Tentamen i Matematisk statistik Kurskod S0001M

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Matematisk statistik Kurskod S0001M"

Transkript

1 Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (7 uppgifter) Tentamensdatum Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid Lärare: Adam Jonsson och Ove Edlund Jourhavande lärare: Adam Jonsson Tel: Tillåtna hjälpmedel: Räknedosa, Kursboken Vännman: Matematisk statistik. I kursboken får anteckningar och post-it lappar finnas, men inte lösta exempel. Kompendium i Regressionsanalys Formelblad Tabeller Tentamen består av två delar. På den första delen, som är obligatorisk för att kunna bli godkänd, ska enbart svar lämnas in, men lösningar får bifogas. Observera dock att dessa kommer ej att bedömas utan enbart användas vid gränsfall för att avgöra om någon uppgift kan rättas upp på grund av slarvfel. På del 1 ges inga delpoäng på uppgifterna. Svaren för del 1 ska fyllas i på det blad som bifogas tentamen. Detta blad måste lämnas in. Lägg detta blad först bland lösningarna. Om inte det ifyllda svarsbladet har lämnats in så bedöms tentamen som underkänd. För godkänt krävs minst 19 poäng på del 1. Med 4 extrapoäng från laborationerna och KGB så räcker det med 15 poäng av de 25 möjliga för godkänt. På den andra delen, som gäller tentamen för överbetyg, ska fullständiga lösningar lämnas in. Tänk på att redovisa dina lösningar på ett klart och tydligt sätt och motivera resonemangen. Vid bedömningen av lösningarna läggs stor vikt vid hur lösningarna är motiverade och redovisade. För betyg 4 krävs godkänt på den första obligatoriska delen samt minst 13 poäng från den andra delen för överbetyg. För betyg 5 krävs godkänt på den första obligatoriska delen samt minst 23 poäng från den andra delen för överbetyg. OBS! Det går inte att kompensera underkänt på den första korta delen av tentamen med poäng på den andra delen. Ange på tentamensomslaget om du har lämnat in lösningar på del 2 genom att kryssa för de sista tre uppgifterna. Om du plussar för överbetyg så skriv detta på tentamensomslaget. LYCKA TILL! 1 (10)

2 Tentamen i Matematisk statistik, S0001M, del En slumpmässigt utvald student vid en högskola betalar sina räkningar genom någon internetbank med sannolikheten 42 %. Sannolikheten att en student har mobiltelefon är 62 %. Sannolikheten att en student har både mobiltelefon och betalar sina räkningar genom en internetbank är 35 %. (a) Beräkna sannolikheten att en student varken har mobiltelefon eller betalar sina räkningar genom en internetbank. (b) En slumpmässigt vald student har mobiltelefon. Hur stor är sannolikheten att han också betalar räkningarna genom en internetbank? 2. Timo kastar en tärning om och om igen. Låt ξ beteckna antalet kast som krävs för att få den första sexan. De möjliga värdena på ξ är alltså de positiva heltalen 1, 2, 3,.... Beräkna sannolikheten att det krävs minst 4 kast för att få en sexa, dvs beräkna P (ξ 4). 3. Längden för graviditeter hos honor i en mycket stor population apor, pop1, kan beskrivas med en normalfördelning som har väntevärdet 136 dagar och standardavvikelsen 18.6 dagar. (a) Bestäm den längsta av de 3 % kortaste graviditeterna. (b) I en annan stor population apor, pop2, kan graviditeternaz längd beskrivas med en N(121, 12.4) fördelning. Vad är då sannolikheten att graviditeten för en hona i pop1 är längre än den för en hona i pop2? 4. Iljan tar varje morgon två bussar för att komma till skolan. Bussarna avgår 6 ggr/timme, men eftersom tidtabell saknas betraktar Iljan de två väntetiderna ξ 1, ξ 2 som oberoende slumpvariabler, var och en med en rektangelfördelning R(0, 10). Man kan visa att Iljans totala väntetid, ξ Iljan = ξ 1 + ξ 2, har frekvensfunktionen x 100, 0 x 10 f(x) = 2 10 x 100, 10 x 20 0 för övrigt. (a) Beräkna sannolikheten att Iljans totala väntetid en morgon blir mellan 8 och 12 minuter. Iljans syster Vera tar de två bussarna tillsammans med Iljan, men tar sedan en ytterligare buss som går 4 ggr/timme. Hennes totala väntetid är ξ V era = ξ Iljan + ξ 3, där ξ 3 R(0, 15). (b) Bestäm E(ξ V era ), dvs bestäm Veras förväntade totala väntetid. 5. En läkare vill veta om svenska män har större överarmsmått på höger sida eller om måttet på höger och vänster sida i genomsnitt är detsamma. Hon hittar en undersökning av 10 män som genomförts av en 2 (10)

3 Tentamen i Matematisk statistik, S0001M, del kollega. Kollegan har dock inte noterat de faktiska mätvärdena, utan endast angivit (med +) om personens högra överarmsmått var större. Resultatet återges nedan: Man nr Mätning (a) Läkaren tycker att det är rimligt att använda antalet + tecken för att testa H 0 : ingen genomsnittlig skillnad H 1 : höger sida är större i genomsnitt (1) och förkasta H 0 om antalet + tecken är minst 8. Hon förkastar därför hypotesen att måtten i genomsnitt är lika på höger och vänster sida. Vilken signifikansnivå har det test som läkaren tillämpat? (b) Läkaren är inte nöjd med den metod som användes i (a) och beslutar sig därför för att göra en ny undersökning om 10 personer. Resultatet återges nedan. Nr H V En beräkning gav x H = 36.77, x V = 35.84, s H = 6.65, s V = 6.10, z = 0.930, s z = 0.933, där z och s z betecknar medelvärde och standardavvikelse för differensserien z i = x H,i x V,i, i = 1, 2,..., 10. Beräkna ett lämpligt 98% konfidensintervall för den genomsnittliga skillnaden mellan överarmsmåttet på höger och den vänster sida (höger minus vänster) under rimliga normalfördelningsantaganden. Ange intervallets nedre ändpunkt. 6. Livslängderna för en viss typ av elektroniska komponenter antas vara oberoende och Exponentialfördelade med väntevärde 1/λ år. (a) Man vill pröva hypotesen att den förväntade livslängden är 2 år. För att testa H 0 : λ = 1/2 mot H 1 : λ > 1/2 använder man observerade livslängder x 1,..., x 40 för 40 slumpmässigt utvalda komponenter och beslutsregeln: förkasta H 0 om x < Använd centrala gränsvärdessatsen för att beräkna styrkan hos testet om λ = 2/3. (b) När man tillämpade testet i (a) kunde H 0 inte förkastas. Man antog därför att λ = 1/2. Givet att en slumpmässigt utvald komponent har fungerat i 3 år, vad är sannolikheten att den fungerar i ytterligare 1 år? 3 (10)

4 Tentamen i Matematisk statistik, S0001M, del I en studie av tryckhållfastheten hos betong varieras proportioner hos beståndsdelarna samt betongens ålder. I undersökningen användes som förklarande variabler bl.a. andelen Cement, masugnsslagg (Slag) och vatten (Water), alla i enheten kg/m 3, samt betongens ålder (Age) i enhet dagar. Mot detta mättes den beroende variabeln, tryckhållfasthet (Concrete compressive strength) i enheten MPa. En regressionsanalys av en delmängd av datamaterialet, bestående av 30 observationer, ger upphov till resultatet i tabell 1. (a) Bestäm residualspridningen s e. (b) Bestäm den justerade förklaringsgraden R 2 a. (c) För att avgöra om Slag ska vara med som förklarande variabel på 1% signifikansnivå, jämförs t-kvot med ett tal. Ange detta tal samt ange (Ja eller Nej) om Slag ska behållas som förklarande variabel. (Ange Ja om variabeln Slag skall behållas.) (d) Finn ett 99% konfidensintervall för hur Concrete compressive strength förändras i genomsnitt om Water ökar med 1 kg/m 3 och övriga förklarande variabler hålls konstant. Svara med den undre gränsen. Tabell 1: Regression Analysis: Concrete compres versus Cement; Slag; Water; Age The regression equation is Concrete compressive strength = - 0,3-0,0984 Cement - 0,122 Slag + 0,374 Water + 0,0233 Age Predictor Coef SE Coef T P Constant -0,32 12,43-0,03? Cement -0, , ,24? Slag -0, , ,96? Water 0, , ,80? Age 0, , ,25? S =? R-Sq =? R-Sq(adj) =? Analysis of Variance Source DF SS MS F P Regression? 1185,37 Residual Error? 241,29 Total 29? Slut på del 1. Glöm inte att bifoga svarsbladet med tentan! 4 (10)

5 Tentamen i Matematisk statistik, S0001M, del Tabell för svar till del 1 Riv ut och lägg svarsbladet först i tentamen Namn: Personnummer: Ett fel i svaret på uppgift 2 rättades den 25 januari Fråga Svar Poäng 1 a Sannolikhet (procent, en decimal) b Sannolikhet (procent, två decimaler ) Sannolikhet (procent, en decimal) 57.9 (exakt 2 (5/6) 3 ) 3 a Längden (en decimal) b Sannolikhet 74.9 (Φ(0.67)) 2 4 a Sannolikhet (procent, en decimal) b Väntevärde (en decimal) a Signifikansnivå (procent, två decimaler) b Nedre gräns (en tre decimaler) a Styrka (procent, en decimal) 46.8 (Φ( 0.08)) 2 Sannolikhet (procent, en decimal) 60.7 (e 0.5 ) 2 7 a Residualspridning (tre decimaler) b Justerad förklaringsgrad (procent, tre decimaler) c t-kvot jämförs med (tre decimaler) Ja eller Nej Ja 1 d Undre gräns (fyra decimaler) ( exakt) 2 Totalt antal poäng 25 5 (10)

6 Tentamen i Matematisk statistik, S0001M, del (10)

7 Tentamen i Matematisk statistik, S0001M, del Vid bedömningen av lösningarna av uppgifterna i del 2 läggs stor vikt vid hur lösningarna är motiverade och redovisade. Tänk på att noga redovisa införda beteckningar och eventuella antaganden. 8. Alla räkneregler för sannolikheter som vi är vana att använda kan härledas från sannolikhetsaxiomen. Tex så kan man bevisa Sats 2B på följande sätt: A A c = Ω och P (Ω) = 1 ger att P (A A c ) = 1. Eftersom A och A c (per definition) är disjukta får vi 1 = P (A A c ) = P (A) + P (A c ), dvs P (A) = 1 P (A c ). (a) Antag att A och B är händelser och att B alltid inträffar då A inträffar. Antag med andra ord att A är en delmängd av B. Visa att P (A) P (B). (b) Antag att A och B är oberoende händelser. Visa att A c och B c är oberoende händelser. (5p) (5p) Det kan underlätta att rita Venndiagram men endast figurer kommer inte att ge full poäng. Du kan använda Sats 2B och Sats 2C utan bevis. Lösning (a) Vi har B = A E, där E = B A c. Eftersom A och E är disjunkta och P (E) 0 får vi P (B) = P (A E) = P (A) + P (E) P (A). (b) Vi vet att P (A B) = P (A)P (B) och vill visa att P (A c B c ) = P (A c )P (B c ). Vi har A c B c = (A B) c. (Mer allmänt gäller n j=1 Ac j = ( n j=1 A j) c. Resultatet kallas ibland De Morgans lag och gäller för en godtycklig samling mängder {A j } j J.) Vi får P (A c B c ) = P ((A B) c ) = 1 P (A B) enligt Sats 2B = 1 (P (A) + P (B) P (A B)) enligt Sats 2C = 1 P (A) P (B) + P (A)P (B) = (1 P (A))(1 P (B)) = P (A c )P (B c ) enligt Sats 2B. (2) 9. Vi fortsätter med uppgift 5. En läkare vill veta om svenska män har större överarmsmått på höger sida eller om måttet på höger och vänster sida i genomsnitt är detsamma. Hon betraktar de tio differenserna z 1 = 0.1, z 2 = 2.1,..., z 10 = 1.6 från sin undersökning som observationer på oberoende N(δ, σ) fördelade stokastiska variabler, där σ är okänd och δ är den genomsnittliga skillnaden mellan överarmsmåttet 7 (10)

8 Tentamen i Matematisk statistik, S0001M, del på höger och vänster sida. För att testa H 0 : δ = 0 mot H 1 : δ > 0 väljer hon mellan teckentestet: förkasta H 0 om x 8, där x är det observerade antalet positiva differenser, och t-testet: förkasta H 0 om t = z s z / 10 > (a) Tillämpa de två testen. Ger de samma slusats? (b) Beräkna styrkan för teckentestet i fallen att δ = , σ = 1 och δ = , σ = 1. (c) Styrkefunktionen S(µ, σ) för teckentestet beror av både δ och σ men om vi t.ex. betraktar fallet σ = 1 så kan S(µ, 1) skissas som funktion av δ. Gör det. Skissen behöver inte vara exakt. Motsvarande styrkefunktion för t-testet kan inte beräknas exakt med de metoder vi har lärt oss i kursen men. Visa med hjälp av en skiss i samma diagram hur du tror att den ser ut. Det är förhållandet mellan de två funktionerna som är av betydelse. Motivera varför du tror att förhållandet som du skissat gäller. (4p) (6p) Lösning (a) Vi har x = 7 och t = Alltså skall H 0 förkastas enligt t-testet och accepteras enligt teckentestet. (b) Eftersom z i är en observation från N(δ, 1) är sannolikheten för en positiv differens i fallen δ = och δ = lika med 0.9 resp Det betyder att x i de två fallen är en observation från Bin(10, 0.9) respektive Bin(10, 0.95) och såldes att x = 10 x, dvs antalet negativa differenser, är en observation från Bin(10, 0.1) eller Bin(10, 0.05). Med hjälp av Binomialfördelningstabellen får vi att styrkan i de två fallen är P (x 2) = respektive P (x 2) = (c) Grafen till S(δ), δ > 0 skall ritas mjuk. Det skall framgå att S(1.2816) = 0.91, S(1.6445) = 0.98 samt att signifikansnivån är ca 5% (5.47% exakt). Grafen till styrkefunktionen för t-testet skall ritas mjuk och det skall framgå att signifikansnivån är 5%. Styrkefunktionen för t-testet ligger över Styrkefunktionen för teckentestet. Det beror på att t-testet konstruerats med modellantagandet (dvs normalfördelningsantagandet) som utgångspunkt. Det har inte teckentestet. Så under förutsättning att antagandet är rimligt kan man säga att t-testet använder informationen bättre och däför upptäcker när H 0 är falsk med större sannolikhet. 10. Datamaterialet i Tabell 2, som består av 38 observationer, beskriver hur antal inkomna ordrar (ordrar 1000) för postorderföretag beror av upplagan på katalogen (uppl 1000) och antal tryckta sidor i katalogen (sidor). 8 (10)

9 Tentamen i Matematisk statistik, S0001M, del Tabell 2: Datamaterialet som beskriver hur antal inkomna ordrar varierar med upplagan och antal tryckta sidor. Antalet observationer är n = 38. uppl sidor ordrar uppl sidor ordrar uppl sidor ordrar För att förklara hur ordrar beror av upplaga och sidor, gör vi multipel linjär regressionanalys. Vi skapar en matris X R 38 3 vars första kolumn är ettor, andra kolumnen är uppl och tredje är sidor, och en vektor y som innehåller ordrar. Följande kvantiteter beräknas sedan (X T X) 1 = (X T X) 1 (X T y) = i=1 e 2 i = i=1 (y i y) 2 = där e i är elementen i residualen. Genomför följande uppgifter: Ange fullständiga modellantaganden. Plocka fram den modellfunktion som minsta-kvadratmetoden ger. Bestäm förklaringsgraden R 2. Bestäm residualspridningen s e. Bestäm skattad standardavvikelse för koefficienten till uppl, och till sidor. Gör hypotesprövning på koefficienten till uppl för att avgöra om den är skilld från 0 på 1% signifikansnivå. Bestäm ett 99% konfidensintervall för koefficienten till sidor. (9 p) Lösning: Modellantagande Y i = β 0 + β 1 X i,1 + β 2 X i,2 + ε i, där i = är index, Y i är antal ordrar, 728 X i, är upplagan, 15 X i,2 249 är antal sidor, och ε i N(0, σ) är oberoende stokastiska variabler. 9 (10)

10 Tentamen i Matematisk statistik, S0001M, del I modellfunktionen skattas β 0, β 1, β 2 med b 0, b 1, b 2 som ges av normalekvationen (X T X) 1 (X T y), dvs skattade modellen är Förklaringsgraden R 2 = 1 Ŷ i = X 1,i X 2,i 38 i=1 e2 i i=1 (y = 1 = = 93.15% i y) Residualspridningen s e = i=1 e 2 i = /35 = Skattad standardavvikelse för b 1 ges av s e gånger roten ur diagonalelement 2 i (X T X) 1, dvs s b1 = = På samma sätt används diagonalelement 3 för s b2, s b2 = = Vi beräknar t-kvot = b = = Eftersom s b denna är större än kritiska gränsen t (30) = > t (35), kan vi dra slutsatsen att b 1 är signifkant skild från 0. Konfidensintervallet ges av [b 2 s b2 t (35), b 2 + s b2 t (35)] Återigen finns inte t (35) med i tabellen, så vi använder t (30) = istället [ , ] = [8.68, 11, 85] 10 (10)

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (6 uppgifter) Tentamensdatum 2010-06-04 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Ove Edlund Adam Jonsson

Läs mer

Kompletterande kursmaterial till kursen Matematisk statistik.

Kompletterande kursmaterial till kursen Matematisk statistik. Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 5 (8 uppgifter) Poäng totalt för del 30 (3 uppgifter) Tentamensdatum 008-0-7 Robert Lundqvist Lärare: Ove Edlund Skrivtid 09.00-4.00

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR00 6 juni, 200 kl. 9.00 1.00 Kursansvarig: Eric Järpe Maxpoäng: 0 Betygsgränser: 12p: G, 21p: VG Hjälpmedel: Miniräknare samt tabell- och formelsamling

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) =

Uppgift 3: Den stokastiska variabeln ξ har frekvensfunktionen 0 10 f(x) = Tentamen i Matematisk statistik för DAI och EI den 3 mars. Tid: kl 4. - 8. Hjälpmedel: Chalmersgodkänd ( typgodkänd ) räknedosa, Tabell- och formelsamling, Håkan Blomqvist, Matematisk statistik, Ulla Dahlbom,

Läs mer

Statistisk undersökningsmetodik (Pol. kand.)

Statistisk undersökningsmetodik (Pol. kand.) TENTAMEN Tentamensdatum 2008-10-02 Statistisk undersökningsmetodik (Pol. kand.) Namn:.. Personnr:.. Tentakod: Obs! Var noga med att skriva din tentakod på varje lösningsblad som du lämnar in. Skrivtid

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Resultatet läggs in i ladok senast 13 juni 2014.

Resultatet läggs in i ladok senast 13 juni 2014. Matematisk statistik Tentamen: 214 6 2 kl 14 19 FMS 35 Matematisk statistik AK för M, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter fordrar

Läs mer

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER

GRUNDLÄGGANDE STATISTIK FÖR EKONOMER Statistiska institutionen Annika Tillander TENTAMEN GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2015-04-23 Skrivtid: 16.00-21.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller text, samt bifogade

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING

LTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0.

1 10 e 1 10 x dx = 0.08 1 e 1 10 T = 0.08. p = P(ξ < 3) = 1 e 1 10 3 0.259. P(η 2) = 1 P(η = 0) P(η = 1) = 1 (1 p) 7 7p(1 p) 6 0. Tentamen TMSB18 Matematisk statistik IL 091015 Tid: 08.00-13.00 Telefon: 036-10160 (Abrahamsson, Examinator: F Abrahamsson 1. Livslängden för en viss tvättmaskin är exponentialfördelad med en genomsnittlig

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006

Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Handelshögskolan i Stockholm Anders Sjöqvist 2087@student.hhs.se Aktivitetsuppgifter i kurs 602 Ekonomisk statistik, del 2, våren 2006 Efter förra kursen hörde några av sig och ville gärna se mina aktivitetsuppgifter

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 13 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 13 HYPOTESPRÖVNING. Tatjana Pavlenko 13 maj 2015 PLAN FÖR DAGENS FÖRELÄSNING Begrepp inom hypotesprövning (rep.) Tre metoder för att avgöra om H 0 ska

Läs mer

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström

STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström 1 STOCKHOLMS UNIVERSITET VT 2008 Statistiska institutionen Linda Wänström Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III) 3 högskolepoäng, ingående i kursen Undersökningsmetodik och

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, tabellsamling (dessa skall returneras). Miniräknare. Ansvarig lärare: Jari Appelgren,

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 4 mars 2006, kl. 09.00-13.00 Karlstads universitet Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 mars 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel- och tabellsamling (skall returneras) samt

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet

Läs mer

Tisdagen den 16 januari 2007 9-14

Tisdagen den 16 januari 2007 9-14 STOCKHOLMS UNIVERSITET TENTAMEN MATEMATISKA INSTITUTIONEN Statistik för naturvetare Avd. Matematisk statistik Tisdagen den 16 januari 2007 Tentamen för kursen Statistik för naturvetare Tisdagen den 16

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 20 Mars 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A11/STA A14 (8 poäng) 25 augusti 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A/STA A4 (8 poäng) 5 augusti 4, klokan 8.5-3.5 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng.

Maximalt antal poäng för hela skrivningen är28 poäng. För Godkänt krävs minst 17 poäng. För Väl Godkänt krävs minst 22,5 poäng. Försättsblad KOD: Kurskod: PC1307/PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Sara Landström Tentamensdatum:

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B

Föreläsning 3 Kap 3.4, 3.6, 4.2. 732G71 Statistik B Föreläsning 3 Kap 3.4, 3.6, 4.2 732G71 Statistik B Exempel 150 slumpmässigt utvalda fastigheter till salu i USA Pris (y) Bostadsyta Tomtyta Antal rum Antal badrum 179000 3060 0.75 8 2 285000 2516 8.1 7

Läs mer

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är

Läs mer

Analytisk statistik. Tony Pansell, optiker Universitetslektor

Analytisk statistik. Tony Pansell, optiker Universitetslektor Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp

Läs mer

Tentamen i matematisk statistik för BI2 den 16 januari 2009

Tentamen i matematisk statistik för BI2 den 16 januari 2009 Tentamen i matematisk statistik för BI den 6 januari 9 Uppgift : Ett graviditetstest att använda i hemmet är inte helt tillförlitligt. Ett speciellt test visar positivt resultat för kvinnor, som inte är

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel

Läs mer

Industriell matematik och statistik, LMA136 2013/14

Industriell matematik och statistik, LMA136 2013/14 Industriell matematik och statistik, LMA136 2013/14 7 Mars 2014 Disposition r Kondensintervall och hypotestest Kondensintervall Statistika Z (eller T) har fördelning F (Z en funktion av ˆθ och θ) q 1 α/2

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två

Läs mer

1 Grundläggande begrepp vid hypotestestning

1 Grundläggande begrepp vid hypotestestning Matematikcentrum Matematisk statistik MASB11: Biostatistisk grundkurs Datorlaboration 3, 6 maj 2015 Statistiska test och Miniprojekt II Syfte Syftet med dagens laboration är att du ska träna på de grundläggande

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

MSG830 Statistisk analys och experimentplanering

MSG830 Statistisk analys och experimentplanering MSG830 Statistisk analys och experimentplanering Tentamen 16 April 2015, 8:30-12:30 Examinator: Staan Nilsson, telefon 073 5599 736, kommer till tentamenslokalen 9:30 och 11:30 Tillåtna hjälpmedel: Valfri

Läs mer

Övningstentamen i matematisk statistik för kemi

Övningstentamen i matematisk statistik för kemi Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 9

ÖVNINGSUPPGIFTER KAPITEL 9 ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar

Läs mer

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng

Stockholms Universitet Statistiska Institutionen VT-2009. Kursbeskrivning. Statistisk Teori I, grundnivå, 15 högskolepoäng Stockholms Universitet Statistiska Institutionen VT-2009 Kursbeskrivning Statistisk Teori I, grundnivå, 15 högskolepoäng Allmänt Kursen består av två moment: Moment 1. Grundläggande statistisk teori, 12hp.

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p)

(a) Beräkna sannolikhetsfunktionen p X (x). (2p) (b) Beräkna väntevärdet för X. (1p) (c) Beräkna standardavvikelsen för X. (1p) Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 14 april, 2007 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

EXAMINATION KVANTITATIV METOD vt-11 (110204)

EXAMINATION KVANTITATIV METOD vt-11 (110204) ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt

Läs mer

Del A: Schema för ifyllande av svar nns på sista sidan

Del A: Schema för ifyllande av svar nns på sista sidan Del A: Schema för ifyllande av svar nns på sista sidan 1 1 Nedladdningstiden (i sekunder) för en bestämd l registrerades 16 gånger vid var och en av tre olika tidpunkter på dygnet. ANOVA-analys av dessa

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Korrelation och regression Innehåll 1 Korrelation och regression Spridningsdiagram Då ett datamaterial består av två (eller era) variabler är man ofta intresserad av att veta om det nns ett

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Blandade problem från maskinteknik

Blandade problem från maskinteknik Blandade problem från maskinteknik Sannolikhetsteori (Kapitel 1-7) M1. Vid tillverkning av en viss maskintyp får man spiralfjädrar från tre olika tillverkare. Varje dag levererar tillverkare A 100 fjädrar,

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

F19, (Multipel linjär regression forts) och F20, Chi-två test.

F19, (Multipel linjär regression forts) och F20, Chi-två test. Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Tentamen består av 14 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt.

Tentamen består av 14 frågor, totalt 40 poäng. Det krävs minst 24 poäng för att få godkänt och minst 32 poäng för att få väl godkänt. KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2015-09-24 Tillåtna hjälpmedel: Miniräknare Tentamen består

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Forsknings- och undersökningsmetodik Skrivtid: 4h

Forsknings- och undersökningsmetodik Skrivtid: 4h Forsknings- och undersökningsmetodik Skrivtid: h Tentamen 8..00 Hjälpmedel: Kalkylator Formel- & tabellsamling Provtexten får bortföras. DEL, DEL eller HELA KURSEN: Besvara frågor! Varje fråga är värd

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer