The electrically powered assisted bicycle s potential in improving the climate performance of the transport sector

Relevanta dokument
Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON

Klimatpåverkan och de stora osäkerheterna - I Pathways bör CO2-reduktion/mål hanteras inom ett osäkerhetsintervall

Isolda Purchase - EDI

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

City Mobility Transport Solutions -Environmental and economic sustainability by new technology Trondheim 26th of June

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

A VIEW FROM A GAS SYSTEM OPERATOR. Hans Kreisel, Weum/Swedegas Gasdagarna, 16 May 2019

Klimat och miljö vad är aktuellt inom forskningen. Greppa Näringen 5 okt 2011 Christel Cederberg SIK och Chalmers

DE TRE UTMANINGARNA..

Regional Carbon Budgets

Consumer attitudes regarding durability and labelling

COPENHAGEN Environmentally Committed Accountants


SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.

PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs

Cancersmärta ett folkhälsoproblem?

Svensk presentation Anita Lennerstad 1

SHP / SHP-T Standard and Basic PLUS

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

NORDIC GRID DISTURBANCE STATISTICS 2012

Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.

Här kan du sova. Sleep here with a good conscience

Module 6: Integrals and applications

Arbetstillfällen

Beijer Electronics AB 2000, MA00336A,

Indikatorer för utvecklingen av de Europeiska energisystemen

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

SVENSK STANDARD SS :2010

Läkemedelsverkets Farmakovigilansdag

End consumers. Wood energy and Cleantech. Infrastructure district heating. Boilers. Infrastructu re fuel. Fuel production

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Split- vs ventilationsaggregat

Sara Skärhem Martin Jansson Dalarna Science Park

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

Calculate check digits according to the modulus-11 method

Affärsmodellernas förändring inom handeln

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method

The reception Unit Adjunkten - for newly arrived pupils

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

Collaborative Product Development:

A study of the performance

Studieteknik för universitetet 2. Books in English and annat på svenska

Varför ett nytt energisystem?

Ökat personligt engagemang En studie om coachande förhållningssätt

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Nya driftförutsättningar för Svensk kärnkraft. Kjell Ringdahl EON Kärnkraft Sverige AB

Här kan du checka in. Check in here with a good conscience

Solowheel. Namn: Jesper Edqvist. Klass: TE14A. Datum:

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Strategy for development of car clubs in Gothenburg. Anette Thorén

6 th Grade English October 6-10, 2014

Isometries of the plane

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Nenet Norrbottens energikontor. Kjell Skogsberg

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Transporters samhällsekonomiska nytta och kostnader - Kan detta mätas i monetära medel? Magnus Swahn

Byggdokument Angivning av status. Construction documents Indication of status SWEDISH STANDARDS INSTITUTE

Transporter och handel med utsläppsrättigheter. Lars B Johansson Head of Environmental Affairs Schenker AG

Botnia-Atlantica Information Meeting

Säkerhetsfunktioner rstå varandra? Finns behov av att avvika från normal säkerhetsfunktion s vissa betingelser under uppstart, ändringar i processen

Gröna bränslen för tunga dieselfordon Patrik Thärnå

Aborter i Sverige 2008 januari juni

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

- den bredaste guiden om Mallorca på svenska! -

Hållbar utveckling i kurser lå 16-17

Olika uppfattningar om torv och

Questionnaire for visa applicants Appendix A

Resultat av den utökade första planeringsövningen inför RRC september 2005

Grafisk teknik. Sasan Gooran (HT 2006)

SWESIAQ Swedish Chapter of International Society of Indoor Air Quality and Climate

Shopping Center Industry Evolution from Global and Finnish Perspectives

MOBILITY FUTURES. Maria Schnurr Sustainability Day january 2018, Handelshögskolan Göteborg

SVENSK STANDARD SS

Environmental benefits CO 2

Tanktransportdagen april 2019 Lars Lind

Lights in Alingsås Nordens största workshop inom ljussättning i offentlig miljö.

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

Sustainable transport solutions. Rolf Willkrans Sustainability & Public Affairs Volvo Group Headquarters

Är passivhus lämpliga i fjärrvärmeområden?

Omställning av busstrafiken till eldrift

Uttagning för D21E och H21E

Boiler with heatpump / Värmepumpsberedare

Konsumtion, energi och klimat. Annika Carlsson-Kanyama FOI och LTH

Social innovation - en potentiell möjliggörare

PFC and EMI filtering

What Is Hyper-Threading and How Does It Improve Performance

Make a speech. How to make the perfect speech. söndag 6 oktober 13

Workplan Food. Spring term 2016 Year 7. Name:

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09

Quality-Driven Process for Requirements Elicitation: The Case of Architecture Driving Requirements

Fossilförbannelse? Filip Johnsson Institutionen för Energi och Miljö Pathways to Sustainable European Energy Systems

Goals for third cycle studies according to the Higher Education Ordinance of Sweden (Sw. "Högskoleförordningen")

Transkript:

The electrically powered assisted bicycle s potential in improving the climate performance of the transport sector A study of passenger transportation modes Anders Arwefeldt Examensarbete 2014 Miljö- och Energisystem Institutionen för Teknik och samhälle Lunds Tekniska Högskola

The electrically powered assisted bicycle s potential in improving the climate performance of the transport sector A study of passenger transportation modes Anders Arwefeldt Examensarbete November 2014

Dokumentutgivare, Dokumentet kan erhållas från LUNDS TEKNISKA HÖGSKOLA vid Lunds universitet Institutionen för teknik och samhälle Miljö- och energisystem Box 118 221 00 Lund Telefon: 046-222 00 00 Telefax: 046-222 86 44 Dokumentnamn Examensarbete Utgivningsdatum November 2014 Författare Anders Arwefeldt Dokumenttitel och undertitel Elcykels potential att förbättra klimatprestandan inom transportsektor. En studie av persontransportslag. Sammandrag Den här master-uppsatsen studerar elcykeln (EPAC) som ett framtida icke-kolintensivt pendlingsalternativ och dess framtida marknad. Syftet med rapporten är att utvärdera huruvida elcykeln kan användas för att minska utsläppen från transportsektorn och ge en utblick för hur marknaden kan komma att utvecklas. Elcykeln jämförs med vanlig cykeln, bil, buss och tåg och bedöms mot dessa. Resultaten i den här rapporten visar att elcykeln är ett av de trafikslagsom släpper ut minst växthusgaser. Tåget och bussen som drivs av förnybara bränslen visar liknande utsläppsnivåer. Dessa är de främst alternativen när det gäller motordriva pendlingsalternativ. Elcykeln i kombination med kollektivtrafiken utgör ett mäktigt verktyg för att skapa högeffektiva transportkedjor, i termer av GHG-utsläpp. Internationella erfarenheter (Köpenhamn, DK, och Houten, NL) har visat att det behövs långsiktigt och strategiskt arbete för att marknadsandelen av cyklar och elcyklar ska stiga. Nyttan med dessa fordonsslag har visat sig vara betydligt fler än endast minskade GHG-utsläpp. Den svenska elcykelmarknaden går en ljus framtid till mötes. Den nederlänska elcykelmarkaden har redan en 19 procentig andel nysålda elcyklar och den svenska marknaden följer i snabb takt. Tillverkarna siktar på nya kundsegment där man främst fokuserar på pendlarna. GHG-minskningspotentialen för Sverige är över 1 % om 10 % av bilpendlingstrafiken ersätts med EPAC-trafik. Ökat elcyklande leder troligen till ökad cykling överlag vilket ökar fördelarna ännu mer. Produkterna finns på marknaden för ett brett mottagande medan den svenska cykelinfrastrukturplaneringen halkar efter och prioriterar bilen som det främsta fordonet. Ökat fokus på cykeln och elcykeln behövs för att på bred front få folk att byta transportmedel. Nyckelord Elcykel, persontransport, koldioxidutsläpp, transportsektorn, utsläpp, personkilometer Sidomfång 94 Språk Engelska ISRN LUTFD2/TFEM--14/5086--SE + (1-91)

Organisation, The document can be obtained through LUND UNIVERSITY Department of Technology and Society Environmental and Energy Systems Studies Box 118 SE - 221 00 Lund, Sweden Telephone: int+46 46-222 00 00 Telefax: int+46 46-222 86 44 Type of document Master thesis Date of issue November 2014 Authors Anders Arwefeldt Title and subtitle The electrically powered assisted bicycle s potential in improving the climate performance of the transport sector - A study of passenger transportation modes. Abstract This master thesis addresses the electrically powered assisted bicycle (EPAC) as a future low-carbon commuting option and its market. The purpose of the report is to evaluate whether the EPAC can be used to improve the climate performance of the transport sector and to assess the outlook for the Swedish EPAC market. The EPAC is compared to the bicycle, car, bus and train and assessed thereafter. The result of the climate performance study shows that the EPAC performs among the best. The train along with buses powered by renewable fuel perform in the same order of magnitude in terms of emissions and should be considered a good alternative. These are the best options when it comes to motorized commuting alternatives. The EPAC together with the public transportation system offers highly efficient transportation chains, in terms of GHG emissions. As seen from international experience (Copenhagen, DK, and Houten, NL) the work to increase the bicycle and EPAC modal share has to be long-term and strategic. The reward of increasing the cycle modal share has proven to be significant with benefits far beyond reduced GHG emissions. The Swedish EPAC market faces a bright future. The Dutch market has an EPAC market share of sold cycles of 19 % and the Swedish market is seeing rapid development. The manufacturers are exploring new customer segments with main focus on commuters. The potential for reducing the GHG emissions in Sweden is enormous and replacing 10 % of car commuting would decrease the total Swedish GHG emissions by more than 1 %. The means for wide market adaptation exists, i.e. products at affordable prices, but the one thing missing in Sweden is bicycle prioritization during infrastructure planning which at the moment is focused on car traffic. More focus on bicycle infrastructure is needed to improve the situation for bicycle and EPAC cyclists. Keywords E-bike, EPAC, pedelecs, climate performance, GHG emissions, transport sector, passenger transportation Number of pages 94 Language English ISRN LUTFD2/TFEM--14/5086--SE + (1-91)

Preface

Executive summary

Sammanfattning

Table of Contents

List of figures

List of tables

1 Introduction 1.1 Background

1.2 Goal and purpose 1.3 Method

1.4 Scope

2 Climate, transport and bicycles 2.1 The climate issue

2.2 The Swedish situation

2.3 International cases 2.3.1 Copenhagen

2.3.2 Houten

2.3.3 Lessons learned

3 What is an EPAC? 3.1 Definition

Vehicle Requirement(s) 3.2 Technical specifications

3.2.1 Battery 3.2.2 Motor

Box 1: How long does the battery last? Let s assume an EPAC system where the engine is 250 W of power output, the battery 10 Ah and the voltage 36. How long does the battery last then? The battery capacity is 360 Wh, and by simply dividing the battery capacity with the motor power the maximum operating time is given, in this case 1.44 hours or 1 hours 26 minutes. It has to be remembered that this is continuous maximum power which is rarely how an EPAC cyclist uses her EPAC. If using the EPAC under these conditions, how long is the range? Simply multiply 25 km/h with the time and the range equals 36 km. This ranges is the minimum range of the EPAC and as the cyclist uses his or hers own power, the range in which the electric engine can operate increases. 3.2.3 Different technical designs of the EPAC

3.3 A comparison between bicycle and EPAC

System component Added weight [kg] Build quality Price range (approximately) [SEK]

4 EPAC climate performance 4.1 The product life cycle

Box 2: Example of activities from the life cycle of the car The Manufacturing phase refers to all the processes and activities happening before the car is sold to the end-consumer. This could for instance be the extraction of natural resources, refinery, production of components, assembly and transports between these activities. Once the car is sold to the customer, the Use phase commences which includes the driving of the car and maintenance. When the car leaves the open market it heads for the last phase, Disposal, where the remainder is either reused or recycled.

Emissions [gco 2 eq p km] = (gco 2eq vkm CtS + gco 2 eq kwh WtT kwh vkm + gco 2 vkm TtW ) α gco 2 eq vkm CtS gco 2 eq kwh WtT kwh vkm gco 2 eq kwh WtT kwh vkm gco 2 vkm TtW

4.2 Approach 4.2.1 Data 4.2.2 Functional unit 4.2.3 System boundaries 4.3 Climate performance of vehicles and fuels

4.3.1 Emissions during manufacturing of vehicles and fuels Cradle-to-showroom emissions [g CO 2 -eq/p km] 25 22 20 15 10 11 9 5 5 2 0 Vehicles Bicycle EPAC Car Bus Passenger train

Well-to-tank emissions [g CO 2 -eq/kwh] 30 25 20 15 15 10 5 0 23 4 13 7 2 4 Gas/Diesel Ethanol Biodiesel Natural gas Biogas Emissions from direct sources ILUC Box 3: Indirect land use change Potato farming is replaced by a biofuel crop, in this example rape seed. The net emissions change is referred to as direct land use change emissions. Let s say the rape seed is becoming increasingly popular leading to this crop claiming new agricultural land and the close by tomato farming is changed to rape seed. The tomato farming is still more profitable compared to the close by lettuce farming and as a result the lettuce crop is replaced by the tomato. The emissions caused by the switch from lettuce to tomato is known as indirect land use change emissions. ILUC emissions can also come from if the tomato is farmed at previously unused land.

Emissions from electricity production [g CO 2 -eq/kwh] 500 450 400 350 300 250 200 150 100 50 0 100 20 Electricity source 461 5 Nordic mix Swedish mix Fossil fuels Renewable sources

Emissions [g CO 2 -eq/p km] of different trains 20 18 16 16 17 19 17 14 12 10 8 6 4 2 3 3 4 3 2 2 2 2 0 Off-peak hours All seats taken Peak hours Öresundståg Pågatåg Stockholm metro Average 4.3.2 Emissions during usage of vehicles

Emissions [g CO2-eq/p km] of different cars from usage 250 200 191 165 164 150 100 50 0 1 2 Cars powered by different fuels 3 GAS DIESEL ETHANOL BIODIESEL NAT GAS BIOGAS

Emissions of different buses during usage [g CO 2 -eq / pkm] 140 120 131 128 100 80 60 40 20 0 26 26 16 13 13 1 0 3 0 2 Off-peak hours All seats taken Peak hours Diesel Ethanol Natural gas Biogas 4.4 Total climate effect of vehicles and fuels

Life cycle climate impact [g CO 2 -eq/p km] 140 120 100 80 60 40 20 0 Bicycle EPAC Car Bio-car Bus Bio-bus Train Cradle-to-showroom Well-to-tank Tank-to-wheel

Total emissions of typical versions of different vehicles [g CO 2 -eq/p km] 150 120 251 90 160 60 30 0 24 21 21 12 12 50 12 50 10 10 5 5 32 4 4 5 16 2 2 Off-peak hours All seats taken Peak hours Bicycle EPAC Car Bio-car Bus Bio-bus Train

4.4.1 Future performance Total emissions from future vehicles [g CO 2 -eq/p km] 70 60 50 40 30 20 10 0 Bicycle EPAC Car Bio-car Bus Bio-bus Train Cradle-to-showroom Well-to-tank Tank-to-wheel

4.4.2 Summary

5 The EPAC market 5.1 Why a market analysis?

5.2 What is a market analysis?

Normal distribution curve Early Adopters Innovators Early Majority Late Majority Laggards

5.3 Approach 5.3.1 Method

5.3.2 Scope 5.4 The EPAC market by numbers

Is there an increase in EPAC sales? 21% Yes 12% No Sales are at stable level 67%

Yearly sales [units] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 Yearly sales 2011 2012 2013 5.5 Technology trends

5.6 The customers Is it common that customers buy an EPAC for environmental reasons? 16% 2% 21% 61% Often Sometimes Rarely Never

5.6.1 Who are the customers? Age distribution of EPAC customers 65 years and older 39 50-64 year olds 39 35-49 year olds 26 20-34 year olds 5 19 years and younger 0 0 5 10 15 20 25 30 35 40 45 Number of responses Box 4: The EPAC market potential The EPAC market share in the Netherlands is 19 percent. If we assume the Swedish market can have a similar market share, the Swedish EPAC market potential is 88 800 units, based on a total bicycle market size of 555 000 units. If we also take the difference in bicycles per inhabitant into account, a difference of 39 %, the Swedish market potential is just over 54 000 units.

5.6.2 Why the EPAC? For what purpose would you say the customers buy an EPAC? 33% 2% 65% Commuting Exercise Recreational cycling

Which mode of transportation do you perceive the EPAC replaces? 2% 5% 26% 58% 9% Conventional bicycle Public transportation Car Moped No one in particular What is the best thing with the EPAC? 5% 19% 38% 14% 8% 16% Easier Comfortable Fun Increase of range Fast No sweat

Why do the customers choose the EPAC above the regular bicycle? 4% 1% 9% Faster 23% 23% Don't want to sweat It's comfortable Increased range 13% Substitute for the car/public transportation Reduced physical ability 27% It's fun

Box 5: The implications of Figure 26 So what would it mean in terms of emissions if the EPAC customers switched to the EPAC from either the bicycle, public transport, car or moped according to Figure 26? This example assumes that 58 % of the EPAC customers switches from the bicycle, 9 % from public transportation, 26 % from the car, 2 % from the moped and 5 % from no particular mode of transportation. By using the numbers from Figure 13 the EPAC has 7 g CO 2 -eq/p km loss compared to the bicycle 113 g CO 2 -eq/p km gain versus the car 67 g CO 2 -eq/p km gain compared to the public transportation system 12 g CO 2 -eq/p km loss compared to the No one in particular-option The moped is assumed to have the same amount of emissions as the EPAC The equation below describes the net result if 100 persons switches to the EPAC according above. 58 7 + 9 ( 67) + 26 ( 113) + 5 12 = 3075 g CO 2 eq/p km Hence, every sold EPAC meant for commuting the climate gain is approximately 30 g CO 2 -eq. A person commuting 10 km a day, five days a week, 40 weeks a year, the reduction equals 60 kg of CO 2 -eq annually.

5.7 The present and the future of the market

6 Improving climate efficiency of the transport system

6.1 The EPAC versus the bicycle 6.2 The EPAC versus the car

6.2.1 The climate gain of switching from car to EPAC 6.3 The EPAC versus the public transportation system

6.3.1 The climate gain of combining the public transportation system and the EPAC 6.4 The EPAC market

7 Conclusions Box 6: Improving the EPAC The major source of GHG emissions for the EPAC is the manufacturing and most likely the battery. The manufacturing accounts for 95 % of all emissions associated with the EPAC so the most efficient way of improving the EPAC climate performance is through addressing this part of the life cycle.

8 References

9 Appendix 9.1 Environmental performance in the operations phase for different vehicles Emissions p km [g CO 2 eq p km] = Emissions[g CO 2 eq kwh] Energy efficency[kwh v km] Passengers 1 [nbr] 1 Energy km [kwh km] = Energy density [kwh L] Fuel consumption [L km] 9.1.1 Bicycle and EPAC 9.1.1.1 Method

9.1.1.2 Results 9.1.2 Cars 9.1.2.1 Method

9.1.2.2 Results

9.1.3 Buses 9.1.3.1 Method 9.1.3.2 Results

9.1.4 Trains 9.1.4.1 Method 9.1.4.2 Results