Kompletterande kursmaterial till kursen Matematisk statistik.

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Kompletterande kursmaterial till kursen Matematisk statistik."

Transkript

1 Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 5 (8 uppgifter) Poäng totalt för del 30 (3 uppgifter) Tentamensdatum Robert Lundqvist Lärare: Ove Edlund Skrivtid Jourhavande lärare: Robert Lundqvist Tel: 404 Resultatet anslås I Studenttorget Tillåtna hjälpmedel: Räknedosa Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik. Tentamen består av två delar. På den första delen, som är obligatorisk för att kunna bli godkänd, ska enbart svar lämnas in, men lösningar får bifogas. Observera dock att dessa kommer ej att bedömas utan enbart användas vid gränsfall för att avgöra om någon uppgift kan rättas upp på grund av slarvfel. Svaren ska fyllas i på det blad som bifogas tentamen. Detta blad måste lämnas in. Lägg detta blad först bland lösningarna. Om inte det ifyllda svarsbladet har lämnats in så bedöms tentamen som underkänd. För godkänt krävs minst 9 poäng. Med 4 extrapoäng från laborationerna och KGB så räcker det med 5 poäng av de 5 möjliga för godkänt. På den andra delen, som gäller tentamen för överbetyg, ska fullständiga lösningar lämnas in. Tänk på att redovisa dina lösningar på ett klart och tydligt sätt och motivera resonemangen. Vid bedömningen av lösningarna läggs stor vikt vid hur lösningarna är motiverade och redovisade. För betyg 4 krävs godkänt på den första obligatoriska delen samt minst 3 poäng från den andra delen för överbetyg. För betyg 5 krävs godkänt på den första obligatoriska delen samt minst 3 poäng från den andra delen för överbetyg. OBS! Det går inte att kompensera underkänt på den första korta delen av tentamen med poäng på den andra delen. Ange på tentamensomslaget om du har lämnat in lösningar på del genom att kryssa för uppgifterna 9, 0 eller. Om du plussar för överbetyg så skriv detta på tentamensomslaget. LYCKA TILL!

2 Tentamen i Matematisk statistik, S000M, del, ) För att testa idrottare om de tagit otillåtna dopningspreparat finns det flera metoder. Med en viss metod (A) är sannolikheten 0.90 att man får positivt utslag när en dopad person testas, och med en annan metod (B) är motsvarande sanolikhet Att båda metoderna ger positivt utslag för en dopad person sker med sannolikheten a) Hur stor är sannolikheten att minst en av metoderna ger positivt utslag när de används på en dopad person? b) Hur stor är sannolikheten att ingen av metoderna ger positivt utslag när de används på en person som är dopad? c) En dopad person testas med metod B som ger positivt utslag. Hur stor är då sannolikheten att test med metod A också kommer att ge positivt utslag? Ange dina svar i procent med två decimaler. ) I en viss reaktion studeras utbytet (enhet: gram). I ett stickprov med 0 mätningar blir medelvärdet x = 5.8 gram och standardavvikelsen s = gram. Utbytet kan beskrivas med en normalfördelning. Bestäm ett konfidensintervall med 95% konfidensgrad för förväntat utbyte. Ange intervallets undre gräns med två decimalers noggrannhet. (p) 3) I en viss grupp av hushåll vill man studera de sammanlagda bolånen. Det visar sig vara rimligt att beskriva bolånen för ett hushåll med en normalfördelning med väntevärdet kr och standardavvikelsen kr. a) Hur stor är sannolikheten att ett slumpmässigt utvalt hushåll kommer att ha bolån på minst kr? Ange ditt svar i procent med två decimalers noggrannhet. (p) b) Vad blir lägsta värde i gruppen av de 0% största bolånen? (p) c) I en annan grupp av hushåll visade det sig att 0% hade bolån på högst kr och 5% hade bolån på minst kr. Vad blir väntevärde för bolånen i den gruppen? (p) 4) I en så kallad vindkraftspark står två mindre vindkraftverk, ett med en maximal effekt på 50 kw och ett större med en maxeffekt på 00 kw. Kraftverken fungerar oberoende av varandra, och det har visat sig att sannolikheten för att de fungerar vid ett visst tillfälle är 0.98 respektive Beroende på vilka kraftverk som är i gång kan man få olika sammanlagda maxeffekter: 0, 50, 00 och 50 kw. a) Hur stor är sannolikheten för en sammanlagd maxeffekt på 00 kw? Ange ditt svar i procent med en decimals noggrannhet. b) Vad blir väntevärdet av den sammanlagda maxeffekten? Ange ditt svar med två decimalers noggrannhet. 5) Firman Smokescreen säljer kaminer. De använder konfidensintervall för att beskriva kaminernas egenskaper, däribland för kaminernas förväntade verkningsgrad. För en viss kamin anges att ett intervall blir 87.5 ±. 05 procent. Detta (p) (p) (p) (p) (p) - -

3 Tentamen i Matematisk statistik, S000M, del, sägs vara baserat på mätningar av 0 kaminer där stickprovsstandardavvikelsen var procent. Det som inte anges är intervallets konfidensgrad. a) Bestäm konfidensgraden för det angivna konfidensintervallet. Ange ditt svar i procent. b) En spekulant tycker att intervallet är för brett. Ett sätt att få ett snävare intervall är att göra fler mätningar. Vilket är det minsta stickprov som behövs för att få ett 95% konfidensintervall där intervallbredden är högst procent? Utgå här från att standardavvikelsen för verkningsgraden är känd, närmare bestämt att σ = 4. 5 procent. (p) 6) Försäljaren av en viss sorts bladfjädrar hävdar att fjädrarnas förväntade livslängd är cykler. Din erfarenhet säger dock att det verkliga värdet bör vara lägre än så. I ett livslängdstest testas 8 bladfjädrar. För de fjädrarna blev x = och s = Utifrån de testresultat som erhållits ska du göra ett hypotestest med 5% signifikansnivå för att se om försäljarens påstående om förväntad livslängd verkligen håller. a) Vilken av följande mothypoteser är den korrekta att använda i detta test? () H : μ < () H : μ = (3) H : μ (4) H : μ > (p) b) x Om testvariabeln t =, ska användas, vad blir då det kritiska s / n värde som detta t ska jämföras med? (p) c) Om man använder ett test med 5% signifikansnivå, ska försäljarens påstående om livslängd avvisas, dvs ska nollhypotesen då förkastas? (p) 7) Vid framställning av ett mycket finfördelat pulver utnyttjar man ett centrifugalhjul till vars periferi ämnet tillförs i flytande form. För att bestämma en modell för att kunna förutsäga den genomsnittliga partikelstorleken (kallad storlek i analysen) görs ett antal försök. Med den variabeln som svarsvariabel försöker man se hur den kan förklaras av följande variabler: Tillförsel av vätska till hjulet tillf g/s/m Periferihastighet perf m/s Viskositet hos tillförd vätska visk Ns/m De resultat som erhållits är följande: (p) Försök tillf perf visk storlek Försök tillf perf visk storlek nr nr

4 Tentamen i Matematisk statistik, S000M, del, I nedanstående skärmbilder från Minitab visas resultat för analys med multipel linjär regression där alla tre förklarande variabler ingår. a) Vad blir residualspridningen? Ange ditt svar med tre decimaler. (p) b) Vad blir den justerade förklaringsgraden? Ange ditt svar i procent med en decimals noggrannhet. c) Hur stor påverkan på den förväntade partikelstorleken har en ökning av periferihastigheten med m/s? Besvara frågan genom att bestämma ett 95% konfidensintervall. Ange den undre gränsen i det intervallet med en decimals noggrannhet. (p) (p) The regression equation is storlek = tillf perf - 6. visk Predictor Coef SE Coef T P Constant Tillf Perf Visk s =?? R-Sq =?? R-Sq(adj) =?? Analysis of Variance Source DF SS MS F P Regression Residual Error Total Variabel TSS X Tillf 889 Perf Visk 6.6 8) Ett experiment i en process för polymertillverkning har utförts. Fyra faktorer har bedömts som väsentliga: temperatur (A), koncentration av en katalysator (B), tid (C) och tryck (D). Responsvariabel har varit molkylvikt på erhållen polymer. I nedanstående tabeller ges försöksuppställning och effektskattningar: nr A B C D molekylvikt Nr A B C D molekylvikt

5 Tentamen i Matematisk statistik, S000M, del, Estimated Effects and Coefficients for molekylvikt (coded units) Term Effect Coef Constant A B C D A*B A*C A*D B*C B*D C*D A*B*C A*B*D A*C*D B*C*D A*B*C*D Antag att samspelstermer av ordning tre och högre betraktas som försumbara. Bestäm standardavvikelsen för en effekt, dvs s effekt. Ange ditt svar med en decimals noggrannhet. (p) Slut på del. Glöm inte att bifoga svarsbladet med tentan! - 5 -

6 Tentamen i Matematisk statistik, S000M, del, Tabell för svar till del. Riv ut och lägg svarsbladet först i tentamen! Namn... Personnummer... Fråga Svar Poäng a Sannolikhet 95% b Sannolikhet 5% c Sannolikhet 93.75% Undre gräns a Sannolikhet 90.88% b Bolån kr c Väntevärde kr 4 a Sannolikhet.8% b Väntevärde 9 kw 5 a Konfidensgrad 80% b Antal n 78 6 a Hypotes (ringa in rätt alternativ () () (3) (4) b Kritiskt värde.895 c Kan nollhypotesen förkastas? Ja Ne 7 a Residualspridning.8097 b Justerad förkl grad 93.% c Undre gräns Standardavvikelse 5.89 Totalt antal poäng 5 Lycka till! - 6 -

7 Tentamen i Matematisk statistik, S000M, lösningar del, Vid bedömningen av lösningarna av uppgifterna i del läggs stor vikt vid hur lösningarna är motiverade och redovisade. Tänk på att noga redovisa införda beteckningar och eventuella antaganden. 9) Till enheten för datorsupport kommer ärenden av många slag. En viss typ av ärenden har visat sig vara särskilt vanligt förekommande, och vid närmare undersökningar har det visat sig att hanteringen av denna typ av ärenden görs genom att utföra tre delmoment. Tiden det tar att utföra vart och ett av dessa delmoment kan beskrivas med exponentialfördelningar med väntevärdena, respektive 3 minuter. Den totala tiden för den studerade typen av ärende är summan av tiden det tar att utföra de tre momenten. Ärendena läggs i en kö där ärendena tas i tur och ordning. Supportenheten har öppet mellan kl och Antag att det en viss dag kommer in 70 ärenden av den studerade typen och att endast denna typ av ärenden behandlas. Hur stor är sannolikheten att alla inkomna ärenden hinner avslutas innan man stänger för dagen? Införda stokastiska variabler och eventuella antaganden ska vara tydligt beskrivna. (8p) 0) För ett visst klätterrep vill man uppskatta hållfastheten uttryckt som medianbrottgränsen hos repet. Man mätte brottgränsen hos 0 slumpmässigt utvalda delar av repet. Följande värden erhölls (enhet: kg): Man vill uppskatta medianbrottgränsen med ett ensidigt, nedåt begränsat, konfidensintervall (d v s där gränserna blir av typen [ a, ) ) med konfidengrad 99% eller så nära 99% som möjligt. a) Bestäm konfidensintervallet om brottgränsen kan beskrivas med en normalfördelning. b) Bestäm konfidensintervallet om det enda antagande som kan göras är att fördelningen för brottgränsen är kontinuerlig, men att ingen specifik fördelning kan antas. I dina beräkningar ska det tydligt framgå hur respektive intervall härleds och vilka fördelningsantaganden du har utgått från. Ange även den exakta konfidensgraden. (6p) (6p) ) Vid tillverkningen av ett kretskort ska hål borras i korten. Ett problem är att vibrationer på kortytan orsakar variationer i var hålet hamnar. Två faktorer som anses väsentliga är: storlek på borrinfästning (A) och stanshastighet (B). Två infästningar (/8 tum och /6 tum) ska köras med två hastigheter (40 och 90 rpm), och hål borras sedan på fyra kort för varje nivåkombination. Resultatvariabel är vibration mätt som resultantvektorn för tre accelerometrar i x-, y- och z- led. Resultaten (i standardordning) ges i nedanstående tabell: - 7 -

8 Tentamen i Matematisk statistik, S000M, lösningar del, A B Y Y Y3 Y4 Medelvärde Standard avvikelse Varians Medelvärde Standardavvikelse Varians Delar av analysen gjord i Minitab ges nedan a) Beräkna spridningen för en effekt och bestäm vilka effekter som är signifikant skilda från 0 på % signifikansnivå. Hypoteser och den använda beslutsregeln ska framgå tydligt. Vilken effekt har borrinfästning (faktor A) på vibrationen? b) Ange modellantagandet som analysen förutsätter samt ange den skattade modellen som analysen leder fram till. I figurerna nedan finns två residualplotter. Tolka dessa och ange tydligt vilka delar av modellantagandet som man undersöker med dessa. Factorial Fit: vibration versus A; B Estimated Effects and Coefficients for vibration (coded units) Term Effect Constant A B A*B 8.73 (6p) (4p) Residuals Versus the Fitted Values (response is vibration) Normal Probability Plot of the Residuals (response is vibration) Residual 0 - Percent Fitted Value Residual

9 Tentamen i Matematisk statistik, S000M, lösningar del, ) Låt ξ, ξ och ξ 3 beteckna tiden för de tre delmomenten. För dessa gäller att de har väntevärdena, respektive 3 minuter. Detta betyder att de kan beskrivas med exponentialfördelningar där λ =, λ = / respektive λ = / 3. Dess moment sätts ihop till en sammanlagd tid η. För den tiden gäller att väntevärdet är E η ) = E( ξ ) + E( ξ ) + E(3) 6 minuter och variansen är V ( η) = + ( = + 3 = 4. Sammanlagt har man 70 ärenden, och deras sammanlagda tid kan beskrivas med en variabel ζ = 70 η i i=, och med stöd av centrala gränsvärdessatsen kan den sägas vara approximativt fördelad enligt N ( nμ, σ n ) d, dvs N ( 40, ). Den fråga som är ställd är P(alla ärenden avslutas i tid) vilket är detsamma som P ζ 480 : ( ) 0,04 0,0 0,00 0,008 0,006 0,004 0,00 0, X 480 Den sannolikheten är ζ P ( ζ 480 ) = P Φ(.9) = Sannolikheten att alla ärenden hinns med under dagen är alltså 97.6%. Kommentar: För att centrala gränsvärdessatsen ska gälla förutsätts att den ingående variablerna kan betraktas som oberoende av varandra. Om så var fallet här gavs ingen upplysning om vilket måste ses som en brist. 0) Låt ξ beteckna brottgränsen (enhet: kg). a) Den variabeln antas kunna beskrivas med en normalfördelning. Det som söks är ett nedåt begränsat 99% konfidensintervall för den variabelns median, och eftersom median och väntevärde μ sammanfaller för en symmetrisk fördelning är detta detsamma som att bestämma ett konfidensintervall för väntevärdet. Standardavvikelsen σ är i detta fall okänd. Grunden i ett sådant intervall blir först medelvärdet ξ som är fördelad en- σ ligt N μ,. Eftersom standardavvikelsen är okänd kan dock intervallet inte härledas utifrån den variabeln, utan vi måste använda n variabeln - 9 -

10 Tentamen i Matematisk statistik, S000M, lösningar del, ξ μ som är t-fördelad med ( n ) = 9 frihetsgrader. Med följande * σ / n omskrivning fås det sökta intervallet: ξ μ P * σ / 0 * σ < a = P μ < ξ a = Den intervallskattning vi söker är alltså möjligt att skriva som * σ ξ a, där a än så länge 0.0 (9) ξ μ inte är bestämd. Samtidigt gäller dock att P < a = 0. 99, och ur * σ / 0 det sambandet följer att a = t 0 =. 8. Detta ger sammantaget konfi- densintervallet (9) s x t 0.0, där x = 5. 9 och s = 77.5, vilket 0 ger intervallet 453.7,. [ ) b) Om det inte går att utgå från att brottgränsen, dvs variabeln ξ är normalfördelad, måste ett så kallat teckenintervall för medianen bestämmas. Grunden i detta måste vara att ordna uppmätta värden i storleksordning och ta ett av de lägre som den undre gränsen, dvs intervallet ska ha formen ξ k, där k är ett ordningsvärde. [ ( ) ) Konfidensgraden ska vara så nära 99% som möjligt, dvs P( intervallet täcker) = P( intervallet missar). Att intervallet missar kan ske påflera sätt beroendepå vilket av värdena som används som gränse. Om lägsta värdet ( ξ () ) tas som gräns måste miss innebära att alla värden ligger till höger om medianen, dvs P 0 ( miss ) P( alla ξ till höger om medianen) = 0.5 = i Då är konfidensgraden alltså = , ett för högt värde. Om k =, dvs om undre intervall gräns tas som näst lägsta mätvärdet gäller att P( miss ) = P( högst ett ξi till höger om medianen), och eftersom antal värden till höger om medianen kan beskrivas som en binomialfördelad variabel Bin 0,0.5 blir ( ). Då blir konfi P högst ett ξ i till höger = = 0. densgraden 0.989, dvs rätt nära den sökta nivån på 99%. ( ) 007. Om man på motsvarande sätt kollar konfidensgrad för k = 3 fås konfidensgraden 94.5%, vilket innebär att en intervallskattning ges av det näst lägsta värdet som undre gräns. Motsvarande konfidensintervall blir alltså x ( ), eller [ 47, ). [ ) ) - 0 -

11 Tentamen i Matematisk statistik, S000M, lösningar del, a) Effekten på vibrationen skattas genom att bilda effekt = Y( + ) Y( ), där varje medelvärde baseras på mätvärden. Med 4 replikat baseras varje effektskattning på medelvärdesbildning över 8 ursprungsobservationer ( Y ij ). Detta betyder att ( ) σ σ σ σ effekt = V ( effekt) = V Y ( + ) Y( ) = + =. Där måste σ skattas, vilket görs med hjälp av s p s = + s + s s = = Detta tillsammans ger skattningen s effekt = = effekt Ska sedan hypotesen H 0 : μeffekt = 0 testas mot H : μeffekt 0 kan detta göras på flera sätt, där det som väljs här är att bestämma kvoten effekt μeffekt. Detta är en observation från t-fördelningen med frihets- s grader (där antalet frihetsgrader är kopplat till beräkningen av ). Testet görs genom att jämföra kvoten ovan med lämpligt värde ur t-fördelningen: effekt 0 s Nollhypotesen förkastas om < t ( ) effekt 0 > t s effekt ( ) jämföra effekterna med effekt s p eller där t Ett annat sätt är förstås att () = ) t ( s : om effekt > så sägs effekten vara signifikant på %-nivån. effekt I detta fall blir A-effekten = enheter, B-effekten = och ABeffekten = Var och en av dessa kan bestämmas som ett medelvärde enligt beskrivningen ovan eller med hjälp av faktorns teckenkolumn. Ett exempel på det senare: A - effekt = = När kvoterna ovan ska beräknas blir då resultatet: Faktor A B AB Effekt t-kvot Här är alla t-kvoterna större än gränsen 3.055, så tolkningen bör alltså vara att de alla är signifikanta på % signifikansnivå. Resultatet för faktor A tillsammans med samspelsfaktorn AB säger att om faktor B hålls på låg nivå så ökar vibrationerna med 7.94 enheter, medan om faktor B hålls på hög nivå så är motsvarande effekt 5.35 enheter. Detta går till exempel att åskådliggöra genom att använda en samspelsplott: - -

12 Tentamen i Matematisk statistik, S000M, lösningar del, Cube Plot (data means) for vibration 4,95 40,75 B - 6,00 - A 4,05 b) Ett sätt att beskriva modellantagandet är att börja med att låta beteckna uppmätt vibration vid nivåkombination i ( i =,,3, 4 ) och replikat j ( j =,,3, 4 ). Då kan man betrakta den variabeln som fördelad enligt Yij = μ i + ε ij där ε ij N( 0,σ ) och där alla ε ij förutsätts vara oberoende av varandra. Den skattade modellen blir då Y ˆ = X + där X j X om faktor j hålls på låg nivå = + om faktor j hålls på hög nivå De residualplotter som ges används för att kontrollera ) om det är rimligt att utgå från antagandet att ε ij verkligen är normalfördelade, något som framgår först och främst med normalfördelningsplotten till höger, men även den vänstra plotten av residualer mot ŷ i. I det senare fallet skulle till exempel normalfördelningsantagandet kunna ifrågasättas om många av residualerna låg långt utanför intervallet ± s effekt, i detta fall ±.445. Den vänstra plotten kan också användas för att se om det är rimligt att utgå från att variansen är konstant, dvs att det är samma värde på σ för alla nivåkombinationerna. X X Y ij - -

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-06-05 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Jesper

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2011-03-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Erland

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Tentamen i Sannolikhetslära och statistik Kurskod S0008M

Tentamen i Sannolikhetslära och statistik Kurskod S0008M Tentamen i Sannolikhetslära och statistik Kurskod S0008M Poäng totalt för del 1: 25 (12 uppgifter) Tentamensdatum 2012-12-19 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2014-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Inge

Läs mer

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt.

a) Bestäm sannolikheten att en slumpmässigt vald komponent är defekt. Tentamen i Matematisk statistik, S0001M, del 1, 007-10-30 1. En viss typ av komponenter tillverkas av en maskin A med sannolikheten 60 % och av en maskin B med sannolikheten 40 %. För de komponenter som

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod SM Poäng totalt för del : 5 (9 uppgifter) Tentamensdatum -3-3 Poäng totalt för del : 3 (3 uppgifter) Skrivtid 9. 4. Lärare: Adam Jonsson och Inge Söderkvist Jourhavande

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-01-18 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2015-10-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Jesper Martinsson,

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (6 uppgifter) Tentamensdatum 2010-06-04 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Ove Edlund Adam Jonsson

Läs mer

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys.

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys. Tentamen i Matematisk statistik Ämneskod-linje S0001M Poäng totalt för del 1 5 (8 uppgifter) Poäng totalt för del 0 ( uppgifter) Tentamensdatum 009-10-6 Adam Jonsson Lärare: Lennart Karlberg Robert Lundqvist

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2011-10-25 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Lennart

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-01-15 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: A Jonsson, J Martinsson,

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (7 uppgifter) Tentamensdatum 2011-01-14 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och

Läs mer

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys).

Kursboken Vännman: Matematisk statistik Kompletterande kursmaterial till kursen Matematisk statistik (formelblad och kompendiet Regressionsanalys). Tentamen i Matematisk statistik Ämneskod-linje S000M Poäng totalt för del 25 (8 uppgifter) Poäng totalt för del 2 0 ( uppgifter) Tentamensdatum 200-0-5 Ove Edlund Lärare: Adam Jonsson Robert Lundqvist

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (11 uppgifter) Tentamensdatum 2016-08-23 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta? Tentamen i Matematisk statistik, S0001M, del 1, 2008-01-18 1. Ett företag som köper enheter från en underleverantör vet av erfarenhet att en viss andel av enheterna kommer att vara felaktiga. Sannolikheten

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2014-03-26

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2017-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson, Niklas

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27

Läs mer

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p.

Valfri räknedosa, kursbok (Kutner m fl) utan anteckningar. Tentamen omfattar totalt 20p. Godkänt från 12p. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: Betygsgränser: 732G21 Sambandsmodeller 2009-01-14,

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 LULEÅ TEKNISKA UNIVERSITET Ämneskod S0002M, MAM801, IEK600,IEK309 Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik A1, 15 hp Antal uppgifter: 6 Krav för G: 13 Lärare:

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. 1 Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-05-29 Tid:

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska

Läs mer

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.

Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för

Läs mer

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.

Miniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng. UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö.

1. En kontinuerlig slumpvariabel X har följande täthetsfunktion (för någon konstant k). f.ö. UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för tekniska fysiker, MSTA6, 4p Peter Anton Per Arnqvist LÖSNINGSFÖRSLAG TILL TENTAMEN 7-- LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.

Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4. Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration 4 Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 april 2004, klockan 08.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 6 april 004, klockan 08.15-13.15 Tillåtna hjälpmedel: Bifogad

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Uppgift a b c d e Vet inte Poäng 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TENTAMEN: Dataanalys och statistik för I, TMS136 Onsdagen den 5 oktober kl. 8.30-13.30 på M. Jour: Jenny Andersson, ankn 5317 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på kursen använd ordlista

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

, s a. , s b. personer från Alingsås och n b

, s a. , s b. personer från Alingsås och n b Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

Följande resultat erhålls (enhet: 1000psi):

Följande resultat erhålls (enhet: 1000psi): Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 2004, kl 14.00-19.00 Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 4 juni 004, kl 14.00-19.00 Tillåtna hjälpmedel: Bifogad formelsamling, approimationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

TMS136. Föreläsning 13

TMS136. Föreläsning 13 TMS136 Föreläsning 13 Jämförelser mellan två populationer Hittills har vi gjort konfidensintervall och tester kring parametrar i EN population I praktiska sammanhang är man ofta intresserad av att jämföra

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt

I vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

Stockholms Universitet Statistiska institutionen Termeh Shafie

Stockholms Universitet Statistiska institutionen Termeh Shafie Stockholms Universitet Statistiska institutionen Termeh Shafie TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2011-10-28 Skrivtid: 9.00-14.00 Hjälpmedel: Miniräknare utan lagrade formler eller text, bifogade

Läs mer

Räkneövning 3 Variansanalys

Räkneövning 3 Variansanalys Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras

Läs mer

TENTAMEN I STATISTIK B,

TENTAMEN I STATISTIK B, 732G7 Tentamen. hp TENTAMEN I STATISTIK B, 24-2- Skrivtid: kl: -2 Tillåtna hjälpmedel: Ett A4-blad med egna handskrivna anteckningar samt räknedosa Jourhavande lärare: Lotta Hallberg Betygsgränser: Tentamen

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Tentamen Tillämpad statistik A5 (15hp)

Tentamen Tillämpad statistik A5 (15hp) Uppsala universitet Statistiska institutionen A5 2013-01-14 Tentamen Tillämpad statistik A5 (15hp) 2013-01-14 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 9 Statistiska metoder 1 Dagens föreläsning o Regression Regressionsmodell Signifikant lutning? Prognoser Konfidensintervall Prediktionsintervall Tolka Minitab-utskrifter o Sammanfattning Exempel

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

TMS136. Föreläsning 10

TMS136. Föreläsning 10 TMS136 Föreläsning 10 Intervallskattningar Vi har sett att vi givet ett stickprov kan göra punktskattningar för fördelnings-/populationsparametrar En punkskattning är som vi minns ett tal som är en (förhoppningsvis

Läs mer

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet 732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris

Läs mer

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan.

Resultatet anslås senast 10 juni på institutionens anslagstavla samt på kurshemsidan. Matematisk statistik Tentamen: 28 5 27 kl 8 13 FMS 32 Matematisk statistik AK för V och L, 7.5 hp Till Del A skall endast svar lämnas. Samtliga svar skall skrivas på ett och samma papper. Övriga uppgifter

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Övningstentamen i matematisk statistik för kemi

Övningstentamen i matematisk statistik för kemi Övningstentamen i matematisk statistik för kemi Uppgift 1: Bill och Georg har gått till puben tillsammans. De beslutar sig för att spela dart (vilket betyder kasta pil mot en tavla). Sedan gammalt vet

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:..

Statistik för ekonomer, Statistik A1, Statistik A (Moment 2) : (7.5 hp) Personnr:.. TENTAMEN Tentamensdatum 8-3-7 Statistik för ekonomer, Statistik A, Statistik A (Moment ) : (7.5 hp) Namn:.. Personnr:.. Tentakod: A3 Var noga med att fylla i din kod samt uppgiftsnummer på alla lösningsblad

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-02-06, 8-12 Bertil Wegmann

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 7 (2015-04-29) OCH INFÖR ÖVNING 8 (2015-05-04) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB ÖVNING 7 (25-4-29) OCH INFÖR ÖVNING 8 (25-5-4) Aktuella avsnitt i boken: 6.6 6.8. Lektionens mål: Du ska kunna sätta

Läs mer

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa.

Ett A4-blad med egna handskrivna anteckningar (båda sidor) samt räknedosa. Tentamen Linköpings Universitet, Institutionen för datavetenskap, Statistik Kurskod och namn: Datum och tid: Jourhavande lärare: Tillåtna hjälpmedel: 732G71 Statistik B 2015-12-09, 8-12 Bertil Wegmann

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng.

D. Samtliga beräknade mått skall följas av en verbal slutsats för full poäng. Att tänka på (obligatorisk läsning) A. Redovisa Dina lösningar i en form som gör det lätt att följa Din tankegång. (Rättaren förutsätter att det dunkelt skrivna är dunkelt tänkt.). Motivera alla väsentliga

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Exempel 1 på multipelregression

Exempel 1 på multipelregression Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer