VPRP. Vehicle Positioning and Route Prediction. Public report
|
|
- Emilia Nyberg
- för 6 år sedan
- Visningar:
Transkript
1 VPRP Vehicle Positioning and Route Prediction Public report Author: Marita Andersson Date: Projekt inom Delprogrammets namn alt strategisk satsning exempelvis Trafiksäkerhet och automatiserade fordon
2 Contents 1 Summary Executive summary in Swedish System design och verifiering Lokal karta Kartpositionering Kooperativ positionering Global positionering Ruttprediktering Global kartuppbyggnad Background Purpose, research questions and method Objective Results and deliverables Result per work packages FFI objectives and project contributions Dissemination and Publications Knowledge and dissemination of results Publications Conclusions and future research Participating parties and contact persons Kort om FFI FFI är ett samarbete mellan staten och fordonsindustrin om att gemensamt finansiera forsknings- och innovationsaktviteter med fokus på områdena Klimat & Miljö samt Trafiksäkerhet. Satsningen innebär verksamhet för ca 1 miljard kr per år varav de offentliga medlen utgör drygt 400 Mkr. För närvarande finns fem delprogram; Energi & Miljö, Trafiksäkerhet och automatiserade fordon, Elektronik, mjukvara och kommunikation, Hållbar produktion och Effektiva och uppkopplade transportsystem. Läs mer på FFI Fordonsstrategisk Forskning och Innovation 2
3 Summary The VPRP is a project coordinated by Volvo Cars cooperation where Volvo Technology cooperation and are contributing parties. The project budget is 24,6 MSEK with finance of 12,3 MSEK from Vinnova. When moving from Advanced Driving Assistant System to more Autonomous systems, this puts a higher requirement on accuracy for positioning and to move the car safely forward and prevent from accidents. This project aims at developing and verifying algorithms to accurately estimate the position of the ego vehicle and predict the most likely route the vehicle will take in the road network. Insufficient positioning accuracy is one of the factors which today prevent new safety and convenience systems from being developed. We have strived to answer questions like How can exact map position be obtained by matching the information obtained from sensors mounted on the ego vehicle (e.g. radars and cameras) with a static map? How the relative positioning accuracy between cooperative nodes can be improved by communicating raw GNSS measurement data between the nodes? How the current position accuracy of state of the art GNSS systems can be improved using e.g. more advanced GNSS receiver techniques (carrier phase detection) or using position information from other sources (LTE, infrastructure)? Is it possible to establish a driver route prediction based on earlier driver route statistics to enable reduced fuel consumptions or similar solutions? To answer the questions, we have used methods like exploit available information sources to create a map and then developed algorithms to improve positioning and route prediction at present time. New methods and algorithms for clustering driver destination is one examples of results during the project time. 27 publications in combination with internal reports shows that we have succeeded with our target of the project, to both achieve knowledge in positioning and route prediction system, but also develop algorithms for predict future routes and methods to achieve high positioning of the ego vehicle, something that is crucial for taking the step towards autonomous driving. Better control of detailed traffic situations as for example lane-departure and reducing road transport environmental impact by for example better optimisation of car control and route predicion, are some examples of that we have achieved the FFI-program goals. Beside of gained knowledge within the companies, the interest of positioning and route prediction has also grown within Academia, which is shown by the majority of new courses. FFI Fordonsstrategisk Forskning och Innovation 3
4 1 Executive summary in Swedish Nedan redovisas resultat från varje arbetspaket, med undantag från projektledning. Vissa av leveranserna går in i flera arbetspaket, då till exempelvis karta och positionering i vissa metoder ligger väldigt nära varandra. 1.1 System design och verifiering Två generationer testbilar har utrustats med surround radarsensorer, lidarsensor, visionssensor (kamera) och ett referenssystem av sensorer. Programvara för efterbehandling av dessa data har utvecklats för att synkronisera den samlade datan och att beräkna en exakt referenspositionsuppskattning. Referenspositionen har använts både för att bygga kartor och för att utvärdera positioneringsprestandan. I detta arbetspaket har metoder för att utvärdera både kartan och metoder för positionering tagits varm som används kontinuerligt på den insamlade datan. Arkitekturen för första generationens bilar, ses på bild nedan [Figure 2]. WP3 Local map Figure 2: Architecture for the first generation of test vehicles 1.2 Lokal karta Inom VCC/Zenuity har man inom området tagit fram ett ramverk genom att sätta ihop linjemarkeringars information från framåttittande kamera med objektpositioner från bakåttittande radar som ett första steg. Som en förbättring för uppskattning av väggeometri har man också inkluderat kartinformation vilket förlänger uppskattningshorisonten samt också utvecklat en metod för att beräkna i vilken körbana värdbilen kör i [25]. För att stödja värdbilens nuvarande syn på trafiksituationen har akademien bidragit till att förbättra placeringen av andra fordon och fotgängare genom att använda nya objektspårningsalgoritmer [1] - [4] samt utvecklade grundläggande spårningsramar [5] - [8] och prestanda metriker för dessa scenarier [9]. Några av dessa objekt är dynamiska (som fotgängare och bilar) [1] - [4] medan andra objekt är statiska (t.ex. lampposter och trafikskyltar) och genom att placera alla statiska objekt får vi en karta över vår miljö [16], [17]. Dessutom har metoder utvecklats för att beskriva vägen framför värdbilen, både med hjälp av radar och kamera [10] - [12], men också med hjälp av lidarsensorer [13] skapat en djupinlärningsmetod för FFI Fordonsstrategisk Forskning och Innovation 4
5 att utföra vägdetektering där man från ett ostrukturerat punktmoln genererat toppbilder som kodar för flera grundläggande statistiker, t.ex. genomsnittlig höjd och densitet. Genom att överväga en toppbildsrepresentation reduceras vägdetektering till ett enkelskaligt problem som kan åtgärdas med ett enkelt och snabbt fullt konvolutionellt neuralt nätverk (FCN). I samband med väguppskattning har även akademien utvecklat algoritmer för att uppskatta vägens form före ett värdfordon. I [10] - [12] är målet att noggrant beskriva väggeometrin (i motorvägsscenarier) upp till 200 m framför ett värdfordon, som är utrustad med en kamera, en radar och fordonsinterna sensorer. Detta syfte uppnås genom att härleda en exakt Klotoidbaserad vägmodell för vilken vi designar en Bayesian fusionsram. Med hjälp av detta ramverk uppskattas väggeometrin med hjälp av sensorobservationer baserat på formen av banmarkeringarna, rubriken på ledande fordon och positionen av vägarnas radarreflektorer. Utvärderingen av sensordata visar att de föreslagna algoritmerna kan fånga vägens form väl, även i utmanande bergsvägar. I [13] har en djup inlärningsmetod utvecklats för att utföra vägdetektering med endast LIDAR-data. Detta innebär att från ett ostrukturerat punktmoln genereras toppbildsbilder som kodar för grundläggande statistik, t.ex. genomsnittlig höjd och densitet. Genom att överväga en toppbildsrepresentation reduceras vägdetektering till ett enkelskaligt problem som kan åtgärdas med ett neuralt nätverk (FCN). 1.3 Kartpositionering I detta arbetspaket har vi inom VPRP bland annat tittat på hur man genom enkla sensorer kan uppnå positionsnoggrannhet. Undersökningen i [14] utgick man från att bara använda sensorer som är vanligtvis tillgängliga på bilarna vid den tiden, t.ex. enkla GPS (Global Positioning System), tröghetssensorer och framåtblickande radar och kamera, tillsammans med en landmärkesbaserad karta. Vår slutsats, även om vi uppnådde tillräcklig noggrannhet under gynnsamma förhållanden, var lösningen inte tillräckligt robust för att hantera förlust av en informationskälla (till exempel saknade körfältmarkeringar) eller förändringar i miljön (väder, säsong, ombyggnad). Dessutom fann vi att de absoluta (globala) positionsmätningarna från typiska GPS-mottagare var inte tillräckligt noga. Med hjälp av detta arbete utredde vi olika sätt att förbättra noggrannheten och robustheten hos positioneringsalgoritmen. I [15] utvecklar vi en kostnadseffektiv lösning för att använda GPS för att noggrant mäta odometri (rörelsen hos värdbilen) istället för att ge oss felaktiga globala positioner. Som sådan kan vi, om vi kan placera bilen i en karta, använda GPS-enheten för att utföra automatisk dödräkning av bilen under mycket längre tid än om vi bara använde hjulhastighet och tröghetssensorer. Dessutom har vi utvecklat metoder för hur man mer exakt bygger de underliggande kartorna baserat på landmärken [16], [17] men också hur man både bygger dessa kartor samtidigt som vi försöker lokalisera oss i dem [18] (SLAM). 1.4 Kooperativ positionering Det arbete som utförts i VPRP har visat att det finns stor potential inom kooperativ GNSS (Global Navigation Satellit System) för att öka relativ positionsnoggrannhet och att stödja kooperativa ITSapplikationer och aktiv säkerhet även inom tung lastbilssegment. Grundidén bakom kooperativ GNSSpositionering är att fordon utbyter rå GNSS-mätning, data / korrigering eller motsvarande. Med hjälp av denna data kan differentieringstekniker tillämpas för att beräkna den relativa positionen mellan fordonen. Den enklaste formen av kooperativ GNSS skulle vara att byta GNSS (kod) position från fordonet ombord GNSS mottagare. Eftersom de nuvarande GNSS-mottagarna för fordon uppnår en absolut positioneringsnoggrannhet på 2 meter i bästa fall (med tanke på RTK-system (Real Time Kinematic)) är denna information dock mer eller mindre användbar för kooperativ positionering. FFI Fordonsstrategisk Forskning och Innovation 5
6 I [31] beskriver vi som nästa steg utbytet av råa satellitavståndsmätningar mellan fordon. Genom att dubbeldifferensiera dessa mätningar kan man avlägsnas atmosfäriska, satellitklockfel och mottagarklockfel. Detta gör att positionens noggrannhet förbättras väsentligt. Det mätfel som kvarstår kommer antingen från sk. local multipath dvs. där signalen reflekterats en eller flera gånger innan den når mottagaren, eller mätfel i mottagarna. I tester med dyrare mottagare och antenner hittas enbart små precisionsfel och precisionen av dubbeldifferensierade lösningarna är ofta mindre än 50 cm. Samma test med billigare mottagare visar sämre resultat [31]. En ytterligare förbättring av den relativa positionen i kooperativ GNSS kan uppnås genom att utbyta och använda råa bärvågsmätningar. 1.5 Global positionering I detta arbetspaket fokuserade man sig på att testa och utvärdera ett urval av GNSS system, för att se hur väl noggrannheten på systemet kunde upprätthållas när satellitbilden förloras, vilket presenteras i en teknisk rapport [32]. Slutsatsen blev att med bra dödräkning, så kan låsning av bärvågen erhållas nästan direkt när satellitbilden åter finns tillgänglig. 1.6 Ruttprediktering En av huvuddelarna i detta arbetspaket har varit att undersöka hur man använder sig av det repetitiva mönstret i de flesta människors dagliga pendling (hem till jobbet, jobba för att lagra, lagra hemma etc.) för att förutsäga resans slutmål när den börjar. Ett bidrag till detta arbetspaket har varit att ta fram en metod för att klustra fordonets slutposition från många resor till en uppsättning destinationer [27]. En annan metod som tagits fram är att göra effektiva kortsiktiga förutsägelser under en resa [26], vilket har visat sig ha fördelar som Att föreslå en rimlig väg för värdfordonet är en viktig uppgift för alla självkörande fordon. En grundläggande strategi för att göra det är att uppskatta positionen i en karta och sedan föreslå en väg som håller fordonet på vägen. Den strategin bygger emellertid på mycket exakt positionsinformation, en detaljerad karta och frånvaron av fordon och hinder på vägen. Med kraftfulla maskininlärningsstrategier är det istället intressant att försöka utnyttja all tillgänglig sensorinformation och försöka styra ett fordon på ett mer mänskligt sätt. I [21] har ett nytt inlärningsbaserat tillvägagångssätt utvecklats för att generera körbanor genom att integrera lidarpunkts moln, GPS-IMU-information och Googles körriktningar. Systemet är baserat på ett fullständigt sk. convolutional neuralt nätverk som gemensamt lär sig att förstå väg och omgivning från verkliga körsekvenser och som utbildas med hjälp av automatiskt genererade träningsexempel. Resultaten i detta arbete indikerar att det föreslagna systemet kan bidra till att fylla gapet mellan lågnivå-parsing och beteende-reflex-tillvägagångssätt genom att generera resultat som ligger nära kontroll av bilen och samtidigt är mänskligt tolkningsbara. 1.7 Global kartuppbyggnad För att stödja positioneringsutvecklingen i WP 4 har en exakt och detaljerad karta, kallad HD-kartan, utvecklats inom VCC, vilket vi också använt oss för att utvärdera våra positionsalgoritmer. Den fokuserade testvägen för VPRP har anpassats till den avsedda rutten i Drive Me, vilket visas i bild FFI Fordonsstrategisk Forskning och Innovation 6
7 nedan [Figur 1]. Den utvecklade HD-kartan innehåller en riklig beskrivning av exakta geometrin av körbanan som beskrivs i Zenuity internrapport [28], vilket också visar hur kartan är segmenterad i karthorisonter som möjliggör effektiv kommunikation i realtidssystem. Ett annat sätt att jobba med karta för tunga fordon, har varit att i detta projekt tittat på metoder för att simultant jobba med lokalisering och kartläggning (SLAM). Det innebär att upptäcka och kartlägga landmärken och objekt i förhållande till den globala referensramen och använda dessa sedan för att lokalisera fordonet. Bland annat beskriver en publikation [29], denna kartläggning och landmärkningsbaserad lokaliseringsmetoden. 2 Background The project has been running from Q until Q with a budget of 24.6 MSEK of which 12.3 MSEK from VINNOVA. Volvo Car Corporation (VCC) has been main responsible for this project. Participants in this project are: Volvo Car Corporation (VCC) ( ) Volvo Technology Corporation (VTEC) ( ) tekniska högskola (CTH) ( ) Zenuity to work as consultants for VCC from Moving from active safety systems to self-driving vehicles requires greater accuracy in positioning. However, the next generation of active security systems can also benefit from improved positioning. Today's system has the requirement to estimate on which road the vehicle is driving, which is not safety-critical. But many features could be improved if also a lane level positioning accuracy could be achieved, i.e. determining in which lane the vehicle is driving. Examples of active safety system that could be improved with a lane level accuracy are lane keeping aid and adaptive cruise functions. When it comes to autonomously move the car, the requirements of positioning become safety-critical. You must be able to position the vehicle in a detailed HD map with very high accuracy (<1dm) both to FFI Fordonsstrategisk Forskning och Innovation 7
8 move the car safely forward, but also to prevent accidents for examples in intersections or crossing scenarios. The applications are often based solely on positions provided by GNSS (Global Navigation Satellite System) systems. Existing GNNS systems are usually quite error- prone, especially in urban areas where the amount of satellites is limited and the GNSS signals are subject to multi- path effects. However, the accuracy is usually sufficient for this the navigation systems, but we see a clear demand of high precision positioning systems in the near future. Route planning applications has been utilized in vehicles for over a decade; the most common use is traditional navigation systems, where the driver is presented with a route between two geographical positions. This project aims at developing and verifying algorithms to accurately estimate the position of the ego vehicle and predict the most likely route the vehicle will take in the road network. Insufficient positioning accuracy is one of the factors which today prevent new safety and convenience systems from being developed. Examples of such systems are: Autonomous vehicles. These types of systems require a detailed description of the environment surrounding the ego vehicle and accurate position estimates of the ego vehicle and all other objects relative to that map. Affordable sensors available on the market today, such as radars, cameras and digital maps, can provide accurate estimates of the relative position of surrounding objects, but not a detailed enough description of the static environment or the position of the moving objects relative to the environment. Active safety systems. Most of the active safety systems today intervene in accidents caused by something blocking the path of the ego vehicle when the ego vehicle is moving straight ahead. Rear end collisions or pedestrians walking out in front of the ego vehicle are examples of such accidents which can be prevented. However, for more complicated scenarios, such as accidents in intersections, these systems need a detailed map, accurate position estimates of the objects and reliable predictions of the route the objects are intending to drive. Engine optimization systems. Several aspects of engine optimization could be improved using accurate ego position estimates and route predictions. One example is in hybrid vehicles, where knowledge of the upcoming route could have a great impact of brake regeneration optimization. Similarly, for diesel particle filter regeneration, knowledge about the ego vehicle final destination, or more precisely an estimate of the driving time and driving style to reach the final destination, could prevent incomplete regeneration cycles from occurring. Cooperative ITS-systems. Intelligent transportation systems (ITS) are transportation systems in which information and communication technologies are used to provide new and innovative services. In cooperative ITS-systems are information shared between the road users using vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communication. These systems would benefit greatly from a more accurate positioning and route prediction of the road users, since that would enable the systems to put the shared information into a context on how it would affect the ego vehicle and decide which appropriate measures should be taken. The level of position accuracy needed varies between these types of systems, but the ambition in this project is to develop methods supporting all of them. The most demanding position accuracy requirements will be posed by autonomous vehicle systems as internal studies by the industrial partners show that these systems need to position objects relative to a detailed map with an accuracy in the order of magnitude of 0.1 m to 0.2 m. As is discussed in the state of the art section at the end of this document, this level of accuracy cannot be obtained by any commercially viable systems on the market today. FFI Fordonsstrategisk Forskning och Innovation 8
9 The accuracy of the route prediction can be improved by storing sensor information in a separate map layer. The stored information is related to driving statistics such as common destinations (as a function of day and time), common routes and driving style. Using statistics on how and where the driver usually drives together with accurate ego vehicle position information reliable route predictions can be obtained. 3 Purpose, research questions and method In many relevant ADAS solutions, low-accuracy positioning is important to position a car on the correct road segment. Such solutions include slippery road-detection for example. However, high precision positioning has a big potential to both create new more advanced ADAS solutions and improve existing ones. Further, for future AD (Autonomous Drive) features, high precision positioning is crucial. Being able to tell which lane a car is in enables functionalities such as automatic lane-changes, automatic mapping, detection of road abnormalities (accidents, road deterioration etc). It also enables prediction of probable route choices, which enables improved possibility to optimize engine functions for example. Even higher precision positioning enables possibility to do autonomous drive through intersections, better mapping and increased safety in detailed traffic situations. All these possible solutions lead to lowered environmental impact and increased safety, both which are core values for VCC and Zenuity. The research question for this project is divided into following areas: Positioning Map positioning How can exact map position be obtained by matching the information obtained from sensors mounted on the ego vehicle (e.g. radars and cameras) with a static map? Both currently available and the next generation high precision digital maps will be evaluated for this purpose. We also foresee that the ability to improve the static map with observations from the on-board sensors will be important. Cooperative positioning How the relative positioning accuracy between cooperative nodes can be improved by communicating raw GNSS measurement data between the nodes? Global positioning How the current position accuracy of state of the art GNSS systems can be improved using e.g. more advanced GNSS receiver techniques (carrier phase detection) or using position information from other sources (LTE, infrastructure)? Route prediction Is it possible to establish a driver route prediction based on earlier driver route statistics to enable reduced fuel consumptions or similar solutions? To find answers to the above questions, the following methods has been considered: Jointly exploit all available information sources. The project considers an ego vehicle equipped with a host of on-board sensors such as radars, camera, V2V/V2I communication, enhanced map databases, GNSS and internal sensors. All these on-board sensors deliver FFI Fordonsstrategisk Forskning och Innovation 9
10 imperfect observations of the current local traffic situation. Utilize statistical historic data to improve the positioning and route prediction at present time. For example, knowing that the driver typically takes a specific exit surely will help us to improve local route prediction. As such, we collect the information regarding the local traffic situation as observed by the on-board sensors in a local map and the historic information in a global map. Provide a framework (fusion engine) to jointly estimate parameters of interest and provide a convenient description of the surrounding traffic environment to support local route prediction. FFI Fordonsstrategisk Forskning och Innovation 10
11 WP1 Project management WP2 System design 4 Objective The objective for this project has been: To find methods to accurately position the ego vehicle (globally, relative to the map and relative to other vehicles). Precisely predict the future route both on a local (will we take this exit?) and a global (what is the final destination?) scale. 5 Results and deliverables Expected results from the project: Build the necessary competence in this field such that a positioning and route prediction system can be designed which can help realize the new active safety functions and autonomous vehicle systems. Present result in academic publications which describe both the mathematical derivations of the developed algorithms and performance evaluations using real data. Knowledge about what level of positioning accuracy can be obtained using existing sensor technologies and how much this can be improved in the future. 5.1 Result per work packages The results will be presented below for each work package except work package 1, project management. Some of the deliveries goes over more than one work package due to that methods in different combinations can give input to more than one work package. Overview of all work packages in this project is shown in the picture below [Figure 1]. WP3 Local map WP4 Vehicle posi oning WP5 Route predic on WP6 Global map Figure 1: Work packages FFI Fordonsstrategisk Forskning och Innovation 11
12 WP2 System design and verification At VCC/Zenuity, two generations of test vehicles have been equipped [Figure 2] with surround radar sensors, a lidar sensor, vision sensors and reference sensors. Software for post-processing of this data has been developed to time synchronize the collected data and to compute an accurate reference position estimate. The reference position has been used both for building maps and to evaluate the positioning performance. Methods for evaluating both the map and the positioning methods have been developed and are continuously used on the collected data. Currently a third generation of test vehicles is being developed, which seeks to improve on the many lessons learned in this project. WP3 Local map Figure 2: Architecture for the first generation of test vehicles WP3 Local map In creating a map of the local surroundings, the level of detail can be augmented by aggregating static 3D detections from different times, where detections from for example a camera system or Lidar sensors can be applied. A prerequisite for map aggregation is to precisely know the sensors movements. For truck applications this is very challenging when sensors are mounted on the cab, due to the complicated dynamics of a cab that is suspended on the vehicle chassis, which in turn is suspended on the wheels. For this purpose, a cab motion model was developed and applied for filtering the relative trajectory of the vehicle. The filter uses relative motion of cab and chassis, measured by low-cost IMU sensors, combine with low-cost GNSS carrier phase measurements for accurate relative position measurements. Results show that very precise trajectories can be estimated, providing a good base for a short horizon (local) mapping system without using expensive IMU sensors. The results are detailed in the master s thesis [30] that was carried out within VPRP. Within VCC/Zenuity, several contributions to the local map development has been done during the project within. Prior to the project we had a road estimation framework which fused lane marking information from a forward-looking camera with object positions from a forward-looking radar. In this project, we have improved the framework by also including map information which extends the estimation horizon. We have also developed a method for estimating in which lane the ego vehicle is driving, referred to as ego lane assignment. This lane assignment module is an important component for making map-based path predictions. Both the improved road geometry estimation and the ego lane assignment method is part of the deliverables to the Drive Me project with Volvo Cars. The ego lane assignment algorithm has been published in [25]. FFI Fordonsstrategisk Forskning och Innovation 12
13 To support the host vehicle s current view of its traffic situation, academia have made contributions to improve the positioning of other vehicles and pedestrians using novel object tracking algorithms [1] [4] as well as developed basic tracking frameworks [5] [8] and performance metrics for these scenarios [9]. In addition, they have developed methods to describe the road in front of the host vehicle, both using radar and camera [10] [12], and using lidar sensors [13]. In WP3, the objective is to create a local map and to understand the current traffic situation. We formulate this as an extended target tracking (ETT) problem, where we seek to position all objects in our vicinity. Some of these objects are dynamic (such as pedestrians and cars) [1] [4] whereas other objects are static (such as lamp posts and traffic signs), and by positioning all static objects we obtain a map of our environment [16], [17]. We have studied a number of different techniques to efficiently handle the ETT problem and developed new algorithms that we argue are state of the art for the sensors that we considered. One of the main problems that we faced while developing new tracking algorithms (see above), is that there is a lack of benchmark scenarios and useful performance metrics. To develop these benchmark scenarios, we need to be able to extract accurate trajectory estimates from data, which is a very challenging problem. As part our work on ETT, we developed new different performance metrics (among which one received a best paper award [9]) for trajectory estimates. Related to road estimation academia have developed algorithms for estimating the shape of the road ahead of a host vehicle. In [10] [12], the aim is to accurately describe the road geometry up to 200 m ahead of a host vehicle equipped with a camera, a radar, and vehicle internal sensors, in highway scenarios. This purpose is accomplished by deriving a precise clothoid-based road model for which we design a Bayesian fusion framework. Using this framework, the road geometry is estimated using sensor observations on the shape of the lane markings, the heading of leading vehicles, and the position of roadside radar reflectors. The evaluation on sensor data shows that the proposed algorithms can capture the shape of the road well, even in challenging mountainous highways. In [13], a deep learning approach has been developed to carry out road detection using only LIDAR data. Starting from an unstructured point cloud, top-view images encoding several basic statistics such as mean elevation and density are generated. By considering a top-view representation, road detection is reduced to a single-scale problem that can be addressed with a simple and fast fully convolutional neural network (FCN). The FCN is specifically designed for the task of pixel-wise semantic segmentation by combining a large receptive field with high-resolution feature maps. The proposed system achieved excellent performance and it is among the top-performing algorithms on the KITTI road benchmark. Its fast inference makes it particularly suitable for real-time applications. While intelligent transportation systems come in many shapes and sizes, arguably the most transformational realization will be the autonomous vehicle. As such vehicles become commercially available in the coming years, first on dedicated roads and under specific conditions, and later on all public roads at all times, a phase transition will occur. Once a sufficient number of autonomous vehicles is deployed, the opportunity for explicit coordination appears. In [23], [24] we () treat this challenging network control problem, which lies at the intersection of control theory, signal processing, and wireless communication. We provide an overview of the state of the art, while at the same time highlighting key research directions for the coming decades. FFI Fordonsstrategisk Forskning och Innovation 13
14 WP 4.1 Map positioning For heavy trucks, the possibility of using perception-based sensors to map the environment around the vehicle for path planning was investigated. Most of the focus has been on lidar technology and different positioning and prediction algorithms for trajectory and localization estimation. When using lidar, a highly accurate map can be created and annotated. This can then be used together with landmark recognition algorithms for localization of the ego vehicle as well as objects detected. One thesis work [29] has been published about using lidars for map generation and localization. The use of cheaper sensors for localization of trucks was also investigated [31]. With the use of a combination of radar, camera, imu and GNSS together with high definition maps, an accurate lane level positioning was achievable under favorable conditions. In-vehicle test showed that using this type of localization is not robust enough for autonomous vehicles on its own. Different dead reckoning Kalman filter implementations were investigated to improve the robustness of the system [31]. Related to vehicle estimation VCC have developed a generic fusion framework both in Matlab and C++, in which we can implement and evaluate concepts for accurate map positioning using different filtering techniques and using data from different types of sensors (radars, lidar and vision). The most promising of these concepts has been evaluated in a real-time environment in a test vehicle. Based on data from the sensors available, we have for instance been able to evaluate: Different types of sensor maps and how they affect the positioning What level of positioning accuracy that has been possible to achieve How different traffic scenarios affect the positioning performance Some of these conclusions have been presented in the following publications [14], [15]. One example was the investigation [14] we did of the position accuracy where you expect just to use sensors typically available on the cars at that time, e.g. simple GPS, inertial sensors and forward-looking radar and camera, together with a landmark based map. Our conclusion, although we achieved sufficient accuracy during favorable conditions, the solution was not robust enough to handle loss of one information source (for example missing lane markings) or changes in the environment (weather, season, rebuilding). Additionally, we found that the absolute (global) position measurements from typical GPS receivers where not nearly accurate enough. Using this work as a basis, we explored different ways of improving the accuracy and robustness of the positioning algorithm. In [15], we develop a cost efficient solution for using the GPS to accurately measure odometry (the movement of the host car) instead of giving us inaccurate global position. As such, if we can position the car in a map, we can use the GPS to accurately dead recon the cars position for a much longer time than if we just used wheel speed and inertial sensors. Additionally, we have developed methods for how to more accurately build the underlying landmarked based maps [16], [17] as well as how to build these maps simultaneously as we try to localize in them [18] (SLAM). Robust cross-seasonal localization is one of the major challenges in long-term visual navigation of autonomous vehicles. In [19], and VCC Ph D exploit recent advances in semantic segmentation of images, i.e., where each pixel is assigned a label related to the type of object it represents, to solve the problem of long-term visual localization. We show that semantically labeled 3D point maps of the environment, together with semantically segmented images, can be efficiently used for vehicle localization without the need for detailed feature descriptors (SIFT, SURF, etc.). Thus, instead of depending on hand-crafted feature descriptors, we rely on the training of an image segmenter. The resulting map takes up much less storage space compared to a traditional descriptorbased map. A particle filter based semantic localization solution is compared to one based on SIFTfeatures, and even with large seasonal variations over the year we perform on par with the larger and more descriptive SIFT-features and can localize with an error below 1 m most of the time. FFI Fordonsstrategisk Forskning och Innovation 14
15 During this work, we found that there are no good datasets to evaluate localization performance during these varying conditions, and thus we have developed our own benchmark suite in collaboration with a few other universities in Europe and Japan [20]. Practical visual localization approaches need to be robust to a wide variety of viewing condition, including day-night changes, as well as weather and seasonal variations, while providing highly accurate 6 degree-of-freedom (6DOF) camera pose estimates. In [20], we () introduce the first benchmark datasets specifically designed for analyzing the impact of such factors on visual localization. Using carefully created ground truth poses for query images taken under a wide variety of conditions, we evaluate the impact of various factors on 6DOF camera pose estimation accuracy through extensive experiments with state-of-the-art localization approaches. Based on our results, we draw conclusions about the difficulty of different conditions, showing that long-term localization is far from solved, and propose promising avenues for future work, including sequence-based localization approaches and the need for better local features. We will make our benchmark publicly available. WP 4.2 Cooperative positioning The work conducted in VPRP has shown that there is great potential in the area of cooperative GNSS to increase relative position accuracy and to aid cooperative ITS applications and active safety also in the heavy truck segment. The basic idea behind cooperative GNSS positioning is that vehicles exchange raw GNSS measurement, data/correction or equivalent. Using this data, differencing techniques can be applied to calculate the relative position between the vehicles. That is, it will not tell us where we are, but where we are in relation to each other. The simplest form of cooperative GNSS would be to exchange GNSS (code) position from the vehicle onboard GNSS receiver. However, since the currently used GNSS receivers for vehicle achieves an absolute positioning accuracy of 2 meters at best (disregarding RTK systems), this information is more or less useless for cooperative positioning. The next step, which has been implemented within the VPRP project, is to exchange raw GNSS pseudo range measurements between vehicles [31]. By double differencing these measurements, atmospheric, satellite clock errors, and receiver clock errors are removed, substantially improving the position accuracy. The remaining errors are mostly from the local multipath and from measurement errors of the receivers. Tests [31] have shown that these errors differ between different receivers and antennas. From test series with more expensive receivers and antennas only small errors are found and the precision of the double differenced solutions are often less than 50 cm. The same tests for cheaper receivers show worse results [31]. A further improvement of the relative position in cooperative GNSS can be achieved by exchanging and using raw GNSS carrier phase measurements. The main problem in using carrier phase measurements is solving for the integer ambiguity parameters in the positioning solution. The carrier phase measurements are very sensitive to disturbances when tracking the carrier phase of the satellite signal. Thus, an object blocking the line of sight between the antenna and the satellite will cause the receiver to lose track (lose fix) and new ambiguity parameters need to be estimated. A possible solution to overcome short signal outages was investigated in VPRP [31] and showed that it could be possible to recover the fix (recover the satellite tracking) if the correct algorithms were applied. WP 4.3 Global positioning In VPRP, for commercial trucks a state of the art GNSS investigation was carried out. It showed that many suppliers and technologies are available and constantly improving. A selection of GNSS systems were tested and evaluated [32] for accuracy together with investigations into maintaining the accuracy when the view of the satellites is lost. It was understood that with good dead reckoning, carrier phase lock could be obtained almost immediately once satellite view is restored. WP 5 Route prediction The main idea in this work package is to explore how to make use of the repetitive pattern in most people s daily commutes (home to work, work to store, store to home, etc.) to predict the destination FFI Fordonsstrategisk Forskning och Innovation 15
16 of a trip when it starts. We (VCC) have made several contributions in this area. Some related to the problem of clustering the end position of the vehicle from many trips into a set of destinations [27]. Other contributions have been in making efficient short-term predictions during a trip [26]. To summarize above, the problem of short range (next link) prediction has been studied [figure 3] and we have developed a new method [27] which has two main benefits: Low real time computational complexity The prediction model can be sequentially updated for each new trip [Figure 3: Shot range prediction] Pictures below gives a basic visual overview of the new method from VCC for clustering driving destinations [Figure 4]. FFI Fordonsstrategisk Forskning och Innovation 16
17 [Figure 4: Clustering driving destinations] Suggesting a reasonable path for the host vehicle, is an important task for all self-driving vehicles. A basic strategy to do so, is to estimate the position in a map and then suggest a path that keeps the vehicle on the road. However, that strategy relies on highly accurate position information, a detailed map, and the absence of vehicles and obstacles on the road. With the advent of powerful machine learning strategies, it is interesting to instead try to leverage on all the available sensor information and try to control a vehicle in a more human-like manner. In [21], a novel learning-based approach has been developed to generate driving paths by integrating lidar point clouds, GPS-IMU information, and Google driving directions. The system is based on a fully convolutional neural network that jointly learns to carry out perception and path generation from real-world driving sequences and that is trained using automatically generated training examples. The results obtained in this work indicate that the proposed system may help fill the gap between low-level scene parsing and behavior-reflex approaches by generating outputs that are close to vehicle control and at the same time human-interpretable. WP 6 Global map building To support the positioning development in WP 4, an accurate and detailed map, referred to as the HDmap, has been developed within VCC. The focused test route for VPRP has been aligned with the FFI Fordonsstrategisk Forskning och Innovation 17
18 intended route in Drive Me, as is shown in Fig. 1. For this particular route, we (VCC) have both constructed detailed HD-maps and evaluated our positioning algorithms. The developed HD-map contains a rich description of the exact lane level geometries as is described in [28], which also presents how the map is segmented into map horizons allowing for an efficient communication in real-time systems. Figure 1: The selected test route in Dive Me From VTEC, the concept of building a map database or populate and enrich an existing map database with object data captured by vehicles is previously proven for example in the FFI Learning Fleet project. In this project and work package, simultaneous localization and mapping (SLAM) methods have been explored for detecting and mapping landmark objects relative the global reference frame and use these landmarks for localizing the vehicle. At VTEC, two master thesis workers have been supervised, in their work on this topic, resulting in a publication [29], which demonstrates efficient landmark extraction/mapping and landmark-based vehicle localization methods. 5.2 FFI objectives and project contributions The project focused on two out of six program targets (see bullet list below with OK) but will act as an enabler and enhance future projects addressing additional target areas such as unprotected road users. The vehicle and traffic safety program targets: Intelligent safety systems: OK Human cognition and tolerance Crash worthiness (passive and active) Field studies (e.g. real-life safety): OK Unprotected road users Security (e.g. personal protection/integrity) FFI Fordonsstrategisk Forskning och Innovation 18
19 Path prediction and high accuracy positioning are important supporting technologies in the future development of safety and efficiency systems, which can provide the partners with a competitive advantage on the global market. The contribution of the VRPR projects results to the FFI-program goals can be summarized as follow: Reducing road transports environmental impact - Through increased knowledge and results on route prediction, a better optimization of car control was enabled, which reduces environmental impact. (More effective engine-control). Reduce number of casualties in traffic - Better control of detailed traffic situations such as lane-departures, going through intersections, entering and exiting freeways reduces the probability of accidents, since manoeuvres can be better planned and executed. Strengthen global competitiveness Increased safety is an important topic for Volvo which strengthens competitiveness. Increased positional accuracy also enables conveniencefunctions which attracts end-customers. 6 Dissemination and Publications 6.1 Knowledge and dissemination of results Hur har/planeras projektresultatet att Markera Kommentar användas och spridas? med X Öka kunskapen inom området X Novel methods for global positioning and route prediction. Föras vidare till andra avancerade tekniska utvecklingsprojekt X This result will be used in Drive Me project and further developed and used by Zenuity. Föras vidare till produktutvecklingsprojekt X Result will be a part of the product portfolio at Zenuity. Introduceras på marknaden Användas i utredningar/regelverk/ tillståndsärenden/ politiska beslut 6.2 Publications [1] K. Granström, S. Renter, M. F.- S. (IV), undefined 2017, and undefined 2017, Pedestrian tracking using Velodyne data Stochastic optimization for extended object tracking, ieeexplore.ieee.org [2] K. Granstrom, L. Svensson, S. Reuter, Y. Xia, and M. Fatemi, Likelihood-based data association for extended object tracking using sampling methods, IEEE Trans. Intell. Veh., pp. 1 1, [3] K. Granström and M. Baum, Extended Object Tracking: Introduction, Overview and Applications, arxiv, pp. 1 17, [4] M. Beard, S. Reuter, K. Granström, B. T. Vo, B. N. Vo, and A. Scheel, Multiple Extended Target Tracking With Labeled Random Finite Sets, IEEE Trans. Signal Process., vol. 64, no. 7, pp , [5] Y. Xia, K. Granstrcom, L. Svensson, and A. F. Garcia-Fernandez, Performance FFI Fordonsstrategisk Forskning och Innovation 19
20 evaluation of multi-bernoulli conjugate priors for multi-target filtering, in 20th International Conference on Information Fusion, Fusion Proceedings, [6] Á. F. Garc \ia-fernández, L. Svensson, and M. R. Morelande, Iterated statistical linear regression for Bayesian updates, in Information Fusion (FUSION), th International Conference on, 2014, pp [7] L. Svensson and M. Morelande, Target tracking based on estimation of sets of trajectories, in Information Fusion (FUSION), th International Conference on, 2014, pp [8] Á. F. Garc \ia-fernández, L. Svensson, M. R. Morelande, and S. Särkkä, Posterior linearization filter: Principles and implementation using sigma points, IEEE Trans. signal Process., vol. 63, no. 20, pp , [9] A. S. Rahmathullah, A. F. Garcia-Fernandez, and L. Svensson, Generalized optimal sub-pattern assignment metric, in 20th International Conference on Information Fusion, Fusion Proceedings, [10] L. Hammarstrand, M. Fatemi, Á. F. García-Fernández, and L. Svensson, Long- Range Road Geometry Estimation Using Moving Vehicles and Roadside Observations, IEEE Trans. Intell. Transp. Syst., vol. 17, no. 8, 2016 [11] M. Fatemi, L. Hammarstrand, L. Svensson, and A. F. Garcia-Fernandez, Road geometry estimation using a precise clothoid road model and observations of moving vehicles, in th IEEE International Conference on Intelligent Transportation Systems, ITSC 2014, [12] A. F. Garcia-Fernandez, L. Hammarstrand, M. Fatemi, and L. Svensson, Bayesian road estimation using onboard sensors, IEEE Trans. Intell. Transp. Syst., vol. 15, no. 4, [13] L. Caltagirone, S. Scheidegger, L. Svensson, and M. Wahde, Fast LIDAR-based Road Detection Using Fully Convolutional Neural Networks, 2017 IEEE Intell. Veh. Symp., pp , Jun [14] M. Lundgren, E. Stenborg, L. Svensson, and L. Hammarstrand, Vehicle selflocalization using off-the-shelf sensors and a detailed map, in IEEE Intelligent Vehicles Symposium, Proceedings, [15] E. Stenborg and L. Hammarstrand, Using a single band GNSS receiver to improve relative positioning in autonomous cars, in IEEE Intelligent Vehicles Symposium, Proceedings, 2016, vol Augus. [16] M. Fatemi, K. Granström, L. Svensson, F. J. R. Ruiz, and L. Hammarstrand, Poisson Multi-Bernoulli Mapping Using Gibbs Sampling, IEEE Trans. Signal Process., vol. 65, no. 11, [17] M. Lundgren, L. Svensson, and L. Hammarstrand, Variational Bayesian Expectation Maximization for Radar Map Estimation, IEEE Trans. Signal Process., vol. 64, no. 6, [18] M. Fatemi, L. Svensson, L. Hammarstrand, and M. Lundgren, Variational Bayesian em for SLAM, in 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015, [19] E. Stenborg, C. Toft, and L. Hammarstrand, Long-term Visual Localization using Semantically Segmented Images, Jan [20] T. Sattler, W. Maddern, A. Torii, J. Sivic, T. Pajdla, M. Pollefeys, and M. Okutomi, Benchmarking 6DOF Urban Visual Localization in Changing Conditions, arxiv Prepr. arxiv , [21] L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, LIDAR-based Driving Path Generation Using Fully Convolutional Neural Networks, Mar [22] A. Garcia-Fernandez, L. Svensson, and S. Sarkka, Cooperative localisation using posterior linearisation belief propagation, IEEE Transactions on Zenuity PhD VCC PhD VCC PhD VCC PhD FFI Fordonsstrategisk Forskning och Innovation 20
21 Vehicular Technology, [23] H. Wymeersch, G. R. De Campos, P. Falcone, L. Svensson, and E. G. Ström, Challenges for cooperative ITS: Improving road safety through the integration of wireless communications, control, and positioning, in 2015 International Conference on Computing, Networking and Communications, ICNC 2015, 2015, pp [24] R. Hult, G. R. Campos, E. Steinmetz, L. Hammarstrand, P. Falcone, and H. Wymeersch Coordination of Cooperative Autonomous Vehicles: Toward safer and more efficient road transportation, IEEE Signal Process. Mag., vol. 33, no. 6, [25] Svensson, Daniel, and Joakim Sörstedt. "Ego lane estimation using vehicle observations and map information." Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE, [26] Panahandeh, Ghazaleh, Nasser Mohammadiha, and Joakim Lin Sorstedt Method and system for utilizing a trip history." U.S. Patent Application No. 15/441,689. [27] Panahandeh, Ghazaleh. "Driver route and destination prediction " Intelligent Vehicles Symposium (IV), 2017 IEEE. IEEE, [28] Sörstedt, Joakim HD-map interface specification, Internal Zenuity report VCC VCC VCC VCC [29] Lindholm, Robin, Pålsson, Carl-.Johan Simultaneous Localization and Mapping for Vehicle Localization using LIDAR Sensors, [30] Agnas, Edvin, Jerenvik, Marcus Estimation of position and orientation of truck kinematic frames, [31] Jimmy Hammenstedt, Edvin Valtersson, Sudha Vana Vehicle Position and Route Prediction VTEC VTEC VTEC FFI Fordonsstrategisk Forskning och Innovation 21
22 7 Conclusions and future research Increased security and accessibility with the help of automation is more relevant now than when the project was started. As the result section shows, we have successfully met the goals set up for the project and have as a result gained important knowledge related to vehicle positioning and route prediction. Our approach has been to first develop detailed maps using specific mapping vehicles equipped with high accuracy reference sensors, and then in a second step develop algorithms for estimating the vehicle position in this map using affordable automotive grade sensors. Future research in this area could focus on how to probe source the map using simpler sensors and instead build the map sequentially from multiple trips. Also, in the academic world, interest in this knowledge grows, as has been demonstrated by the majority of new courses. There are still a lot of challenges to make a robust and scalable positioning solution for the autonomous vehicle. It is clear that a combination of positioning technologies is needed as there is no standalone system that can satisfy all the requirements. As for routing it is shown that high definition maps can really help with path and behavioural planning. Further research into more robust and reliable localization is needed to solve the autonomous needs going forward. 8 Participating parties and contact persons VCC (Zenuity as consultant from ) Marita Andersson, Research lead New Technology, Zenuity Joakim Lin-Sörstedt, Product owner Localization & Road estimation, Zenuity Mikael Edvardsson, Strategy, Concepts and Advanced Engineering Active Safety, Volvo Cars Cooperation University of Technology Department of Electrical Engineering Tomas McKelvey, Professor Signal Processing Lars Hammarstrand, Post-Doctoral Research Fellow in the Signal processing lars.hammarstrand@chalmers.se Volvo Group Trucks Technology Jimmy Hammenstedt, Vehicle Automation Environment Perception Hans Deragården, Vehicle Automation Environment Perception FFI Fordonsstrategisk Forskning och Innovation 22
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH 2016 Anne Håkansson All rights reserved. Svårt Harmonisera -> Introduktion, delar: Fråga/
Thesis work at McNeil AB Evaluation/remediation of psychosocial risks and hazards.
Evaluation/remediation of psychosocial risks and hazards. Help us to create the path forward for managing psychosocial risks in the work environment by looking into different tools/support/thesis and benchmarking
FFI - Learning Fleet. Transporteffektivitetsdagen 2014 09 11. Hans.Deragarden@Volvo.com
FFI - Learning Fleet Transporteffektivitetsdagen 2014 09 11 Hans.Deragarden@Volvo.com Bakgrund Varför Learning Fleet? Möjlighet: Rutt- och fordonsadaptation mot dynamiska vägattribut som trafikflöden,
ERS (Electrical Road System) Slide-in project within FFI program
ERS (Electrical Road System) Slide-in project within FFI program FFI Fordonsstrategisk forskning och innovation What is slide-in? Slide-in, is a name that forsknings-, is used to innovations- explain,
Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families
Health café Resources Meeting places Live library Storytellers Self help groups Heart s house Volunteers Health coaches Learning café Recovery Health café project Focus on support to people with chronic
COPENHAGEN Environmentally Committed Accountants
THERE ARE SO MANY REASONS FOR WORKING WITH THE ENVIRONMENT! It s obviously important that all industries do what they can to contribute to environmental efforts. The MER project provides us with a unique
A study of the performance
A study of the performance and utilization of the Swedish railway network Anders Lindfeldt Royal Institute of Technology 2011-02-03 Introduction The load on the railway network increases steadily, and
SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate
Swedish Chapter of International Society of Indoor Air Quality and Climate Aneta Wierzbicka Swedish Chapter of International Society of Indoor Air Quality and Climate Independent and non-profit Swedish
Innovation in the health sector through public procurement and regulation
Innovation in the health sector through public procurement and regulation MONA TRUELSEN & ARVID LØKEN 1 14/11/2013 Copyright Nordic Innovation 2011. All rights reserved. Nordic Innovation An institution
Kundfokus Kunden och kundens behov är centrala i alla våra projekt
D-Miljö AB bidrar till en renare miljö genom projekt där vi hjälper våra kunder att undersöka och sanera förorenad mark och förorenat grundvatten. Vi bistår dig som kund från projektets start till dess
Robust och energieffektiv styrning av tågtrafik
1 Robust och energieffektiv styrning av tågtrafik - CATO - Forskning inom OnTime - Vidareutveckling och möjligheter KAJT, temadag om punktlighet 2014-11-13 Tomas Lidén Transrail Sweden AB Dagens trafikledning
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018
CHANGE WITH THE BRAIN IN MIND Frukostseminarium 11 oktober 2018 EGNA FÖRÄNDRINGAR ü Fundera på ett par förändringar du drivit eller varit del av ü De som gått bra och det som gått dåligt. Vi pratar om
Tekniskrapport Non Hit Car And Truck
Tekniskrapport Non Hit Car And Truck 2010-2013 Författare: Anders Almevad Datum: 2014-03-28 Delprogram Fordons & Trafiksäkerhet Innehåll 1. Sammanfattning... 3 2. Bakgrund... 3. Syfte... 4. Genomförande....
Preschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg
Swedish adaptation of ISO TC 211 Quality principles The subject How to use international standards Linguistic differences Cultural differences Historical differences Conditions ISO 19100 series will become
Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE
SVENSK STANDARD SS-ISO/IEC 26300:2008 Fastställd/Approved: 2008-06-17 Publicerad/Published: 2008-08-04 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.30 Information technology Open Document
Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05
Om oss Vi på Binz är glada att du är intresserad av vårt support-system för begravningsbilar. Sedan mer än 75 år tillverkar vi specialfordon i Lorch för de flesta olika användningsändamål, och detta enligt
Självkörande bilar. Alvin Karlsson TE14A 9/3-2015
Självkörande bilar Alvin Karlsson TE14A 9/3-2015 Abstract This report is about driverless cars and if they would make the traffic safer in the future. Google is currently working on their driverless car
Understanding Innovation as an Approach to Increasing Customer Value in the Context of the Public Sector
Thesis for the degree of Licentiate of Philosophy, Östersund 2014 Understanding Innovation as an Approach to Increasing Customer Value in the Context of the Public Sector Klas Palm Supervisors: Håkan Wiklund
SRS Project. the use of Big Data in the Swedish sick leave process. EUMASS Scientific program
SRS Project the use of Big Data in the Swedish sick leave process EUMASS Scientific program 2016-03-04 Stöd för rätt sjukskrivning Aim of presentation To present how Big data analysis can be used to support
State Examinations Commission
State Examinations Commission Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training
A metadata registry for Japanese construction field
A metadata registry for Japanese construction field LCDM Forum, Japan October 25 th -27 th - 2006 TAKEYA, Isobe LCDM Forum Secretariat Document No. GEC-2005-002 LCDM Forum, Japan LCDM Forum, Japan Non-profit
Kursutvärderare: IT-kansliet/Christina Waller. General opinions: 1. What is your general feeling about the course? Antal svar: 17 Medelvärde: 2.
Kursvärdering - sammanställning Kurs: 2AD510 Objektorienterad programmering, 5p Antal reg: 75 Program: 2AD512 Objektorienterad programmering DV1, 4p Antal svar: 17 Period: Period 2 H04 Svarsfrekvens: 22%
Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET
Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET National Swedish parental studies using the same methodology have been performed in 1980, 2000, 2006 and 2011 (current study). In 1980 and 2000 the studies
Datasäkerhet och integritet
Chapter 4 module A Networking Concepts OSI-modellen TCP/IP This module is a refresher on networking concepts, which are important in information security A Simple Home Network 2 Unshielded Twisted Pair
Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017
Smart@Helsingborg Stadsledningsförvaltningen Digitaliseringsavdelningen the World s most engaged citizens Stad + Data = Makt Kart/GIS-dag SamGIS Skåne 6 december 2017 Photo: Andreas Fernbrant Urbanisering
The present situation on the application of ICT in precision agriculture in Sweden
The present situation on the application of ICT in precision agriculture in Sweden Anna Rydberg & Johanna Olsson JTI Swedish Institute for Agricultural and Environmental Engineering Objective To investigate
Resultat av den utökade första planeringsövningen inför RRC september 2005
Resultat av den utökade första planeringsövningen inför RRC-06 23 september 2005 Resultat av utökad första planeringsövning - Tillägg av ytterligare administrativa deklarationer - Variant (av case 4) med
Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap
Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap Syns du, finns du? - En studie över användningen av SEO, PPC och sociala medier som strategiska kommunikationsverktyg i svenska företag
Mönster. Ulf Cederling Växjö University Ulf.Cederling@msi.vxu.se http://www.msi.vxu.se/~ulfce. Slide 1
Mönster Ulf Cederling Växjö University UlfCederling@msivxuse http://wwwmsivxuse/~ulfce Slide 1 Beskrivningsmall Beskrivningsmallen är inspirerad av den som användes på AG Communication Systems (AGCS) Linda
The Algerian Law of Association. Hotel Rivoli Casablanca October 22-23, 2009
The Algerian Law of Association Hotel Rivoli Casablanca October 22-23, 2009 Introduction WHY the Associations? NGO s are indispensable to the very survival of societal progress Local, National or International
SICS Introducing Internet of Things in Product Business. Christer Norström, CEO SICS. In collaboration with Lars Cederblad at Level21 AB
SICS Introducing Internet of Things in Business Christer Norström, CEO SICS In collaboration with Lars Cederblad at Level21 AB A NOT CONNECTED PRODUCT TO A CONNECTED PRODUCT IOT introduction Examples What
Materialplanering och styrning på grundnivå. 7,5 högskolepoäng
Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles
D-RAIL AB. All Rights Reserved.
2 3 4 5 6 Photo: Svante Fält 7 8 9 ägare ägare /förvaltare huvudman mätning operatör DATA underhållare underhållare 9 The hardware 10 SENSORS: Cutting edge technology designed for minimum maintenance and
TRENDERNA SOM FORMAR DIN VERKLIGHET 2014 ÅRETS IT AVDELNING 2014 2014-01-23
TRENDERNA SOM FORMAR DIN VERKLIGHET 2014 ÅRETS IT AVDELNING 2014 2014-01-23 THE POWER OF INTEGRATION There will not exist hardware without services integrated, services without applications surrounding
MO8004 VT What advice would you like to give to future course participants?
MO8004 VT2017 Answer Count: 7 1. What was the best aspect of the course? What was the best aspect of the course? Improvement of fortran programming skill, gain some knowledge from several phenomenon, improvement
Beijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson
Kvalitetsarbete I Landstinget i Kalmar län 24 oktober 2007 Eva Arvidsson Bakgrund Sammanhållen primärvård 2005 Nytt ekonomiskt system Olika tradition och förutsättningar Olika pågående projekt Get the
6 th Grade English October 6-10, 2014
6 th Grade English October 6-10, 2014 Understand the content and structure of a short story. Imagine an important event or challenge in the future. Plan, draft, revise and edit a short story. Writing Focus
Pedagogisk planering. Ron Chlebek. Centralt Innehåll. Svenska/Engelska. Lego Mindstorms. Syfte: Matematik
Pedagogisk planering Ron Chlebek Lego Mindstorms Åk 5 har programmerat tidigare i Scratch, Microbit och Code.org. Vi har börjat skolåret med att packa upp och bygga basmodel. Eleverna kommer att arbeta
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017
Methods to increase work-related activities within the curricula S Nyberg and Pr U Edlund KTH SoTL 2017 Aim of the project Increase Work-related Learning Inspire theachers Motivate students Understanding
FANNY AHLFORS AUTHORIZED ACCOUNTING CONSULTANT,
FANNY AHLFORS AUTHORIZED ACCOUNTING CONSULTANT, SWEDEN HOW TO CREATE BLOG CONTENT www.pwc.se How to create blog content Fanny Ahlfors Authorized Accounting Consultant 5 Inbound Methodology Attract Convert
ISO STATUS. Prof. dr Vidosav D. MAJSTOROVIĆ 1/14. Mašinski fakultet u Beogradu - PM. Tuesday, December 09,
ISO 9000 - STATUS Prof. dr Vidosav D. MAJSTOROVIĆ 1/14 1 ISO 9000:2000, Quality management systems - Fundamentals and vocabulary Establishes a starting point for understanding the standards and defines
The GEO Life Region. Roland Norgren - Process Manager R&I. Creating the tools for the Healthy and Wellbeing Life.
The GEO Life Region Creating the tools for the Healthy and Wellbeing Life Roland Norgren - Process Manager R&I Denna presentation är skyddat av upphovsrättslagen. Alla rättigheter till presentationen ägs
EVALUATION OF ADVANCED BIOSTATISTICS COURSE, part I
UMEÅ UNIVERSITY Faculty of Medicine Spring 2012 EVALUATION OF ADVANCED BIOSTATISTICS COURSE, part I 1) Name of the course: Logistic regression 2) What is your postgraduate subject? Tidig reumatoid artrit
Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.
Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols. ExcelLoad simulates the maximum forces that may appear during a transport no matter if the
Theory 1. Summer Term 2010
Theory 1 Summer Term 2010 Robert Elsässer 1 Introduction Summer Term 2010 Robert Elsässer Prerequisite of Theory I Programming language, such as C++ Basic knowledge on data structures and algorithms, mathematics
Klicka här för att ändra format
på 1 på Marianne Andrén General Manager marianne.andren@sandviken.se Sandbacka Park Högbovägen 45 SE 811 32 Sandviken Telephone: +46 26 24 21 33 Mobile: +46 70 230 67 41 www.isea.se 2 From the Off e project
Writing with context. Att skriva med sammanhang
Writing with context Att skriva med sammanhang What makes a piece of writing easy and interesting to read? Discuss in pairs and write down one word (in English or Swedish) to express your opinion http://korta.nu/sust(answer
Strategy for development of car clubs in Gothenburg. Anette Thorén 2011-03-16
Strategy for development of car clubs in Gothenburg Anette Thorén 2011-03-16 Facts 2010 Objectives 2003: 10 000 members in five years 75 % are members through their employer 413 cars - 165 in private car
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Ett hållbart boende A sustainable living. Mikael Hassel. Handledare/ Supervisor. Examiner. Katarina Lundeberg/Fredric Benesch
Ett hållbart boende A sustainable living Mikael Hassel Handledare/ Supervisor Examinator/ Examiner atarina Lundeberg/redric Benesch Jes us Azpeitia Examensarbete inom arkitektur, grundnivå 15 hp Degree
Support Manual HoistLocatel Electronic Locks
Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing
MÅLSTYRNING OCH LÄRANDE: En problematisering av målstyrda graderade betyg
MÅLSTYRNING OCH LÄRANDE: En problematisering av målstyrda graderade betyg Max Scheja Institutionen för pedagogik och didaktik Stockholms universitet E-post: max.scheja@edu.su.se Forskning om förståelse
Sara Skärhem Martin Jansson Dalarna Science Park
Sara Skärhem Martin Jansson Dalarna Science Park Sara Skärhem Martin Jansson Vad är innovation? På Wikipedia hittar man: En innovation är en ny idé, till exempel i form av en produkt, lösning, affärsidé,
PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs
PowerCell Sweden AB Ren och effektiv energi överallt där den behövs Requirements of power electronics for fuel cells in electric vehicles Andreas Bodén (Rickard Nilsson) Förstudie: Kravställning på kraftelektronik
Senaste trenderna inom redovisning, rapportering och bolagsstyrning Lars-Olle Larsson, Swedfund International AB
1 Senaste trenderna inom redovisning, rapportering och bolagsstyrning Lars-Olle Larsson, Swedfund International AB 2 PwC undersökning av börsföretag & statligt ägda företag Årlig undersökning av års- &
The Swedish National Patient Overview (NPO)
The Swedish National Patient Overview (NPO) Background and status 2009 Tieto Corporation Christer Bergh Manager of Healthcare Sweden Tieto, Healthcare & Welfare christer.bergh@tieto.com Agenda Background
Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori
Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori (kurskod SA104X, 15hp, VT15) http://www.math.kth.se/optsyst/grundutbildning/kex/ Förkunskaper Det är ett krav att
Botnia-Atlantica Information Meeting
Botnia-Atlantica 2014-2020 Information Meeting Norway: Nordland Sweden: Västerbotten Västernorrland Nordanstigs kommun Finland: Mellersta Österbotten Österbotten Södra Österbotten Monitoring Committee
Collaborative Product Development:
Collaborative Product Development: a Purchasing Strategy for Small Industrialized House-building Companies Opponent: Erik Sandberg, LiU Institutionen för ekonomisk och industriell utveckling Vad är egentligen
http://marvel.com/games/play/31/create_your_own_superhero http://www.heromachine.com/
Name: Year 9 w. 4-7 The leading comic book publisher, Marvel Comics, is starting a new comic, which it hopes will become as popular as its classics Spiderman, Superman and The Incredible Hulk. Your job
EU:s ministerkonferens för e-förvaltning under det svenska ordförandeskapet
EU:s ministerkonferens för e-förvaltning under det svenska ordförandeskapet Seminarium 1:6 Föreläsare Urban Funered, urban.funered@finance.ministry.se Offentliga Rummet, Norrköping, 26 Maj 2009 Urban Funered
Accelererad provning i
Accelererad provning i simulator Är det möjligt? Magnus Hjälmdahl, VTI Institute Excellence Centre at VTI Common platform for increased and long-term co-operation, competence building and knowledge transfer
Halvtidsuppdatering cykelsäkerhetsforskning
Halvtidsuppdatering cykelsäkerhetsforskning Författare: Tania Dukic Willstrand Datum: 2017-03-01 till 2017-12_30 Projekt inom FFI - Cyklar och andra fordon i säker och smart samverkan för en hållbar framtid
Hammer & Hanborgs Kompetensprofil
Hammer & Hanborgs Kompetensprofil Vi har tillsammans med SHL/CEB tagit fram en unik kompetensmodell baserat på CEBs mångåriga forskning inom utvärderingsverktyg och beteendekompetenser samt Hammer & Hanborgs
Support for Artist Residencies
1. Basic information 1.1. Name of the Artist-in-Residence centre 0/100 1.2. Name of the Residency Programme (if any) 0/100 1.3. Give a short description in English of the activities that the support is
FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP
FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP En studie av svensk utbildningsvetenskaplig forskning vid tre lärosäten VETENSKAPSRÅDETS RAPPORTSERIE 10:2010 Forskningskommunikation
Installation Instructions
Installation Instructions (Cat. No. 1794-IE8 Series B) This module mounts on a 1794 terminal base unit. 1. Rotate keyswitch (1) on terminal base unit (2) clockwise to position 3 as required for this type
Workplan Food. Spring term 2016 Year 7. Name:
Workplan Food Spring term 2016 Year 7 Name: During the time we work with this workplan you will also be getting some tests in English. You cannot practice for these tests. Compulsory o Read My Canadian
INSTALLATION INSTRUCTIONS
INSTALLATION - REEIVER INSTALLATION INSTRUTIONS RT0 RF WIRELESS ROOM THERMOSTAT AND REEIVER MOUNTING OF WALL MOUTING PLATE - Unscrew the screws under the - Pack contains... Installation - Receiver... Mounting
Kursplan. AB1029 Introduktion till Professionell kommunikation - mer än bara samtal. 7,5 högskolepoäng, Grundnivå 1
Kursplan AB1029 Introduktion till Professionell kommunikation - mer än bara samtal 7,5 högskolepoäng, Grundnivå 1 Introduction to Professional Communication - more than just conversation 7.5 Higher Education
... Innovations for Health
... Innovations for Health Right Time Right Dose Right Medications Scheduling and Workflow Management Interfaced to Your Pharmacy Downloads label information from your operating system, collates prescriptions
Service Design Network Sweden
Service Design Network Sweden Launch workshop summary www.servicedesignsweden.com MEMBERS WORKSHOP 27 March 16:00 18:00 Purpose, idea and vision of Service Design Sweden (20mins) Short presentation of
EBBA2 European Breeding Bird Atlas
Methodology Sergi Herrando, Verena Keller, Petr Voříšek et al. objectives 1. To document breeding evidence for all bird species at a resolution of 50x50 km 2. To estimate abundance for all bird species
Flervariabel Analys för Civilingenjörsutbildning i datateknik
Flervariabel Analys för Civilingenjörsutbildning i datateknik Henrik Shahgholian KTH Royal Inst. of Tech. 2 / 9 Utbildningens mål Gällande matematik: Visa grundliga kunskaper i matematik. Härmed förstås
The Municipality of Ystad
The Municipality of Ystad Coastal management in a local perspective TLC The Living Coast - Project seminar 26-28 nov Mona Ohlsson Project manager Climate and Environment The Municipality of Ystad Area:
Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II
Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II English version A. About the Program in General We will now ask some questions about your relationship to the program
Problem som kan uppkomma vid registrering av ansökan
Problem som kan uppkomma vid registrering av ansökan Om du har problem med din ansökan och inte kommer vidare kan det bero på det som anges nedan - kolla gärna igenom detta i första hand. Problem vid registrering
Affärsmodellernas förändring inom handeln
Centrum för handelsforskning vid Lunds universitet Affärsmodellernas förändring inom handeln PROFESSOR ULF JOHANSSON, EKONOMIHÖGSKOLAN VID LUNDS UNIVERSITET Centrum för handelsforskning vid Lunds universitet
Measuring child participation in immunization registries: two national surveys, 2001
Measuring child participation in immunization registries: two national surveys, 2001 Diana Bartlett Immunization Registry Support Branch National Immunization Program Objectives Describe the progress of
Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method
Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method Goal Bring back the experiences from the international work of Kalmar
Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems. Martin Wiström, Ramboll RST
Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems Martin Wiström, Ramboll RST Hålrum med GPR SBUF-projekt pågår för att utvärdera möjligheterna att
Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt,
Senaste trenderna från testforskningen: Passar de industrin? Robert Feldt, robert.feldt@bth.se Vad är på gång i forskningen? (ICST 2015 & 2016) Security testing Mutation testing GUI testing Model-based
Protected areas in Sweden - a Barents perspective
Protected areas in Sweden - a Barents perspective Olle Höjer Swedish Environmental Protection Agency Naturvårdsverket Swedish Environmental Protection Agency 2013-04-03 1 The fundamental framework for
Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen")
Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen") 1 1. Mål för doktorsexamen 1. Goals for doctoral exam Kunskap och förståelse visa brett
FK Electrodynamics I
FK8003 - Electrodynamics I Respondents: 18 Answer Count: 6 Answer Frequency: 33,33 % 5. Overall impression Overall I am satisfied with this course 4 3 (50,0%) Don't know 0 (0,0%) 6. Student contribution
Läkemedelsverkets Farmakovigilansdag
Swedish Medical Products Agency s Patient- and Consumer Advisory Board Brita Sjöström May 29, 2018 Patientrådet@mpa.se https://lakemedelsverket.se/patient-konsument-rad The vision of the Swedish Medical
The road to Recovery in a difficult Environment
Presentation 2010-09-30 The road to Recovery in a difficult Environment - a presentation at the Workability International Conference Social Enterprises Leading Recovery in Local and Global Markets in Dublin
Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen
Examensarbete Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen Malin Carlström, Sandra Mårtensson 2010-05-21 Ämne: Informationslogistik Nivå: Kandidat Kurskod: 2IL00E Projektmodell
Make a speech. How to make the perfect speech. söndag 6 oktober 13
Make a speech How to make the perfect speech FOPPA FOPPA Finding FOPPA Finding Organizing FOPPA Finding Organizing Phrasing FOPPA Finding Organizing Phrasing Preparing FOPPA Finding Organizing Phrasing
Introduktion till vetenskaplig metodik. Johan Åberg
Introduktion till vetenskaplig metodik Johan Åberg Innehåll Forskarvärlden Viktiga begrepp Referenshantering Den vetenskapliga rapporten Vetenskaplig diskussion Forskarvärlden Forskare mäts i antal publikationer
Hur fattar samhället beslut när forskarna är oeniga?
Hur fattar samhället beslut när forskarna är oeniga? Martin Peterson m.peterson@tue.nl www.martinpeterson.org Oenighet om vad? 1.Hårda vetenskapliga fakta? ( X observerades vid tid t ) 1.Den vetenskapliga