta ljus, elektromagnetiska strålningar, med vågländer mellan 380 till 780 nm. Ett exempel: Spectral Power Distribution (SPD). Se nästa bild.
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00
FK2003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 21 december 2016, kl 17:00-22:00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du
Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen
Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 003-11-18 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner i polynomisk tid. Kanske
att båda rör sig ett varv runt masscentrum på samma tid. Planet
Tema: Exoplaneter (Del III, banhastighet och massa) Det vi hittills tittat på är hur man beräknar radien och avståndet till stjärnan för en exoplanet. Omloppstiden kunde vi exempelvis få fram genom att
Kvadratkomplettering
Kvadratkomplettering Steg-för-steg-demonstration Hillevi Gavel Institutionen för matematik och fysik (IMa) Mälardalens högskola (MDH) 3 april 2006 Instruktioner Det här bildspelet visar hur man genomför
n = v 1 v 2 = (4, 4, 2). 4 ( 1) + 4 ( 1) 2 ( 1) + d = 0 d = t = 4 + 2s 5 t = 6 + 4s 1 + t = 4 s
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 7-8-4 kl 4 9 a) Triangelns sidor ges av vektorerna v OP OP (,, ) och v OP 3 OP (,, 4) som även blir riktningsvektorer till planet En normal
för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)
Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 3
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 3 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen for Elektro- och informationsteknik Lunds universitet Oktober 2012 Outline 1 Introduktion
Tentamen TMA946/MAN280 tillämpad optimeringslära
Tentamen TMA946/MAN80 tillämpad optimeringslära 01081 1. Uppgift: min z 3x 1 + x Då x 1 + x 6 x 1 + x x 1, x 0 Skriv på standardform m.h.aṡlackvariabler min z 3x 1 + x Då x 1 + x s 1 6 x 1 x + s x 1, x,
Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU)
Sida 1 (6) Information om ämnet Militärteknik med diagnostiskt självtest av förkunskaper till blivande studerande på Stabsutbildningen (SU) Militärteknik kan sägas vara läran om hur tekniken interagerar
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1
Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.
Bilaga 1: GPS-teknik, en liten ordlista
Bilaga 1: GPS-teknik, en liten ordlista SATELLITSYSTEM GPS Global Positioning System. Amerikanskt satellitbaserat navigationssystem uppbyggt av USA:s försvarsmakt. Systemet är globalt täckande och används
TENTAMEN. Institution: Fysik och Elektroteknik. Examinator: Pieter Kuiper. Datum: 7maj2016. Tid: 5timmar Plats: Kurskod: 1FY803
TENTAMEN Institution: Fysik och Elektroteknik Examinator: Pieter Kuiper Datum: 7maj2016 Namn:... Adress:...... Tid: 5timmar Plats: Kurskod: 1FY803 Personnummer: Kurs/provmoment: Vågrörelselära och Optik
1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?
Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
Robert Rosén Recept för beräkning av huvudplan Frågeställning: Hur hittar man främre och bakre fokalpunkt, samt huvudplan (både för tjocka linser och system av tunna linser)? Varför skall huvudplan räknas?
LÖSNINGAR TILL LINJÄR ALGEBRA kl LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2017-08-24 kl 14 19 1. Vi får ū = 1 2 + 1 2 + 0 2 = 2, v = 1 2 + 2 2 + 2 2 = 3 och ū v = 1 1+1 2+0 2 = 3. Om φ är vinkeln mellan ū och v
Elektronik Dataomvandlare
Elektronik Översikt Analoga och digitala signaler Dataomvandlare Pietro Andreani Institutionen för elektro- och informationsteknik Lunds universitet Nyquistteorem Kvantiseringsfel i analog-till-digital
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)
Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
Faktorisering med hjälp av kvantberäkningar. Lars Engebretsen
Faktorisering med hjälp av kvantberäkningar Lars Engebretsen 00-1-03 Lars Engebretsen 00-1-03 Bakgrund Vanliga datorer styrs av klassiska fysikens lagar. Vanliga datorer kan simuleras av turingmaskiner
TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 3
ETEF15 Krets- och mätteknik, fk Fältteori och EMC föreläsning 3 Daniel Sjöberg daniel.sjoberg@eit.lth.se Institutionen for Elektro- och informationsteknik Lunds universitet Oktober 2013 Outline 1 Introduktion
TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]
TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden
Extra övningsuppgifter
Optiska fibrer 1. En fiber har numerisk apertur 0,12 och kärnans brytningsindex är 1,4. Kärnans diameter är 7 µm. a) Vad är mantelns brytningsindex? b) För vilka våglängder är fibern en singelmodfiber?
LABORATION 1 AVBILDNING OCH FÖRSTORING
LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se
Föreläsning 9-10: Bildkvalitet (PSF och MTF)
1 Föreläsning 9-10: Bildkvalitet (PSF och MTF) Att mäta bildkvalitet Bildkvaliteten påverkas av både aberrationer och diffraktion, men hur ska vi mäta den? Två vanliga mått är PSF (punktspridningsfunktionen)
Realtidsuppdaterad fristation
Precisionsanalys Januari 2009 Milan Horemuz Kungliga Tekniska högskolan, Institution för transporter och samhällsekonomi Avdelningen för Geodesi Teknikringen 72, SE 100 44 Stockholm e-post: horemuz@kth.se
Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
Föreläsning 2 (kap , 2.6 i Optics)
5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen
Våglära och optik FAFF30 JOHAN MAURITSSON
Våglära och optik FAFF30 JOHAN MAURITSSON Prismor A θ 1 n=1 n n=1 2 Prismor A δ 1 θ 1 θ 1 n=1 n n=1 3 Prismor A θ 2 θ 2 n=1 n n=1 4 Prismor A δ θ 1 θ 1 δ 1 δ 2 B θ 2 θ 2 n=1 n n=1 5 Prismor, dispersion
TENTAMEN. Institution: DFM, Fysik Examinator: Pieter Kuiper. Datum: april 2010
TENTAMEN Institution: DFM, Fysik Examinator: Pieter Kuiper Namn:... Adress:... Datum: april 2010... Tid: Plats: Kurskod: 1FY803 Personnummer: Kurs/provmoment: Vågrörelselära och Optik Hjälpmedel: linjal,
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
Digitalkamera. Fördelar. Nackdelar. Digital fotografering. Kamerateknik Inställningar. Långsam. Vattenkänslig Behöver batteri Lagring av bilder
Digital fotografering Kamerateknik Inställningar Digitalkamera Samma optik som en analog kamera Byt ut filmen mot en sensor, CCD Bästa digitala sensorn ca 150 Mpixel Vanliga systemkameror mellan 8-12 Mpixel
Christian Hansen CERN BE-ABP
Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952
Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00
Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för
Objektorienterad programmering Föreläsning 8. Copyright Mahmud Al Hakim Agenda (halvdag)
Objektorienterad programmering Föreläsning 8 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda (halvdag) Objektorienterad programutveckling Algoritmer Algoritmkonstruktionerna Relationer
Figur 6.1 ur Freeman & Hull, Optics
1 Föreläsning 12 Kameran Figur 6.1 ur Freeman & Hull, Optics Kameran är ett instrument som till vissa delar fungerar mycket likt ett öga. Kamerans optik, det så kallade kameraobjektivet, motsvarar ögats