Hammarby Sjöstadsverk Centre for innovative municipal wastewater purification

Relevanta dokument
Country report: Sweden

Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method

Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON

Kundfokus Kunden och kundens behov är centrala i alla våra projekt

Membranfiltrering och fällning för behandling av kommunalt avloppsvatten

Thesis work at McNeil AB Evaluation/remediation of psychosocial risks and hazards.

Innovation in the health sector through public procurement and regulation

Klimatpåverkan och de stora osäkerheterna - I Pathways bör CO2-reduktion/mål hanteras inom ett osäkerhetsintervall

End consumers. Wood energy and Cleantech. Infrastructure district heating. Boilers. Infrastructu re fuel. Fuel production

Botnia-Atlantica Information Meeting

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Vision 2025: Läkemedel i miljön är inte längre ett problem

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

COPENHAGEN Environmentally Committed Accountants

Understanding Innovation as an Approach to Increasing Customer Value in the Context of the Public Sector

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

The present situation on the application of ICT in precision agriculture in Sweden

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.

TN LR TT mg/l N b) 2,6-Dimethylphenole

Arbetstillfällen

Här kan du sova. Sleep here with a good conscience

Är passivhus lämpliga i fjärrvärmeområden?

Retention of metals and metalloids in Atleverket treatment wetland Sylvia Waara & Tatsiana Bandaruk

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

The Swedish National Patient Overview (NPO)

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

Isolda Purchase - EDI

2) att vi som deltar ska öka vårt EU pro-aktiva arbete i Bryssel för respektive påverkansplattform.

Här kan du checka in. Check in here with a good conscience

Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II

EUSME -gratis Horizon 2020-support till småföretag (SME) EU/SME

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Fade to Green. stegen mot grönare hudvårdsprodukter. Tomas Byström Produktutvecklare. Grönt ljus för Grön kemi?

Strategy for development of car clubs in Gothenburg. Anette Thorén

Sara Skärhem Martin Jansson Dalarna Science Park

Protected areas in Sweden - a Barents perspective

Ett hållbart boende A sustainable living. Mikael Hassel. Handledare/ Supervisor. Examiner. Katarina Lundeberg/Fredric Benesch

Resultat av den utökade första planeringsövningen inför RRC september 2005

Utvecklings- och tillväxtplan för ett hållbart Åland

Robust och energieffektiv styrning av tågtrafik

Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

The road to Recovery in a difficult Environment

Swedish International Biodiversity Programme Sida/SLU

SIPTex. Svensk innova6onspla8orm för tex6lsortering

Statusrapport om genomförandet av prioritetsprojektet Nordisk vägkarta för blå bioekonomi

Klicka här för att ändra format

A VIEW FROM A GAS SYSTEM OPERATOR. Hans Kreisel, Weum/Swedegas Gasdagarna, 16 May 2019

The Municipality of Ystad

Microobiology in anaerobic wastewater treatment

ISO STATUS. Prof. dr Vidosav D. MAJSTOROVIĆ 1/14. Mašinski fakultet u Beogradu - PM. Tuesday, December 09,

Senaste trenderna inom redovisning, rapportering och bolagsstyrning Lars-Olle Larsson, Swedfund International AB

Signatursida följer/signature page follows

The Algerian Law of Association. Hotel Rivoli Casablanca October 22-23, 2009

Why Steam Engine again??

D-RAIL AB. All Rights Reserved.

Indikatorer för utvecklingen av de Europeiska energisystemen

Regional Carbon Budgets

Dokumentnamn Order and safety regulations for Hässleholms Kretsloppscenter. Godkänd/ansvarig Gunilla Holmberg. Kretsloppscenter

A study of the performance

Tunga metaller / Heavy metals ICH Q3d & Farmakope. Rolf Arndt Cambrex Karlskoga

Implication of the Selfoss declaration for regeneration

Anmälan av avsiktsförklaring om samarbete med AstraZeneca AB

Läkemedelsverkets Farmakovigilansdag

IWA 12 th world congress on. Guadalajara, Mexico. Jan Moestedt Utvecklingsingenjör, Svensk Biogas FoU

Swedish framework for qualification

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

Hållbar utveckling i kurser lå 16-17

Ulrika Bokeberg, Director Public Transport Authority, Region Västra Götaland, Sweden

Biogas som värdeskapare

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

Cirkulär ekonomi - vision och verklighet

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Nordiska projekt om textil- och plaståtervinning

A metadata registry for Japanese construction field

Kunskapslyftet. Berndt Ericsson. Esbo Utbildning, arbetsliv och välfärd Ministry of Education and Research. Sweden

Adding active and blended learning to an introductory mechanics course

ICRI International Child Resource Institute, Ghana November 2013 Prepared for Tolvskillingshjälpen

Välkommen till Sjöstadsverket

Anmälan av avsiktsförklaring om samarbete mellan Merck Sharp & Dohme AB (MSD AB) och Stockholms läns landsting

Isometries of the plane

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

Riskhantering. med exempel från Siemens

Sustainable transport solutions. Rolf Willkrans Sustainability & Public Affairs Volvo Group Headquarters

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Utveckling av energimarknader i EU. politik och framgångsrika medlemsstater

Preschool Kindergarten

Water management in Sweden

Content of presentation. Long-term effects, maintenance and costs for wastewater treatment wetlands in Sweden. Alhagen - Nynäshamn

Kursplan. FÖ3032 Redovisning och styrning av internationellt verksamma företag. 15 högskolepoäng, Avancerad nivå 1

Varför ett nytt energisystem?

EASA Standardiseringsrapport 2014

Transkript:

Hammarby Sjöstadsverk Centre for innovative municipal wastewater purification About Hammarby Sjöstadsverk Hammarby Sjöstadsverk is a platform for research, development and exchange of knowledge and technologies in water treatment and related environmental technology. It promotes cooperation among companies, experts/researchers and municipal sewage plants to meet future challenges in the water and wastewater sector and aims to increase export of Swedish knowledge and technology. The facility is used for long-term national and international research programmes and projects and as well as for consultancy, testing and development for the industry and other partners. The facility is owned and operated by a consortium led by IVL Swedish Environmental Research Institute and the Royal Institute of Technology (KTH). Hammarby Sjöstadsverk is Sweden s leading and internationally renowned research and development facility in water purification technology. The facility contributes through research and demonstration to a profiling and increase of Swedish know-how related to water and environmental technology. More information and contact Phone: +46 8 634 20 27 E-mail: info@sjostadsverket.se Henriksdalsringen 58 SE-131 32 NACKA, Sweden www.facebook.com/sjostadsverket Activities Activities at Hammarby Sjöstadsverk consists mainly of research and development on water treatment technology and biogas production. These activities take place within the framework of various projects. Apart from this Sjöstadsverket is also used for training purposes, as a platform for knowledge exchange and demonstration. There are a number of ongoing projects of both national and international interest. These include optimization of existing processes/techniques, but also research and development of innovative water treatment technologies and processes at various levels. This can include the system level, process level or evaluation of various products. Examples of activities are: Basic Research and Development Applied Research and Development Reference and demonstration facility Education and platform for knowledge exchange

Pilotförsök MBR Ombyggnad av Henriksdals reningsverk till MembranBioReaktor MEMBRAN RENAT VATTEN FÖRDELAR Bättre rening Ökat kapacitet NACKDELAR Ökad energianvändning Ökad kemikalieanvändning Samarbetspartners Hammarby Sjöstadsverk, Stockholm Vatten VA AB Sammanfattning Henriksdals reningsverk står inför nya utmaningar med en ökad belastning och skärpta reningskrav vilket ställer stora krav på befintlig anläggning. Därför behövs det underlag som ska ge stöd gällande processval och möjligheter inför en kommande utveckling av verket. Kapaciteten på dagens biologiska rening bestäms av kvaliteten på slammet och effektiviteten av eftersedimenteringen. Vid membranfiltrering har slamegenskaperna ingen betydelse, membranen håller kvar slammet i anläggningen oavsett hur hög slamhalten är. Med membrantekniken erhålls därför dels en högre biologisk kapacitet, mer kväve kan renas bort, dels en högre hydraulisk kapacitet, mer vatten kan tas in för rening. Kontentan blir att vi kan rena mer vatten bättre. Syftet med pilotförsöket är att ge information gällande processval och möjligheter inför en kommande utveckling av Henriksdals reningsverk. Valet har fallit på pilotförsök då Stockholm Vattens erfarenheter kring detta som förberedelse inför stora utbyggnader är goda. Henriksdalsringen 58, 131 32 NACKA

Beskrivning av projektet Huvudmålet med försöken är att bekräfta den processkonfiguration som Stockholm Vatten har valt för det framtida Henriksdals reningsverk, vilket innebär att Linje 1 och Linje 2 på Hammarby Sjöstadsverk byggs om. Efter avslutad ombyggnad ska pilotanläggningen och vald processlösning studeras i ett omfattande försöksprogram som syftar till att visa att uppsatta reningsmål uppnås under stabil drift. Viktigt är att utvärdera membranen som innebär en ny teknik för Stockholm Vatten. Effektiviteten av en MBR-rening mäts i termen flux och permeabilitet som betyder liter per kvadratmeter och timme samt flux per tryckenhet. Dessa är parametrar som är mycket viktiga att utvärdera under försöket, hur de påverkas av olika driftstrategier, kemiskfällning och vardaglig drift. Projektet ska försöka att använda sig av både examensarbetare och doktorander. Mål Membrantekniken ger en långt bättre rening än dagens metoder och projektet ska studera hur långt reningen kan drivas i en membranprocess. Är tekniken tillräcklig även för en framtida skärpning av utsläppskraven, exempelvis avseende mikroplaster, läkemedelsrester och andra svårnedbrytbara ämnen, som i dagsläget inte analyseras? Dessa frågor och fler ska besvaras under pilotförsöken. Pilotstudien ska bekräfta att uppställda reningskrav som förväntas bli kommande tillståndskrav vid Henriksdals reningsverk nås. Syftet med försöket är att optimera processen, utvärdera drift- och underhållsbehovet samt utvärdera driftstabiliteten och robustheten i systemet. Förväntade fördelar med membrantekniken som bättre rening och ökad kapacitet ska bekräftas och eventuella nackdelar som ökat energi- och kemikalieförbrukning ska undersökas. Förväntad nytta Membrantekniken ger en långt bättre rening än dagens konventionella metoder. Membranteknikens partikelfria vatten ger även goda förutsättningar för ytterligare rening av föroreningar, som inte tas bort i nuvarande process, i ett framtida kompletterande reningssteg. De möjligheter som membrantekniken ger begränsas inte av reningseffektivitet utan påverkar även Stockholm Stad. Genom en ökad kapacitet via membranseparation ger detta möjligheten att överföra avloppsvattnet från Bromma reningsverk till Henriksdal. Bromma reningsverk kan då läggas ner och ge utrymme för nya bostäder i Stockholm som expanderar kraftigt. Kontakt Christian Baresel (IVL), christian.baresel@ivl.se, 08-598 56 406 Oscar Samuelsson (IVL), oscar.samuelsson@ivl.se, 08-598 56 464 Jonas Grundestam (Stockholm Vatten), jonas.grundestam@stockholmvatten.se, 08-522 12 288 Henriksdalsringen 58, 131 32 NACKA

Systemförslag för rening av läkemedelsrester och andra prioriterade svårnedbrytbara ämnen Systems for the purification of pharmaceutical residues and other priority persistent substances Samarbetspartners Finansiering och projektparternas egna insatser Sammanfattning Projektet, där både forskningsutförare, institut och problemägare deltar, kopplar ihop befintlig och ny kunskap med syfte att bidra till implementering av effektivare avloppsrening. Fokus kommer att ligga på utvalda ämnen som läkemedelsrester och andra prioriterade ämnen. Beskrivning av projektet Läkemedelsrester och andra prioriterade svårnedbrytbara ämnen passerar reningsverken och hamnar i miljön. En del av substanserna som reningen behöver fokusera på är inte tillräckligt kända, analysmetoderna för substanserna finns inte eller är inte tillräckligt bra och nerbrytningsprodukter från olika behandlingstekniker är inte tillräckligt utredda för att kunna ta fram reningstekniker, som inte bara garanterar en effektiv och resurseffektiv rening av redan väl kända substanser utan även andra prioriterade ämnen. Det föreslagna projektet ska ge bättre förståelse och metoder för att öka Henriksdalsringen 58, 131 32 NACKA

kunskapen om koncentrationer och mängder av relevanta substanser i befintliga och nyutvecklade reningsprocesser. De mest effektiva reningsalternativen, med tillhörande design- och kostnadsförslag kommer att presenteras så att reningsverken kan välja den lösning som är bäst lämpad för deras förutsättningar och framtida mål. Detta inkluderar en jämförelse av tekniker både med tanke på den totala miljöpåverkan samt kostnaderna, men även utvecklingsmöjligheterna för reningssystemen för att kunna anpassas till nya tekniker, som kommer kunna användas inom reningsverk i framtiden. Projektet kommer således både att ta fram underlag för en direkt implementering av kompletterande reningstekniker för läkemedelsrester och andra prioriterade svårnedbrytbara ämnen, och att skapa förutsättningar till effektivare och hållbara lösningar, som även möjliggör ett internt resursutnyttjande och -besparing för reningsverken. Mål Syftet med det föreslagna projektet är att bidra till implementering av bättre behandlingssystem genom att ta fram underlag för val av system som passar olika svenska reningsverk. Underlaget ska ge kunskap om de mest realistiska reningsmetoderna för olika anläggningstyper. Förväntad nytta Det föreslagna projektet bidrar till att tillgodose behovet för utökad rening av läkemedelsrester och andra svårnedbrytbara ämnen framför allt genom att: Ge underlag för val av fokusämnen och vägleda till förbättrade analyser av dessa i olika matriser Ge beslutsunderlag för reningsverken för val av mest effektiva behandlingstekniker ur ett hållbarhets- och systemperspektiv Bidra till implementering av effektiva reningstekniker och dess utveckling Kontakt Projektledare: Christian Baresel, IVL Svenska Miljöinstitutet, christian.baresel@ivl.se, +46-8-598 56 406 KTH: Maritha Hörsing Stockholm Vatten AB: Cajsa Wahlberg SYVAB: Sara Söhr Henriksdalsringen 58, 131 32 NACKA

R3Water Demonstration of innovative solutions for Reuse of water, Recovery of valuables and Resource efficiency in urban wastewater treatment Collaboration partners Sweden: IVL Swedish Environmental Research Institute (Coordinator), Aqua-Q AB Spain: ADASA Water and Environment Technology, ICRA-Catalan Institute for Water Research, Teqma Technologies and Equipment for the Environment Belgium: AquaFin N.V. Germany: Dechema Gesellschaft für Chemische Technik und Biotechnologie E.V., AVA-CO2- Forschung GmbH Finland: VTT Technical Research Centre of Finland, Ekolite Oy Norway: Prediktor United Kingdom: Perlemax United Summary The EU project R3Water aims to demonstrate different innovative technologies supporting the conversion and upgrading of wastewater treatments plants into production units to provide energy, nutrients, water for reuse and possibly other valuables. Different technologies will be demonstrated at 3 demo-sites in northern, central and southern Europe. Description Different types of technologies and innovative solutions are further developed and tested at the demonstration sites that are located in Belgium, Spain and Sweden. The technologies are divided in three categories; Reuse of water, Recycling of valuables and Resource efficient treatment. In total 10

different technologies are demonstrated at the different demonstration sites At the Swedish demonstration site; Hammarby Sjöstadsverk, a total of six technologies are installed. These are: On-line water monitoring, control and automatic sampling integrated with an ozonation system for disinfection Reduction of aeration energy by fluidic oscillation technology Increased methane content in biogas from anaerobic digestion by fluidic oscillation technology Anammox process control system for resource efficient nitrogen removal Removal of pharmaceutical elements in effluent wastewater Model based predictive control for resource efficient wastewater treatment The technology demonstration in R3Water is accompanied by activities for a more parallel and direct market acceptance in European countries, e.g. by dissemination activities and the concept of European Technology Verification (ETV) that is directly integrated in the demonstration process. Goal The main objective of R3Water is to use demonstration of innovative technologies that support the transition from a treatment plant for urban wastewater to a production plant of different valuables in order to facilitate their development and market uptake. Expected benefit The expected benefits of R3Water are demonstrated new solutions for reuse of water, recovery of valuables and resource efficient wastewater treatment at three geographically different demonstration sites. The technologies will allow to: Reduce energy use in wastewater treatment plants Secure water quality for possible re-use Support re-use of nutrients Increase treatment plant performance Contact person Klara Westling, klara.westling@ivl.se, IVL Swedish Environmental Research Institute Uwe Fortkamp, uwe.fortkamp@ivl.se, IVL Swedish Environmental Research Institute R3Water is partly financed by the European Union s Seventh Programme for research, technological development and demonstration under grant agreement No 619093.

Removal of pharmaceutical residues from sewage Avlägsnande av läkemedelsrester i avloppsvatten Collaboration partners Hammarby Sjöstadsverk Summary Most of the pharmaceutical compounds we use leave the body with small or no changes, mainly via the urine. They come to the sewage treatment plants (STP) in very low concentrations (ng/l to μg/l), but many of them can still be found after the normal treatment. This is due to high water solubility compared to the concentrations and a design to make the compounds stable in the body. STPs are designed to remove particles, biodegradable organic material and nutrients in much higher concentrations. In spite of the very low concentrations of pharmaceuticals in the effluent, there is a risk that they can have a negative effect in the receiving waters due to their high specific activity in living systems. Today no direct effects are seen in Swedish water bodies, but effective concentrations of endocrine disrupting compounds (artificial estrogens) might be found close to the outlet of some STPs.

It is possible that also other compounds can be found in concentrations close to giving effects over longer periods. Predictions can be made from actual or calculated concentrations in relation to concentrations with noted or suspected effects in tests. However, so far it is not possible to point out all potentially harmful substances, so most of the research is still aiming at removal of as many of the used compounds as possible. These compounds, like other potentially harmful xenobiotics, constitute a very small part of the total organic content in sewage. Thus, we need a specific biological degradation method or a more general oxidation/separation of compounds in already conventionally well treated sewage. Specific biological treatment is difficult since there are so many different compounds. The most commonly discussed methods are separate steps after normal treatment, comprising oxidation (ozone, hydrogen peroxide and UV in different combinations), membrane filtration (reverse osmosis (RO) or possibly nano filtration) or adsorption to a solid material (like activated carbon). Based upon earlier results at Hammarby Sjöstadsverk we start with experiments with granulated activated carbon (GAC) and plan experiments with a low dose of ozone combined with UV and TiO 2 catalyst. Description Well-treated sewage (now from Henriksdal STP) is treated on line in pilot scale, big enough and representative for the method in full scale. Three columns with GAC (F400) are connected in series and about 100 L/h is pumped into the system. Composite samples are automatically taken from the inlet and after all three steps. Samples are stored frozen. COD is analysed in all samples, while pharmaceuticals are analysed in a few samples to find the capacity of the GAC. Goal To determine the amount of GAC needed to remove most of the studied compounds to be able to calculate the total cost for this treatment in full scale. Expected benefit Further decreased risk for long term negative effects on the environment if this or some other extra treatment step is used. Cost-benefit estimations can later be done for tested methods. Contact person Mats Ek (IVL), mats.ek@ivl.se, +46-8-598 56 384.

Control and optimization of the deammonification process Teknik för att styra och optimera deammonifikation Collaboration partners Hammarby Sjöstadsverk, IVL, KTH, Syvab, Cerlic Summary Deammonification is based on nitritation (oxidation of about half of influent ammonium nitrogen to nitrite nitrogen without further oxidation of nitrite) and the Anammox process (reaction between formed nitrite and remaining ammonium to nitrogen gas). This technology gives possibility for a costeffective nitrogen removal from supernatant from dewatering of the digested sludge at the wastewater treatment plants. By separate treatment of supernatant (as ammonium rich stream with concentrations of about 1000 g m -3 ) influent nitrogen load to the plant can be decreased in 15-20 %. The aim is to develop and test different measurement techniques and operation strategies with further possibility of application in monitoring, control and optimization of the deammonification process. Those methods are: Kaldnes biofilm carriers are used for different discontinuous tests for determination of Anammox bacteria, nitrifies and denitrifies activity.

On-line measurements of oxygen concentration, conductivity, ph, redox potential, and temperature are used for process control and monitoring. Tests based on measurements of gas volume or a pressure increase caused by nitrogen gas produced in the Anammox process are applied as a simple way to estimate Anammox bacteria activity. Different operation strategies like intermittent aeration, tested at the pilot plant, will help to optimize the deammonification process and to obtain the efficient nitrogen removal. Description The pilot plant operated at Hammarby Sjöstadsverk consists of two moving-bed biofilm deammonification reactors with a flexible volume of 100-200 l and two sedimentation tanks. The reactors are filled in 40% of the total volume with Kaldnes biofilm-carriers, which has an effective surface area of 500 m 2 m -3. The pilot plant is equipped with on-line measurements of oxygen concentration, conductivity, ph, redox potential and temperature. Goal To determine the optimal parameters for efficient nitrogen removal and to study different strategies for deammonification process operation. Expected benefit Research and development efforts can lead to a more cost-effective and environmentally friendly nitrogen removal technology. This innovative technology has decreased CO2 and N2O emissions in comparison with traditional nitrification/denitrification. Contact person Jozef Trela (KTH/IVL), trela@kth.se/jozef.trela@ivl.se, +46-8-790865. Elzbieta Plaza (KTH), elap@kth.se, +46-8-7906656.

Increased biogas production Ökad biogasproduktion Collaboration partners Hammarby Sjöstadsverk, IVL, KTH, Energimyndigheten, Svenskt Vatten Utveckling, SYVAB, Gävle Vatten Summary Biogas is primarily produced at sewage treatment plants through anaerobic degradation of organic material in the sludge produced during the water treatment. By recovering chemically bound energy (methane gas) in the digestion of organic matter in the sewage sludge, a corresponding amount of electric or heat energy can be substituted. When the primary sludge is separated and digested, the organic input to the STP is decreased by about 55-60 %. By digestion of both primary and secondary (biological) sludge, the quantity of dry matter for disposal is reduced by about 40 %. The sludge after treatment and dewatering can be used as a fertilizer or soil conditioner. Several Swedish treatment plants already today upgrade biogas for use as vehicles fuel and the demand for biogas is steadily increasing. Organic sludge is gradually going from being a disposal problem to be considered as a resource. Interest in a cost-effective way to increase biogas production is very high, both nationally and internationally.

Description The method that is tested is the recycling of dewatered sludge by using the normal centrifuge and only use polymer in the recycling of sludge. At the excess sludge outlet, it is preferred to run the centrifuge without polymer, in order to separate a greater proportion of inorganic materials due to density difference between organic and inorganic materials. At the excess sludge outlet reject is returned to the digestion process. The project will further test sludge disintegration in a side stream of the digester system. Common methods include chemical, mechanical or biological techniques. There is the option to test several of new innovative methods, but the focus will be on using ozone treatment. Suitable ozone doses are investigated and based on laboratory experiments. Simultaneously ozone treatment and recycling of separated sludge will also be tested on a stream with thickened sludge to see where ozone has the most impact. The two approaches disintegration and recycling will be evaluated separately and in combination. Goal To increase biogas production at the municipal sewage treatment plants by increasing the degree of digestion to over 60% and also to double the capacity by reducing the hydraulic retention time. Expected benefit A significant increase of the biogas production at the municipal wastewater treatment plants as well as a capacity increase by reducing the retention time in the digestion chamber. A higher degree of digestion also implies a reduction of the amount of residual sludge that needs to be handled. Secondary benefits will be fewer odours and a less sensitive process. Contact person Lars Bengtsson (IVL), lars.bengtsson@ivl.se, +46-8-598 56 307

Reduce greenhouse gas emissions from Swedish wastewater and sewage sludge management Minska utsläppen av växthusgaser från svensk hanteringen av avloppsvatten och avloppsslam Collaboration partners Hammarby Sjöstadsverk, Hammarby Sjöstadsverk, SLU-Swedish University of Agricultural Sciences, JTI Swedish Institute of Agricultural and Environmental Engineering, IVL- Swedish Environmental Research Institute, KTH Royal Institute of Technology. Summary Greenhouse gas emissions are an increased concern within all sectors of society. Treating wastewater is essentially positive for the environment but it has also an impact on the environment due to the resource demand and emissions along the process chain. In this project we study the greenhouse gas emissions from three defined steps, reject water treatment and storage, and spreading of sludge, in the wastewater and sludge management chain. The greenhouse gases considered are nitrous oxide (N 2 O) and methane (CH 4 ), which has a greenhouse warming potentials 298 and 25 times stronger than carbon dioxide (CO 2 ), respectively. The aim is to provide new knowledge on the greenhouse gas emissions from wastewater and sludge processes, and to provide good decision support on suitable combinations and operation for these processes as part of the wastewater management.

Description Nitrous oxide (N 2 O) and methane (CH 4 ) emissions will be measured at/during: A. The Anammox technology, a new resource efficient technology for removing nitrogen from reject water. The influence of process parameters will be studied and the process compared with Sequenced Batch Reactor process. B. Storage of sludge for one year, which probably will be a minimum hygenisation requirement before spreading it on arable land. Measurements have shown that sludge storage can give large N 2 O emissions. Influence of covering/not covering the storage and sanitizing/not sanitizing the sludge will be studied. C. Different spreading strategies on GHG emissions for two types of sludge will be studied. In addition to the direct gaseous emissions, the Wastewater Treatment System (WWTS) also causes other environmental impact from e.g. energy and material use, and naturally from water emissions. To provide a good decision support for suitable process operation and combinations, the GHG emissions measured will be integrated with existing data on emissions and resource use in a system analysis over the whole WWTS. Goal The objectives of the project are: 1) to provide new knowledge on the greenhouse gas (GHG) emissions from wastewater and sludge processes, and 2) to provide good decision support on suitable combinations and operation for such processes to minimize GHG emissions. Expected benefit Decreased greenhouse gas emissions from the treatment of wastewater, and especially from the treatment of reject water and the handling of the sewage sludge. Contact persons Håkan Jönsson (SLU), Hakan.Jonsson@et.slu.se, +46 736 52 23 30, project leader. Christian Baresel (IVL), christian.baresel@ivl.se, +46 8 598 56 406, GHG emissions measurements Jozef Trela (KTH), trela@kth.se, +46 8 7908652, anammox process Lena Rodhe (JTI), Lena.Rodhe@jti.se, +46 10 516 69 51, GHG emissions from sludge Christian Junestedt (IVL), christian.junestedt@ivl.se, +46 859856370, systems analysis. Financers The Swedish Research Council Formas and the Swedish Water & Wastewater Association. Co-financers and sponsors Swedish Environment Protection Agency, SLU, JTI, KTH, Käppalaförbundet, Syvab, Karlstad Municipality, Stockholm Water.

ITEST - Increased Technology and Efficiency in Sewage Treatment Collaboration partners Oskarshamn Municipality, Emerson Process Management AB, Jayway Innovation AB, Hammarby Sjöstadsverk Summary The proposed project will demonstrate new methods to improve the treatment efficiency in biological wastewater treatment while at the same time saving electrical energy. The test plant at Hammarby Sjöstadsverket aims to demonstrate how a stabilized temperature, which can be achieved by using waste heat, can improve the treatment efficiency. The project is partly financed within the EU LIFE+ programme, with Oskarshamn municipality as project beneficiary. Description The basic idea is to use heat, e.g. from combined heat and power plants, in order to not only warm up the incoming water, but also to stabilise the treatment temperature. Pre-studies and calculations indicate that a stabilised process at e.g. 20 C will improve the treatment efficiency, especially for

nitrogen (N), and possibly for other specific unwanted organic compounds. Other improvements are the possibility to use the excess heat for pre-warming sludge for anaerobic digestion, and possibly to increase the carbon dioxide content in the air for nitrification. The preferred source of heat for warming the water is the backflow from district heating. Thus, the temperature is lowered even more before returning to the combined heat and power plant, allowing improving the electricity yield at the power plant. If no such heat is available, also biogas from sludge digestion can be used. The technology is demonstrated and optimized with a pilot plant at Hammarby Sjöstadsverk. The demonstration is planned to be one year before equipment is moved to Oskarshamn as proof before a full-scale installation. In parallel with the demonstration, the results will be evaluated technically and economically, also for optimization of the operation. Goal Demonstrate improved municipal waste water treatment (improved N, COD and specific compounds removal) Demonstrate improved waste water treatment control and operation (stable process over the year) Improved power efficiency in waste water treatment Improved power yield potential in combined heat and power plants (in full-scale application). Expected benefit The pre-studies tests and calculations indicate that the proposed method will improve wastewater treatment efficiency for one treatment plant by: Better water quality after municipal wastewater treatment (especially reaching a maximum of 10 mg/l for nitrogen in the treated water during the whole year). less power consumption for waste-water treatment (a reduction of 10-30 per cent) higher power yield in combined heat and power plants reduced carbon dioxide emissions as a consequence of an overall increased power efficiency cost efficiency of the necessary investment due to power savings. The solution is applicable to many new and existing wastewater treatment plants in Europe and elsewhere giving a large potential for reduced environmental impact. The largest effect is expected for treatment plants with colder water during wintertime, when both stable and higher temperature will show effect, but there are also positive effects expected only stabilising the temperature. Contact person Uwe Fortkamp (IVL), uwe.fortkamp@ivl.se, +46-8-59 856 304. Please check also the project webpage: http://www.itestlife.eu/

Membrane distillation for treatment of effluents and production of clean water Membrandestillation för uppkoncentrering/rening av olika vattenströmmar Collaboration partners Xzero, Hammarby Sjöstadsverk, IVL- Swedish Environmental Research Institute, KTH Royal Institute of Technology Summary Membrane distillation is a separation technology with interesting properties. The achievable high water quality is one of its advantages. As a high amount of energy as heat is needed to drive the process, waste heat or renewable energy sources are preferred. The technology is tested, further developed and demonstrated at Hammarby Sjöstadsverk as a cooperation project between IVL and Xzero, the equipment supplier. The project includes testing of different applications for cleaning of contaminated water as well as production of clean water. It might be used for tertiary treatment after biological wastewater treatment. The testing and demonstration will be used to identify optimisation potential concerning energy efficiency, process performance, and treatment results.

Description Today many countries struggle with water related problems as contaminated groundwater, pharmaceuticals in treated sewage water, complicated industrial wastewaters etc. Existing separation technologies often have problems to treat these wastewaters efficiently. Membrane distillation is a promising technology for separation and concentration of water. A main difference compared to other separation technologies like Reverse Osmosis is that the driving force is a temperature difference on the two sides of the membrane. This makes it very usable for applying waste heat. Very clean water can be achieved. The scheme below illustrates the working principle of membrane distillation. Goal The project aims to show if membrane distillation can replace or complete existing separation technologies that are used today for treatment of water streams. It will be tested for water streams where concentration of contaminated water is a goal as well as for water with the goal to achieve a clean product. Another goal is to evaluate the technology in order to allow optimisation as well as to show advantages and disadvantages from a life-cycle perspective. Expected benefit The expected benefit is that better information is provided to show, which potential membrane distillation has as alternative or complement to existing separation technologies from a technical and system perspective. If the results are sufficient and are achieved cost-efficiently, MD might improve treatment of some municipal water streams, e.g. with regards, to pharmaceuticals. Other applications might be industrial wastewater or water from desalting equipment. Contact person Uwe Fortkamp (IVL), uwe.fortkamp@ivl.se +46-8-59 856 304.

Detection and characterization of silver nanoparticles in WWTP - Assessment of environmental risks and filtering techniques Detektering och karaktärisering av silvernanopartiklar i reningsverk utvärdering av miljörisker och filtreringstekniker Collaboration partners Hammarby Sjöstadsverk, IVL, Surface and Corrosion Science (KTH), ÅF, Sveriges Ingenjörers Miljöfond. Summary The use of nanoparticles is growing in a number of applications. This provides possibilities for new materials with improved properties, drug delivery, etc. However, as the nanoparticles are dispersed into the environment, there are also risks of adverse effects. For example, silver nanoparticles are used in increased quantities due to their antibacterial properties. There are today hundreds of consumer products which contain silver nanoparticles. The environmental fate of these nanoparticles is unknown. However, wastewater treatment plants are an expected to be an important focal point of nanoparticles and will determine whether such particles are released in the effluent or to the sewage sludge. Therefore, knowledge of silver nanoparticles path through a wastewater treatment plant is important to aid in assessing potential environmental risks with increase release of silver nanoparticles into the environment.

Description This project will investigate the path of silver nanoparticles through a water treatment process. By adding small, known, amounts of silver nanoparticles, the interaction with each treatment step will be analysed in order to understand how this step affects the nanoparticles, for example causing them to sediment. Different types of silver nanoparticles will be used in order to gain understanding on the link between material properties of the particles and their interactions with the treatment plant. Goal To obtain an understanding of how silver nanoparticles behave in a wastewater treatment plant, and how the properties of the particles themselves influence the interaction with different filtration techniques. Expected benefit Improved risk assessment for dispersion of silver nanoparticles to the environment. Better knowledge of how filtration techniques are capable of dealing with nanoparticles, which is important for design of future filtration treatment processes. Contact person Jonas Hedberg (IVL/KTH), jonas.hedberg@ivl.se, +46-70-072 84 84.

Reuse of treated wastewater for non-potable use Utveckling och optimering av vattenreningsprocesser och -system för en uthållig återanvändning av renat avloppsvatten i samhället Collaboration partners Xylem, Hammarby Sjöstadsverk Summary The project aims at developing and optimizing water treatment processes and systems for sustainable reuse of treated wastewater in the community. The starting point is to combine the sequential batch treatment (SBR, sequencing batch reactors) with different conventional and emerging secondary and tertiary treatment techniques in various combinations that are optimized from an overall sustainability perspective. Evaluation and optimization is done using life cycle assessment. Description Discharge of large quantities of pollutants to surface waters is a contributing factor to lack of water suitable for drinking water. In addition, supply and demand of fresh water is skewed in the world, which increases water stress in many regions, with some serious conflicts as a result. While there is a

severe shortage of fresh water, many applications for used water that do not require water of such high quality. This project seeks to optimize existing treatment steps and systems to allow for purification of municipal wastewater for various water reuse applications in various sectors such as agriculture, industry, but also to increase the availability of natural water by infiltration of treated wastewater into groundwater. The project consists of several components, which are all linked to the central optimization of wastewater treatment by using Life Cycle Assessment (LCA). The starting point of this LCA is to first assess the existing water treatment system. Based on this inventory, optimization proposals are developed that will lead to a substantial improvement of the various treatment processes and systems, and create a comprehensive basis in order to apply these different treatment systems in different parts of the world with different abilities and needs. The project is implemented at IVL with data collection and optimization at a pilot facility that is placed at the R&D-facility Hammarby Sjöstadsverk. In order to implement this project a global screening of different standards for the reuse of water for different purposes was conducted. Before the project, a number of treatment steps were identified for inclusion in this project. These purification steps (as shown in the figure above) consist of best available and emerging technologies. Goal The overall aim of this project is to: Optimize treatment processes and systems for non-potable water reuse applications worldwide. Assess treatment processes in terms of sustainability to achieve the lowest life cycle costs now and in the future. Achieve the best possible micropollutants reduction. Create treatment systems that can be adapted to local and regional requirements and conditions. Expected benefit The project will develop sustainable solutions to reclaim treated wastewater for urban, agriculture, recreation, industry, and groundwater recharge uses. Contact person Christian Baresel (IVL), christian.baresel@ivl.se, +46-8-79 08 406 Glen Trickle (Xylem), glen.trickle@itt.com, +1 414 365 5990

SoftSensor Collaboration partners Hammarby Sjöstadsverk, Cerlic AB Summary Wastewater is a very complex fraction to work with. Its composition and flow varies widely both over the seasons as well as over the day. Due to its heterogeneity, some of the parameters of interest for the treatment results, such as Phosphorous, Nitrogen and BOD can be difficult to measure with online sensors. The physical sensors available on the market, regarding these parameters, are usually very expensive and in need of continuous maintenance. Therefore, these parameters are usually analysed as daily or weekly samples in a laboratory, sometimes several days after the samples were taken. Due to this, it is very difficult to control the wastewater plant and make needed adjustments in time, concerning the parameters of interest. This also implies increased costs and environmental impacts due to inefficient chemical and energy use. Description The hypothesis in the project is that the parameters in the wastewater are somewhat dependent, that parameters that are more easy to measure, such as ph, temperature, flow, conductivity, redox and suspended solids can help predict the parameters that are more difficult to measure such as N tot, NH 4 -N, NO 3 -N, P tot, PO 4 -P, BOD, nitrification denitrification speed. The predictions will be developed by using multivariate mathematical methods such as PCA and PLS. The predictions developed will be called soft sensors, as they are predicting parameters but no physical sensors are involved the prediction.

In addition, other types of sensors are planned, but the details of these will be set later in the project. A pilot-scale copy of Stockholm s largest wastewater treatment plant will be used for the testing. The testing will be carried out in a number of measurement campaigns during the project period. Graph of measured (o) versus soft sensor predicted (+) PO 4 -P after pre-sedimentation. Goal To be able to predict wastewater parameters that are difficult to measure on-line by using parameters that are easy to measure on-line. Expected benefit It is very expensive to purchase on-line sensors for the parameters focused on in this study. They are also usually in need of much maintenance and the costs and time spent on getting the parameters to function properly can be very consuming for the WWTP. An expected benefit of this project is that the developed soft sensors, predicting these parameters, can be used either as complete replacements to the physical sensors or as a complement to the physical sensors when they are out of order or giving unrealistic measures. In that way, no or a minimal amount of time with un-functioning sensors will pass which is extremely important both for surveillance but mostly if the parameters are used for automatic plant control including regulation of chemical and energy use. Contact person Anders Björk (IVL), anders.bjork@ivl.se, +46-(0)8-598 563 721.

Energy and resource management facility: Tomorrow s wastewater treatment plant - a totally new design concept Energi- och resurshushållningsanläggning: Morgondagens reningsverk - ett komplettnytt designkoncept för reningsverken Collaboration partners Foundation for the Swedish Environmental Research Institute (SIVL), Kalmar Vatten AB, EnviDan, Läckeby Water Summary A working group consisting of VA-professionals (the Kalmar-initiative) proposes a new strategy for municipal wastewater treatment that focuses on an increased microbial conversion of organic and inorganic pollutants into valuable resources, i.e. recycling of nutrients, and an increased utilization and production of energy. In order to reach these goals the design is based on following concept: Design of the incoming wastewater to the high COD/N ratio (e.g. Fixed garbage!). Selections of the fastest bacteria in the activated sludge (100% biological nitrogen reduction without the use of the slow-growing bacteria for nitrification/denitrification, but the use of a rapid and stable heterotrophic biological assimilation. 100% biological phosphorous reduction without the use of the chemicals.)

Increased sludge production with high-energy content. Central treatment of supernatant (e.g. with anammox and / or regeneration of N and P) C/N > 30 Precipitation chemicals Wastewater Very low sludge age Sedimentation Final sedimentation Grate Sand trap 100 % Oxidation Sludge circulation Chem. Return sludge Dewatering Substrate Bio. + chem. sludge Digester Biogas Fuel/energi Solid waste/ process waste thermophilic Anammox and/or N och P regeneration Agriculture/ Forestry/ Energi crops Reject with high N and P concentration Description An Energy & Resource Management plant consists of an aeration tank, sedimentation tank, a digester and extra tanks for chemical treatment and removal of excess nitrogen if necessary. Goal The pre-study aims to investigate whether a conventional wastewater treatment plant can be run with high organic load, short sludge age and nutrient removal by 100% biological assimilation. Expected benefit The proposed project will lead to the following benefits if successful implemented: Treatment plants will produce more energy (through production of biogas from sludge digestion) than it consumed to treat wastewater. The plant will have a stable and safe operation. Low or no usage of chemicals. The study will show whether it is possible to maintain a stable reduction rate of COD, N and P with biological assimilation. Moreover, certain key parameters will be determined. Contact person Christian Baresel (IVL), christian.baresel@ivl.se, +46-8-598 56 406.