Akademin för Teknik och Miljö

Relevanta dokument
Tillämpning av olika molekylärbiologiska verktyg för kloning av en gen

Potentials for monitoring gene level biodiversity: using Sweden as an example


Elfiskeundersökning i Vallkärrabäcken 2002 Lunds kommun

Laboration v.40 Detektion av Legionella pneumophilia med nestad PCR

Elfiskeundersökning i Vallkärrabäcken 2018

Elfiskeundersökning i Vallkärrabäcken 2015

Elfiskeundersökning i Vallkärrabäcken 2012

Elfiskeundersökning i Vallkärrabäcken 2009

/LGM. Amplifiering och analys av humant mitokondrie-dna med hjälp av PCR teknik och agarosgelelektrofores

Laboration DNA. Datum:16/11 20/ Labgrupp: 11 Laboranter: Johanna Olsson & Kent Johansson

DNA-labb / Plasmidlabb

Genetisk variation hos Tåmeharr

Karl Holm Ekologi och genetik, EBC, UU. ebc.uu.se. Nick Brandt. Populationsgenetik

Uppvandringskontrollen i Testeboån 2010

Genetiska och ekologiska konsekvenser av fiskutsättningar

DNA-analyser: Introduktion till DNA-analys med PCR och gelelektrofores. Niklas Dahrén

Syfte? Naturliga populationer i Trollsvattnen. Otoliter för åldersbestämning. Vävnadsprover för genetisk analys

Rapport avseende DNA-analys av spillningsprover från järv och lo

Polymerase Chain Reaction

Acknowledgements Hans Lundqvist, SLU Jan Nilsson, SLU. Photo: Hans Lundqvist

FISKEVÅRDSARBETET I TESTEBOÅN 2012

Elfiskeundersökning i Vallkärrabäcken 2014

Åldersanalys av havsöring från Emån

LAB 12. Preparation och analys av plasmid-dna från E.coli

Uppföljning av gäddfabriken vid Kronobäck i Mönsterås kommun våren 2013

Sik i Bottenhavet - En, två eller flera arter? Sammandrag

DNA-analyser: Diagnosticera cystisk fibros och sicklecellanemi med DNA-analys. Niklas Dahrén

Miljöövervakning av genetisk mångfald. Linda Laikre Stockholms universitet

DNA-ordlista. Amplifiera: Att kopiera och på så sätt mångfaldiga en DNA-sekvens med hjälp av PCR.

Bevarande och uthålligt nyttjande av en hotad art: flodkräftan i Sverige

Genkloning och PCR av tetracyklinresistensgen. från pacyc184 till puc19

Uttern i Sverige Genetisk studie av vävnadsprover och spillning från uttrar i Västernorrland och Småland

F5 Introduktion Anpassning Korstabeller Homogenitet Oberoende Sammanfattning Minitab

Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi

Diagnosticera sicklecellsanemi med DNA-analys. Niklas Dahrén

Tillämpning av olika molekylärbiologiska verktyg för kloning av en gen

An#bio#karesistens Kan det vara e2 sä2 a2 undervisa om naturligt urval?

Mångfald inom en art. Genotyp. Genpool. Olika populationer. Fig En art definieras som

Mångfald inom en art. Genotyp. Genpool. Olika populationer. Fig En art definieras som

Fiskevårdsåtgärder i Kungälv 2013

Linköpings Universitet. Laboration i genteknik

Öring en art med många kostymer

Märkning av odlad lax är DNA ett alternativ? Stefan Palm, Sötvattenslaboratoriet, SLU Aqua Nationellt smoltkompensationsseminarium

Fiskundersökningar i Ringsjöns tillflöden Hörbyån, Kvesarumsån, Höörsån

Genetisk studie av uttrar

Centrum för genetisk identifiering Teknisk rapport Björnspillningsinventering 2015

Tranors nyttjande av en tranbetesåker vid Draven i Jönköpings län

Lokal pedagogisk planering för arbetsområdet genetik i årskurs 9

Forskning och åtgärder om/för fisk i Gävleborg

Flodpärlmusslan i Blekinge

Inventering av havsöring med odlingsursprung på Gotland Rapporter om natur och miljö nr 2011:5

Projekt laxintroduktion Salmon Action Plan samt övrig naturvård i och vid Testeboån.

Fiskundersökningar i Tommarpsån och Verkaån 2008

Fiskevårdsåtgärder i Kungälv 2012

Evolution. Hur arter uppstår, lever och försvinner

Tillväxt och genetisk variation bland västkustens havsöringar

Flera hotade arter och stammar i Nedre Dalälven


UPPGIFT 1 TVÅPOTENSER. UPPGIFT 2 HISSEN I LUSTIGA HUSET.

Hur påverkas fisk av ett kraftverk?

Inventering av havsöring med odlingsursprung på Gotland 2007

Björnstammens storlek i Sverige 2013 länsvisa skattningar och trender

Dysåns avrinningsområde ( )

Björnstammens storlek i Sverige 2017

Faktablad om provfisket i Lumparn 2013 (

Märkning av havsöring och lax i Emån

Identifiering av en genetisk markör för könsbestämning av Gasterosteus aculeatus

Sammanfattning Arv och Evolution

Bernt Moberg. Framtiden för laxen?

Potentials for monitoring gene level biodiversity: using Sweden as an example

Evolution. Hur arter uppstår, lever och försvinner

Kopiera DNA med hjälp av PCR-metoden. Niklas Dahrén

Faktorer som påverkar kläckningsresultat hos odlad röding

TFKE32/TFKI09/9KEA21. Laboration i Genteknik

ASP - BIOLOGI/EKOLOGI - UTBREDNING O TRENDER - HOT OCH ÅTGÄRDER

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Salvelinus fontinalis Bäckröding

Instruktion för att söka elfiskeresultat i Elfiskeregistret (SERS, Svenskt ElfiskeRegiSter) Kontaktperson: Berit Sers

LIV Laxfisk i Nedre Dalälven. Elfiske och genetiska analyser

Metoder för att identifiera genetisk sjukdomar

Evolution. Hur arter uppstår, lever och försvinner

Offentliga måltiden och allergikost

Temperaturens inverkan på överlevnad av rödingrom vid Kälarnestationen: effekter av långsiktig temperaturökning.

KURSLITTERATUR (VT-15)

Använda kunskaper i biologi för att granska information, kommunicera och ta ställning i frågor som rör hälsa, naturbruk och ekologisk hållbarhet.

Faktablad om provfisket i Marsund/Bovik 2013 ( Bakgrund

Mångfaldigande av mänskligt mitokondrie-dna

rapport 2011/5 Fiskinventering i Hågaån 2010

JANINA WARENHOLT Molekylär patologi LUND

Faktablad om provfisket i Lumparn 2015

EKOTOXIKOLOGISK TEST PÅ VATTEN TILLSATT PESTICIDER

Tentamen i Statistik STG A01 (12 hp) Fredag 16 januari 2009, Kl

DNA-ordlista. 16S: Egentligen 16S rrna. Mitokondriell gen med förhållandevis liten variation som ofta används för att artbestämma DNA från däggdjur.

Faktablad om provfisket i Lumparn 2016

C V C. Bruksanvisning till Biofortuna SSPGo TM HLA Wipe Test BF Revision 3. Juli 2014

Förvaltning för mildrade effekter av klimatförändringar i Östersjön

FAKTABLAD Genetiskt provinsamling i rovdjursinventeringen

Havsöringens respons på olika flöden nedströms Bosgårdens kraftverk

Genetisk analys av öring från Emån

Transkript:

Akademin för Teknik och Miljö PCR-RFLP analys av mt-dna hos Öring (Salmo trutta) i Gävleborgs län. Tommy Björkbom nbt04tbm@student.hig.se Examensarbete Biologi 15 Hp. Handledare: Anna Lindvall Anna.Lindvall@hig.se Annica Gullberg Annica.Gullberg@hig.se 1

Sammanfattning Denna studies syfte är att undersöka om Hemlingbybäckens öringpopulation skiljer sig signifikant från fyra öringpopulationer i närbelägna vattendrag samt möjligtvis kunna avgöra var denna population härstammar ifrån. Bevarandet av den biologiska mångfalden gör även detta intressant ur en naturvårdssyndpunkt om det visar sig att denna population skiljer sig signifikant från de övriga undersökta populationerna och klassas som skyddsvärd. Studien omfattar en polymeras chain reaction restriction fragment length polymorphism (PCR-RFLP) analys av 112 öringindivider från tre naturliga populationer samt två fiskodlingar i Gävleborgs län utförd i samarbete med Länsstyrelsen i Gävleborgs län, Sverige. MitokondrieDNA (mtdna) har amplifierats genom PCR för genen ND-1. Amplifierat mtdna har analyserats med fyra restriktionsenzymer och dessa haplotyper har jämförts statistiskt genom AMOVA. Resultatet av studien visar att Hemlingbybäckens öringpopulation skiljer sig signifikant från samtliga övriga undersökta populationer. Det har dock inte gått att härleda ett ursprung till denna population baserat på hur de övriga populationerna ser ut idag vilket tyder på att denna population är unik och skyddsvärd. Nyckelord: PCR-RFLP, mt-dna, Salmo trutta, bevarande genetik, diversitet 2

Innehållsförteckning Sammanfattning 2 1 Inledning 4 2 Material och metod 8 3 Resultat 10 4 Diskussion 19 Referenser 22 5 Bilagor 24 5.1 Bilaga 1 24 5.2 Bilaga 2 25 5.3 Bilaga 3 30 5.4 Bilaga 4 31 5.5 Bilaga 5 32 5.6 Bilaga 6 33 5.7 Bilaga 7 34 3

1 Inledning Mänsklig påverkan är ett stort hot mot den biologiska mångfalden. Skövling av skog, byggnad av vattenkraftverk och dammar hotar populationers naturliga habitat. På grund av den mänskliga påverkan gällande minskning av naturliga habitat jobbar olika myndigheter, kommuner, organisationer och företag med att skydda och bevara de naturliga populationer som idag finns kvar. I Gävle har en ny öringpopulation upptäckts i Hemlingbybäcken och Länsstyrelsen i Gävleborgs län intresserar sig för detta. Var kommer denna population ifrån? Är det en ursprungspopulation? Är den invandrad från någon närliggande population eller felvandrare från tidigare kustutsättningar? Detta är frågor som måste besvaras om Länsstyrelsen skall kunna ta ställning till om denna population är skyddsvärd. När naturliga habitat förstörs är det viktigt att bevara den genetiska diversitet som fortfarande finns bland naturliga populationer vilket är orsaken till att Länsstyrelsen har intresserat sig för denna upptäckta population. Genetisk diversitet ger en individ inom en population motståndskraft gentemot sjukdomar och förändringar i deras omgivning då det finns flera olika möjligheter för individerna att adaptera sig. Låg genetisk diversitet ger individer inom en population svårigheter att kunna evolvera och anpassa sig till de förändringar som sker i dess omgivning. Det kan även ge framtida generationer effekter liknande inavelsdepression med svårigheter gällande fortplantning, anpassning till förändringar och därmed överlevnad. (Keller & Waller, 2002). Lokala adaptioner, då individer inom en population anpassar sig till förändringar i deras omgivning, kan t.ex. innebära någon fenotypisk adaption för att lättare gömma sig för predatorer. Med en liten genetisk diversitet blir individerna utan denna möjlighet vilket medför att chansen för överlevnad och fortplantning minskar (Taylor, 1991). I denna studie undersöks den genetiska diversiteten bland fem olika öringpopulationer i Gävleborgs län utfört i samarbete med Länsstyrelsen i Gävleborgs län, Sverige. Hemlingbybäckens öringpopulation är den som primärt undersökts och jämförts med de övriga undersökta populationerna. Intresset från Länsstyrelsen grundar sig i en tidigare utförd studie vilken visar att Hemlingbybäckens öringpopulation skiljer sig markant från närliggande naturliga populationer (Ahlström, Björkbom, et.al. 2009). Detta medför att Hemlingbybäckens population kan vara unik och därmed att dess genetiska uppsättning bör skyddas och bevaras. 4

De naturliga vattendragen som de undersökta fiskarna kommer ifrån skiljer sig mycket från varandra gällande deras geografi och mänsklig påverkan. I Gavleån finns ett antal vattenverk vilket hindrar öringar från att vandra fritt genom ån. Det finns även fåtal för öringar bra lekplatser i Gavleån. Testeboån har däremot flera stora bra lekplatser för öringar. Hemlingbybäcken är ett väldigt litet vattedrag som rinner genom Gävle. På platsen där öringarna till denna studie fångats är Hemlingbybäcken mest lik ett dike. Hemlingbybäcken har även under vissa torra somrar i stort sett torkat ut (Gullberg 2010). Av de tre naturliga undersökta vattendragen möts Gavleån och Testeboån och delar mynningsområde medan Hemlingbybäcken befinner sig söder om dessa två vattendrag. Dalälvens fiskodling är belägen längst söderut av de undersökta vattendragen och Ljusnans fiskodling längst norrut. I Hemlingbybäcken har endast funnits dokumenterad öring sedan 2008 men skall ha observerats ända sedan 1980-talet (Andersson, 2010). En tidigare prestudie utförd på Hemlingbybäcken, Gavleån och Testeboån indikerar att Hemlingbybäcken har stor genetisk variation jämfört med de övriga. Hansen, 2002 menar att öringar karakteriseras av att de kan ha stora genetiska skillnader mellan populationer som finns i olika vattendrag. Det geografiska avståndet mellan populationer påverkar även naturligt den genetiska variationen populationer emellan (Allendorf & Waples,1996). Populationer i samma vattendrag kan även de ha signifikanta genetiska skillnader sinsemellan även om avståndet mellan dem endast är några kilometer (Crozier & Ferguson, 1985). Laxfiskfamiljen har ett karakteristiskt drag gällande deras fortplantning då de alltid återvänder till den plats där de föddes, detta kallas homingbeteende (Hindar et.al. 1990). Detta beteende är dock inte lika utmärkande hos öring som t.ex. hos lax vilket betyder att öring har lättare för att kolonisera nya vattendrag (Länsstyrelsen 2010). Att den genetiska variationen skiljer sig mellan vattendrag vilka befinner sig geografisk nära varandra kan även bero på att öringar från olika populationer simmat fel och ökar på så sätt den genetiska diversiteten i den population de hamnar till (Svärdson & Fagerström, 1982; Erlandson, 1988). Populationer i vattendrag vilka är åtkomliga från havet har även därför oftast större genetisk diversitet gentemot populationer vilka är avskilda från andra populationer av t.ex. vattenkraftverk eller dylikt (Hindar et.al 1990). 5

Nya populationer kan även bildas genom att individer simmar fel, besätter ett nytt habitat och bildar en ny population, den så kallade Founder-effekten (Freeman & Herron, 2007; Campbell & Reece, 2005). Detta medför dock att den genetiska variationen inom populationen minskar vilket prestudien visade raka motsatsen till gällande Hemlingbybäcken. Till denna studie har utöver de undersökta naturliga populationerna från prestudien även öring från två närliggande fiskodlingar undersökts eftersom öringar från dessa fiskodlingar har släppts Gavleån och Testeboån samt i havet nära de tre undersökta naturliga populationerna i Hemlingbybäcken, Testeboån och Gavleån för något tiotal år sedan (Gullberg, 2010). MitokondrieDNA (mt DNA) har analyserats eftersom detta nedärvs från moder till avkomma och eftersom mt DNA endast ärvs från modern är detta ett bra sätt att hitta släktskap baserat på mödernet (U.S. National Library of Medicine, 2010). Metoden polymeras chain reaction restriction fragment length polymorphism (PCR-RFLP) har använts då detta är en beprövad och relativt enkel metod att genomföra (Hansen, M. M och Loeschcke, V. 1996). Metoden som använts i studien har bestått av isolering av totaldna. Det isolerade totaldnat har sedan genomgått en PCR reaktion för genen ND-1 i mtdna. Detta sker i tre steg vid olika temperaturer. 95ºC då DNA delas från dubbelsträngat till enkelsträngat. Vid 50ºC fäster primrarna till det enkelsträngade DNAt. 72ºC då DNA polymeras bygger upp dubbelsträngat DNA m.h.a. nukleotider från PCR-mixen. I PCR-reaktionen har endast mtdna amplifierats. Figur 1: Övergripande bild av mtdna. (Bild hämtad från http://ghr.nlm.nih.gov) Figur 2: Förstorad bild på ND-1 genen i mt DNA. (Bild hämtad från http://ghr.nlm.nih.gov) 6

Efter amplifiering genom PCR har produkten kluvits med fyra olika restriktionsenzymer. Restriktionsenzymerna sätter sig på en specifik följd av baspar på DNAt och klyver vilket resulterar i ett fragment bestående av ett visst antal baspar, dessa kluvna prover kördes sedan i en agarosgel. Gelen placeras i ett elektroforesbad och spänning kopplas till badet. Fragmenten varierar i storlek och beroende på dess storlek vandrar de olika långt i gelen och bandmönster uppstår (bilaga 1). En brunn i agarosgelen laddades även med en storleksmarkör ( ladder ) vilken har samtliga fragment från 0-1000 bp med 100 bp intervall. Denna ladder ger en skala att sedan utgå ifrån då morferna bestäms. Prestudien gällande Hemlingbybäckens öringpopulation visar att inom populationen finns haplotyper som inte påträffats bland närliggande öringpopulationer tidigare. Denna studie har därmed även en bevarandegenetisk aspekt. Visar det sig att Hemlingbybäckens population skiljer sig signifikant från de övriga fyra geografiskt närliggande populationerna bör detta tas i beaktande. Små populationer är speciellt känsliga för förändringar i omgivningen och små populationer förlorar lätt genetisk variation genom genetisk drift vilket kan leda till att populationen får svårt att evolvera (Campos et.al. 2006). Detta medför att denna öringpopulation kan vara värd skydda och undvara medel för att bevara eftersom det kan vara en egen population som har funnits en längre tid och om så är fallet bör populationen skyddas. Frågeställning Frågeställning 1: Skiljer sig Hemlingbybäckens öringpopulation signifikant från de andra närbelägna populationerna? Frågeställning 2: Är populationen i Hemlingbybäcken värdefull att skydda på grund av den genetiska diversiteten? Frågeställning 3: Går det att härleda ett ursprung till var öringpopulationen i Hemlingbybäcken härstammar ifrån? 7

2 Material och metod Studien omfattar 112 öringar erhållna av Länsstyrelsen i Gävleborgs län i Sverige från fem olika populationer, tre naturliga och två fiskodlingar. I studien ingick 25 individer från Gavleån, 23 från Hemlingbybäcken, 24 från Testeboån, 20 från Dalälvens fiskodling samt 20 individer från Ljusnans fiskodling. Samtliga fiskar från vattendragen är fångade under oktober och november månad 2009 med elfiske och fiskarna från fiskodlingarna är upphåvade. ND-1 genen i mtdna från dessa 112 individer amplifierades med PCR. PCR-produkten klövs med restriktionsenzymerna ALU I, HAE III, HINF I och HPA II och kördes i elektroforesbad i en 2%:ig agarosgel. Haplotyperna antecknades och jämfördes genom diagram samt statistisk analys (AMOVA) med hjälp av programmet Genalex v.6 för excel. Isoleringen av samtliga individer är utförd med ett isoleringskit, DNeasy 50 Blood & Tissue Kit, från företaget Qiagen (Qiagen 2010). Total DNA isolerades från antingen fettfena eller muskelvävnad från fiskens rygg beroende på individ (bilaga 2). Fettfenan användes som den erhölls då den förvarades i 96%+ etanol. För isolering av muskelvävnad togs en 2 * 2 mm stor bit framför ryggfenan till isoleringen. Samtliga verktyg rengjordes i destillerat vatten samt 96% etanol mellan individerna för att förhindra kontaminering av prover. Proverna med isolerat DNA blandades sedan med PCR-mix och kördes i PCR maskin med programmet ND-1. PCR amplifieringen av ND-1 genen genomfördes med primrarna (primersekvens 1) och (primersekvens 2). I PCR-reaktionen ingår 4µl isolerat DNA/prov, 1*buffert med 1,5 mm MgCl 2, dntp där kvävebaserna har koncentrationen 0,4 mm, primers ND1F 20 µm och ND1R 20 µm, spermidin 10 mm samt 2 units Dynazyme/prov. I PCR programmet ND-1 denatureras DNAt vid 95 C i två minuter. Efter detta följer åtta cykler där temperaturen sänks till 50 C i 30 sekunder, höjs därefter till 72 C i två minuter och 30 sekunder följt av 95 C i 45 sekunder. Efter dessa åtta cykler följer 22 cykler då temperaturen är 53 C i 30 sekunder, 72 C i 2 minuter och 30 sekunder och 95 C i 45 sekunder. Programmet avslutas med 72 C i 4 minuter. När programmet är avslutat sänks temperaturen till konstant 10 C för att bevara proverna. 8

Före klyvning med restriktionsenzymer kördes en testgel på dessa prover bestående av 6 μl PCR produkt blandat med 2 μl laddningsfärg. Detta kördes sedan i en 1%ig agarosgel för att fastställa att DNA hade amplifierats. Figur 3: Testgel på amplifierat DNA. Det första bandet visar att DNA amplifierats finns i tillräckliga kvantiteter för fortsatt arbete med klyvning av proverna m.h.a. restriktionsenzymer. Efter testgelen blandades restriktionsenzymerna och 10 µl PCR produkt. Dessa provrör lades sedan i ett 37ºC vattenbad för inkubering i 90 minuter. Efter detta tillsattes laddningsfärg och proverna inkuberades i 65ºC vattenbad i 15 minuter för att inhibera enzymerna. Proverna kördes i en 2%ig agarosgel i elektroforesbad. Gelerna färgades sedan in och analyserades på ett UV-bord.. Dessa resultat jämfördes sedan (bilaga 1) över hur de olika morferna ser ut för varje restriktionsenzym. De fullständiga haplotypresultat som erhållits för vattendragen har sedan statistiskt analyserats genom ett AMOVA test med hjälp av programmet Genalex v 6.0 för excel. De värden som räknades ut genom parvisa jämförelses i AMOVA var; PhiPT, proportionen av diversitet som skiljer populationerna åt. Detta värde kan vara mellan 0 och 1. Det andra uträknade värdet var sannolikheten (P) att få samma resultat med slumpmässigt vald data. Även detta kan anta ett värde mellan 0 och 1. Signifikansnivån sattes till 0,05 vilket betyder att värdet för P skall vara mindre än detta om skillnaden är signifikant. 9

3 Resultat Studien visar att öringarna från Hemlingbybäcken skiljer sig signifikant från de övriga populationerna. Testeboån och Dalälvens fiskodling var de enda vattendragen som inte skilde sig signifikant från varandra (tabell 8). I Hemlingbybäcken återfanns inte några unika morfer eller haplotyper. För restriktionsenzymet ALU I fanns det däremot 11 individer med B morf i Hemlingbybäcken medan det hos övriga 89 undersökta fiskar endast fanns två individer med denna B morf. De två haplotyper, BBAA och ABAA, vilka utgjorde 21 av 23 haplotyper i Hemlingbybäcken återfanns endast hos sex av 89 övriga individer. Nedan presenteras sammanställda resultat av RFLP analysen i tabeller och diagram för samtliga populationer. Haplotyperna är ordnade efter följande ordning av restriktionsenzymer, ALU I, HAE III, HINF I, HPA II. Fullständiga avläsningar av RFLP analyserna på samtliga populationer finns i bilaga 3-7. Av de 112 individer som analyserats i studien var det fem individer som blev utan fullständigt resultat, samtliga av dessa individer var från Dalälvens fiskodling. 10

Hemlingbybäcken Hemlingbybäcken visar en hög grad av genetisk variation med fyra olika haplotyper (tabell 1, figur 4) där de dominerande är ABAA med relativa frekvensen 0,49 och BBAA med relativa frekvensen 0,43 (tabell 7) Tabell 1: Antal haplotyper i Hemlingbybäcken. Haplotyp Antal ABAA 11 1 BBAA 10 BBAB 1 Hemlingbybäcken BBAB 4% BBAA 43% ABAA 49% ABAA BBAA BBAB 4% Figur 4: Haplotypfördelning i Hemlingbybäcken. 11

Gavleån Resultat från Gavleån visar på en låg genetisk variation med endast två haplotyper där dominerar med hela 92% (tabell 2, figur 5). Tabell 2: Antal haplotyper i Gavleån. Haplotyp Antal 23 ABAA 2 Gavleån ABAA 8% ABAA 92% Figur 5: Haplotypfördelning i Gavleån. 12

Testeboån Av fyra haplotyper i Testeboån dominerande AAAA och (tabell 3, figur 6) med frekvenserna 0.38 respektive 0.5 (tabell 7) Tabell 3: Antal haplotyper i Testeboån. Haplotyp Antal AAAA 9 AABA 1 ABAA 2 12 Testeboån 50% ABAA 8% AAAA 38% AABA 4% AAAA AABA ABAA Figur 6: Haplotypfördelning i Testeboån. 13

Dalälven Dalälvens fiskodling visar en låg diversitet med endast två haplotyper AAAA och med frekvenserna 0.33 respektive 0.67 (tabell 4, tabell 7, figur 7). Av 20 undersökta individer från Dalälven var det 5 som inte gav fullständigt resultat (bilaga 6) Tabell 4: Antal haplotyper i Dalälvens fiskodling. Haplotyp Antal AAAA 5 10 Dalälven 67% AAAA 33% AAAA Figur 7: Haplotypfördelning i Dalälven. 14

Ljusnan Resultat från Ljusnans fiskodling visar en genetisk diversitet med tre olika haplotyper där den vanligaste är AAAA med frekvensen 0,7 (tabell 5, tabell 7, figur 8). Tabell 5: Antal haplotyper i Ljusnans fiskodling. Haplotyp Antal AAAA 14 4 BBAA 2 Haplotyper Ljusnan BBAA 10% 20% AAAA 70% AAAA BBAA Figur 8: Haplotypfördelning i Ljusnans fiskodling. 15

Hemlingbybäcken BBAB 4% BBAA 43% ABAA 49% ABAA BBAA BBAB 4% Gavleån Testeboån ABAA 8% 92% ABAA 50% ABAA 8% AAAA 38% AABA 4% AAAA AABA ABAA Dalälven Ljusnan BBAA 10% 67% AAAA 33% AAAA 20% AAAA 70% AAAA BBAA Figur 9: Sammanställning av haplotypfrekvenserna i de undersökta populationerna. 16

Tabell 6: fördelning av haplotyper i populationerna. Haplotyp Hemlingbyb. Gavleån Testeboån Dalälven Ljusnan AAAA 0 0 9 5 14 AABA 0 0 1 0 0 ABAA 11 2 2 0 0 1 23 12 10 4 BBAA 10 0 0 0 2 BBAB 1 0 0 0 0 Tabell 7: Haplotypernas relativa frekvens i populationerna. Haplotyp Hemlingbyb. Gavleån Testeboån Dalälven Ljusnan AAAA 0 0 0,38 0,33 0,7 AABA 0 0 0,04 0 0 ABAA 0,49 0,08 0,08 0 0 0,04 0,92 0,5 0,67 0,2 BBAA 0,43 0 0 0 0,1 BBAB 0,04 0 0 0 0 Haplotypdistributionen mellan Hemlingbybäcken och de övriga vattendragen är starkt differentierad (tabell6, tabell 7, figur 9). Haplotypen ABAA som dominerar i Hemlingbybäcken finns endast hos två individer i Gavleån samt två individer i Testeboån. Haplotypen BBAA vilken återfanns hos 43% av Hemlingbybäckens undersökta individer hittades även i Ljusnans fiskodling men endast hos två individer. Den i Gavleån, Testeboån och Dalälven dominerande haplotypen hittades endast hos en individ i Hemlingbybäcken. är även den enda av de sex observerade haplotyperna som finns i samtliga populationer och AABA samt BBAB hittades endast i Hemlingbybäcken respektive Testeboån (tabell 6). 17

STATISTISK ANALYS Tabell 8: Tabell över vilka populationer som skiljer sig signifikant från andra. + = signifikant skillnad, - = ingen signifikant skillnad, Gavleån Hemlingbyb. Testeboån Dalälven Ljusnan Gavleån + + + + Hemlingbyb. + + + + Testeboån + + - + Dalälven + + - + Ljusnan + + + + Tabell 9: AMOVA test med programmet Genalex 6.0 för Excel. PhiPT = proportionen av diversitet som skiljer populationerna(0-1). P = sannolikheten att få samma resultat med slumpmässig data (0-1). Pop1 Pop2 PhiPT #Pop1 #Pop2 P Gavleån Hemlingbybäcken 0,689 25 23 0,010 Gavleån Testeboån 0,344 25 24 0,010 Hemlingbybäcken Testeboån 0,372 23 24 0,010 Gavleån Dalälven 0,253 25 15 0,010 Hemlingbybäcken Dalälven 0,444 23 15 0,010 Testeboån Dalälven 0,000 24 15 0,350 Gavleån Ljusnan 0,660 25 20 0,010 Hemlingbybäcken Ljusnan 0,426 23 20 0,010 Testeboån Ljusnan 0,113 24 20 0,020 Dalälven Ljusnan 0,241 15 20 0,020 Resultaten från den statistiska analysen visar att Hemlingbybäckens öringpopulation skiljer sig signifikant från övriga undersöka populationer (tabell 8). Testeboån och Dalälvens fiskodling var de enda som inte skilde sig signifikant från varandra med en signifikansnivå på 0,05 (tabell 9) 18

4 Diskussion Erhållna resultat visar tydligt att Hemlingbybäckens öringpopulation skiljer sig signifikant från samtliga övriga undersökta populationer. Det hittades varken unika morfer för något restriktionsenzym eller unika haplotyper i Hemlingbybäcken men de haplotyper som är dominerande i Hemlingbybäcken hittades endast hos sammanlagt sex individer i de fyra övriga vattendragen. Den genetiska variationen var även stor i Hemlingbybäcken vilket pekar mot att Hemlingbybäckens öringpopulation inte härstammar från några invandrande fiskar från de övriga undersökta populationerna. Detta skulle troligen ha medfört en så kallad Founder-effekt då den genetiska variationen minskar i den nyskapade populationen eftersom den genomgår en flaskhallseffekt och den genetiska variationen minskar jämfört med ursprungspopulationen. (Freeman & Herron, 2007; Campbell & Reece, 2005) Samtliga populationer skilde sig signifikant från varandra utom Testeboån och Dalälvens fiskodling. Även detta är intressant då Gavleån och Testeboån mynnar i ett gemensamt mynningsområde men har trots det signifikant skillnad mellan populationerna. Varför det inte är signifikant skillnad mellan Testeboån och Dalälvens fiskodling går inte att svara på utifrån denna studie. Det kan bero på tidigare utplanteringar av Dalälvsöring i Testeboån, eller att öringindivider som Erlandson, 1988 beskriver simmat fel och hamnat i Testeboån. Testeboån har förhållandevis stora lekområden och utplanterade öringar från en fiskodling kan ha simmat fel och inte vetat var deras hem är. Men varför detta inte inträffat för Gavleån är en svår fråga. Gavleån har väldigt litet område lämpligt som lekområde och där planteras istället ut öring från Dalälvens fiskodling varje år. Detta borde medföra att skillnaderna mellan Gavleån och Dalälvens fiskodling borde vara små men enligt studien är det signifikant skillnad mellan Gavleån och Dalälvens fiskodling men inte mellan Testeboån och Dalälvens fiskodling. Ljusnans fiskodling skiljer sig från samtliga övriga populationer trots att det enligt Länsstyrelsen i Gävleborgs län har planterats ut öringar från Ljusnans fiskodling i havsområden mellan Ljusnans fiskodling och de tre naturliga undersökta vattendragen. Detta skedde dock på 1970- talet och den senaste utplanteringen skedde kring 1996 (Gullberg, 2010). 19

Största frågetecknet är dock var denna B-morf för restriktionsenzymet ALU I hos Hemlingbybäckens öringpopulation härstammar ifrån. Endast två individer av de 89 individer som inte kom från Hemlingbybäcken hade denna morf och de individerna var från Ljusnans fiskodling. Av de 20 individer som undersöktes från Ljusnans fiskodling och de 23 från Hemlingbybäcken syns det dock tydligt i tabell 6 och 7 att de skiljer sig markant från varandra gällande haplotypfördelning och även den statistiska analysen visade att det är signifikant skillnad mellan dessa två populationer. Gällande frågeställningarna står det klart att Hemlingbybäckens öringpopulation skiljer sig signifikant från samtliga övriga undersökta populationer. Det går dock inte att härleda någon ursprungspopulation till Hemlingbybäckens öringpopulation utifrån hur de undersökta populationerna ser ut idag. Det är svårt att besvara denna fråga då det inte går att fastställa vilken av de undersökta populationerna som först invandrade till dessa vattendrag. En extrem teori kan även innebära att Hemlingbybäckens öringpopulation är en ursprunglig population vilken är mindre påverkad av mänskliga aktiviteter än de övriga naturliga populationerna. Erhållna resultat pekar, oberoende av bakgrund, mot att Hemlingbybäckens öringpopulation är unik och den bör bevaras och skyddas på grund av dess genetiska uppsättning. Avslutningsvis visar även studien att i fiskodlingen i Dalälven hittades endast två olika haplotyper bland 20 öringindivider. I Ljusnans fiskodling hittades tre olika haplotyper jämfört med sex stycken i en studie utförd 2005 (Hagelin, Hägglund & Lindborg 2005). Detta tyder på att den genetiska diversiteten är relativt låg och detta bör tas i beaktande i framtida avelsprogram för att öka den genetiska mångfalden. Hemlingbybäckens population med sin höga grad av genetisk diversitet och ovanliga haplotyper borde användas till eventuella stödutsättningar eller avelsprogram för att odla och bevara den befintliga genetiska diversiteten inom Hemlingbybäckens öringpopulation. 20

Fortsatta studier gällande Hemlingbybäckens öringpopulations ursprung vore intressant då detta inte kunde fastställas genom denna studie. Individerna från Hemlingbybäcken har inte några okulärt bedömbara fenotypiska skillnader gentemot de övriga undersökta populationerna men det vore intressant att undersöka om denna population har någon speciell anpassning till att leva i det habitat den gör. Även resultat från den statistiska analysen vilken visar att Testeboån inte skiljer sig signifikant från Dalälven medan Gavleån skiljer sig signifikant vore bra att ytterligare undersöka. Denna studie kunde innefatta en större mängd individer från respektive vattendrag eller utföras med någon annan metod exempelvis locus specifika microsatelliter vilket ger mera och noggrannare information om de undersökta populationerna. 21

Referenser Anderson, B. 2010. Muntlig källa. Ahlström, M. Björkbom, T. Flodberg, A-S. Lager, L. Norell, U. 2009. Opublicerat material. Allendorf, F. W. och Waples, R. S. 1996. Conservation and genetics of salmonid fishes. I: Avise, J. C. And Hamrick, J. L. Conservation genetics, case stories from nature, pp 238-280. Chapman & Hall. New York Campbell, N. A, Reece, J. B. 2005. Biology, seventh edition. Pearson Education, Inc., Publishing as Benjamins Cummings, 1301 Sansome St., San Francisco CA 94111. Campos, J. L. Posada, D.Morán, P. 2006. Genetic variation at MHC, mitochondrial and microsatellite loci in isolated populations of Brown trout (Salmo trutta). Conservation genetics (2006) 7, 515-530. Crozier, W. W. Ferguson, A. 1985. Electrophoretic examination of the population structure of brown trout, Salmo trutta L., from the Lough Neagh catchment, Northern Ireland. Journal of Fish Biology (2006) 28, 459-477 Erlandson, E. 1988. Lax och havsöring. Första upplagan. Naturia förlag AB, Solna. Freeman, S. Herron, J. C. 2007. Evolutionary analysis, fourth edition. Pearson Education, Inc Upper Saddle River, NJ 07458. Genalex (genetic analysis in excel). Statistiskt analysprogram som tillägg för Microsoft Excel. http://www.anu.edu.au 10 04 26 Gullberg, K 2010. Muntlig källa Hagelin, Hägglund, Lindborg, 2005 Opublicerat material Hansen, M. M. Loeschcke, V. 1996. Genetic differentiation among Danish brown trout populations, as detected by RFLP analysis of PCR amplified mitochondrial DNA segments. Journal of fish biology (1996) 48, 422-436. Hansen, M. M. Ruzzante, D. E, Nielsen, E. E. Bekkevold, D och Mensberg, K-L. D. 2002. Longterm effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Molekular Ecology (2002) 11, 2523-2535. Hindar, K. Jonsson, B. Ryman, N. Ståhl, G. 1990. Genetic relationships among landlocked, resident, and anadromous Brown Trout, Salmo trutta L. Heredity (1991) 66, 83 91 22

Keller, L. F. Waller, D. M. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution (2002) 17, 230-241 Länsstyrelsen 2010 http://www.lansstyrelsen.se 10 05 20 Qiagen 2010. www.qiagen.com 10 04 13 Svärdson, G. och Fagerström, Å. 1982. Adaptice differences in the long-distance migration of some trout (Salmo trutta L.) stocks. Rep.Inst. Freshw. Res., Drottningholm, 60, 51-80 Taylor, E. B 1991. A review of local adaptation in Salmonidac, with particular reference to Pacific and Atlantic salmon. Aquaculture (1981) 98, 185-207 U.S. National Library of Medicine, 2010. http://ghr.nlm.nih.gov/gene=mtnd1 10 04 14 23

5.1 Bilaga 1 Tabell 10: Restriktionsenzymernas olika morfer. Värdena i tabellen står för längden på fragmentet som fastnat i gelen. ALU I HAE III HINF I HPA II A B A B A B A B 130 130 2*200 200 200 200 210 210 230 230 280 280 290 390 390 390 480 440 500 500 500 180 180 250 2*460 460 660 660 660 660 540 540 560 1000 520 520 720 24

5.2 Bilaga 2 Tabell 11: Information om fångade individer från Gavleån. Gavleån 2009-10-09 Öring Individ Längd Vikt Plats Prov 1 113 15 Strömdalen Fettfena 2 122 16 Strömdalen Fettfena 3 116 13 Strömdalen Fettfena 4 135 22 Strömdalen Fettfena 5 120 14 Strömdalen Fettfena 6 156 34 Strömdalen Fettfena 7 124 16 Strömdalen Fettfena 8 156 27 Strömdalen Fettfena 9 131 19 Strömdalen Fettfena 10 107 10 Strömdalen Fettfena 11 111 10 Strömdalen Fettfena 12 128 19 Strömdalen Fettfena 13 139 22 Strömdalen Fettfena 14 129 17 Strömdalen Fettfena 15 120 15 Strömdalen Fettfena 16 99 9 Strömdalen Fettfena 17 128 18 Strömdalen Fettfena 18 105 11 Strömdalen Fettfena 19 125 16 Strömdalen Fettfena 20 103 10 Strömdalen Fettfena 21 139 24 Strömdalen Fettfena 22 126 18 Strömdalen Fettfena 23 116 14 Strömdalen Fettfena 24 119 16 Strömdalen Fettfena 25 115 14 Strömdalen Fettfena 25

Bilaga 2 Tabell 12: Information om fångade individer från Hemlingbybäcken. Hemlingbybäcken 2009-10-06 Öring Individ Längd Vikt Plats Prov 1 174 53 Järnvägsmuseet Fettfena 2 192 68 Järnvägsmuseet Fettfena 3 160 36 Järnvägsmuseet Fettfena 4 209 90 Järnvägsmuseet Fettfena 5 199 82 Järnvägsmuseet Fettfena 8 177 52 Järnvägsmuseet Fettfena 9 244 144 Järnvägsmuseet Fettfena 10 170 54 Järnvägsmuseet Fettfena 11 198 88 Järnvägsmuseet Fettfena 12 92 8 Järnvägsmuseet Hel fisk 13 82 5 Järnvägsmuseet Hel fisk 14 88 5 Järnvägsmuseet Hel fisk 15 73 4 Järnvägsmuseet Hel fisk 16 110 13 Järnvägsmuseet Hel fisk 17 92 6 Järnvägsmuseet Hel fisk 18 97 7 Järnvägsmuseet Hel fisk 19 90 7 Järnvägsmuseet Hel fisk 20 90 7 Järnvägsmuseet Hel fisk 21 83 5 Järnvägsmuseet Hel fisk 22 88 5 Järnvägsmuseet Hel fisk 23 77 4 Järnvägsmuseet Hel fisk 24 77 4 Järnvägsmuseet Hel fisk 25 96 9 Järnvägsmuseet Hel fisk 26

Bilaga 2 Tabell 13: Information om fångade individer från Testeboån. Testeboån 2009-10-05 Öring Individ Längd Vikt Plats Prov 6 142 26 Forsby Fettfena 7 147 29 Forsby Fettfena 8 165 38 Forsby Fettfena 9 167 37 Forsby Hel fisk 10 93 8 Strömsbro Hel fisk 11 98 8 Strömsbro Hel fisk 12 88 5 Strömsbro Hel fisk 13 88 6 Strömsbro Hel fisk 14 80 4 Strömsbro Hel fisk 15 108 10 Strömsbro Hel fisk 16 78 4 Strömsbro Hel fisk 17 92 8 Strömsbro Hel fisk 18 104 11 Strömsbro Hel fisk 19 93 8 Strömsbro Hel fisk 20 83 6 Strömsbro Hel fisk 21 98 9 Strömsbro Hel fisk 22 59 3 Strömsbro Hel fisk 23 85 6 Forsby Hel fisk 24 95 8 Forsby Hel fisk 25 103 11 Forsby Hel fisk 26 88 6 Forsby Hel fisk 27 100 10 Forsby Hel fisk 28 85 6 Forsby Hel fisk 29 87 7 Forsby Hel fisk 27

Bilaga 2 Tabell 14: Information om fångade individer från Dalälvens fiskodling. Dalälven 2009-11-04 Öring Individ Längd Vikt Plats Prov 1 99 10 Kompensationsodlingen Hel fisk 2 125 21 Kompensationsodlingen Hel fisk 3 110 13 Kompensationsodlingen Hel fisk 4 120 19 Kompensationsodlingen Hel fisk 5 110 14 Kompensationsodlingen Hel fisk 6 119 17 Kompensationsodlingen Hel fisk 7 104 12 Kompensationsodlingen Hel fisk 8 100 11 Kompensationsodlingen Hel fisk 9 113 15 Kompensationsodlingen Hel fisk 10 119 17 Kompensationsodlingen Hel fisk 11 169 49 Kompensationsodlingen Hel fisk 12 182 67 Kompensationsodlingen Hel fisk 13 203 95 Kompensationsodlingen Hel fisk 14 210 85 Kompensationsodlingen Hel fisk 15 201 92 Kompensationsodlingen Hel fisk 16 227 126 Kompensationsodlingen Hel fisk 17 179 62 Kompensationsodlingen Hel fisk 18 187 69 Kompensationsodlingen Hel fisk 19 213 106 Kompensationsodlingen Hel fisk 20 193 74 Kompensationsodlingen Hel fisk 28

Bilaga 2 Tabell 15: Information om fångade individer från Ljusnans fiskodling. Ljusnan 2009-11-?? Öring Individ Längd Vikt Plats Prov 1 Kompensationsodlingen Hel fisk 2 Kompensationsodlingen Hel fisk 3 Kompensationsodlingen Hel fisk 4 Kompensationsodlingen Hel fisk 5 Kompensationsodlingen Hel fisk 6 Kompensationsodlingen Hel fisk 7 Kompensationsodlingen Hel fisk 8 Kompensationsodlingen Hel fisk 9 Kompensationsodlingen Hel fisk 10 Kompensationsodlingen Hel fisk 11 Kompensationsodlingen Hel fisk 12 Kompensationsodlingen Hel fisk 13 Kompensationsodlingen Hel fisk 14 Kompensationsodlingen Hel fisk 15 Kompensationsodlingen Hel fisk 16 Kompensationsodlingen Hel fisk 17 Kompensationsodlingen Hel fisk 18 Kompensationsodlingen Hel fisk 19 Kompensationsodlingen Hel fisk 20 Kompensationsodlingen Hel fisk 29

5.3 Bilaga 3 Tabell 16: Hemlingbybäckens morfer och haplotyper. Individ Alu I HAE III HINF I HPA II Haplotyp 1 B B A A BBAA 2 B B A A BBAA 3 B B A A BBAA 4 B B A A BBAA 5 B B A A BBAA 8 A B A B 9 B B A B BBAB 10 B B A A BBAA 11 B B A A BBAA 12 B B A A BBAA 13 B B A A BBAA 14 A B A A ABAA 15 A B A A ABAA 16 B B A A BBAA 17 A B A A ABAA 18 A B A A ABAA 19 A B A A ABAA 20 A B A A ABAA 21 A B A A ABAA 22 A B A A ABAA 23 A B A A ABAA 24 A B A A ABAA 25 A B A A ABAA Haplotyp Antal ABAA 11 1 BBAA 10 BBAB 1 30

5.4 Bilaga 4 Tabell 17: Gavleåns morfer och haplotyper. Individ Alu I HAE III HINF I HPA II Haplotyp 1 A B A B 2 A B A B 3 A B A B 4 A B A B 5 A B A B 6 A B A B 7 A B A B 8 A B A B 9 A B A B 10 A B A B 11 A B A B 12 A B A B 13 A B A B 14 A B A B 15 A B A B 16 A B A B 17 A B A B 18 A B A B 19 A B A B 20 A B A B 21 A B A A ABAA 22 A B A B 23 A B A A ABAA 24 A B A B 25 A B A B Haplotyp Antal 23 ABAA 2 31

5.5 Bilaga 5 Tabell 18: Testeboåns morfer och haplotyper. Individ Alu I HAE III HINF I HPA II Haplotyp 6 A A A A AAAA 7 A B A B 8 A A A A AAAA 9 A B A B 10 A A A A AAAA 11 A B A A ABAA 12 A B A B 13 A B A B 14 A A A A AAAA 15 A A A A AAAA 16 A B A B 17 A B A B 18 A A A A AAAA 19 A B A B 20 A A B A AABA 21 A A A A AAAA 22 A B A B 23 A B A B 24 A B A B 25 A B A B 26 A B A B 27 A A A A AAAA 28 A A A A AAAA 29 A B A A ABAA Haplotyp Antal AAAA 9 AABA 1 ABAA 2 12 32

5.6 Bilaga 6 Tabell 19: Dalälvens morfer och haplotyper. X=inget resultat Individ Alu I HAE III HINF I HPA II Haplotyp 1 x x x x xxxx 2 A A A A AAAA 3 A B A B 4 A A A A AAAA 5 A A A A AAAA 6 A x A x AxAx 7 x x x x xxxx 8 A B A B 9 A B A B 10 A B A B 11 A A A A AAAA 12 A A A A AAAA 13 A B A B 14 A x A x AxAx 15 A x A x AxAx 16 A B A B 17 A B A B 18 A B A B 19 A B A B 20 A B A B Haplotyp Antal AAAA 5 10 33

5.7 Bilaga 7 Tabell 20: Ljusnans morfer och haplotyper. Individ Alu I HAE III HINF I HPA II Haplotyp 1 A A A A AAAA 2 A A A A AAAA 3 A B A B 4 A B A B 5 A A A A AAAA 6 A A A A AAAA 7 A A A A AAAA 8 A A A A AAAA 9 A A A A AAAA 10 A B A B 11 A A A A AAAA 12 A A A A AAAA 13 A A A A AAAA 14 B B A A BBAA 15 B B A A BBAA 16 A A A A AAAA 17 A B A B 18 A A A A AAAA 19 A A A A AAAA 20 A A A A AAAA Haplotyp Antal AAAA 14 4 BBAA 2 34