Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08



Relevanta dokument
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT10

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDI, FMS012, HT09

3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?

Laboration 4: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression

1 Förberedelseuppgifter

Laboration 4: Lineär regression

Laboration 5: Regressionsanalys

3. Vad är ett prediktionsintervall och hur räknas det ut? 4. Vad är ett kalibreringsintervall och hur kan det konstrueras?

( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3.

1 Förberedelseuppgifter

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Laboration 2: Styrkefunktion samt Regression

Datorövning 5 Regression

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.

6 Skattningar av parametrarna i en normalfördelning

Laboration 4 R-versionen

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)


Alternativ vattenbehandling


förstå modellen enkel linjär regression och de antaganden man gör i den Laborationen är dessutom en direkt förberedelse inför Miniprojekt II.

Under denna laboration kommer regression i olika former att tas upp. Laborationen består av fyra större deluppgifter.


1 Syfte. 2 Enkel lineär regression MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Lineära regressionsmodeller i allmänhet

Resultatet läggs in i ladok senast 13 juni 2014.


STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.


Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Linjär regressionsanalys. Wieland Wermke

F12 Regression. Måns Thulin. Uppsala universitet Statistik för ingenjörer 28/ /24

a) Vad är sannolikheten att det tar mer än 6 sekunder för programmet att starta?

Laboration 4 Regressionsanalys

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik, Föreläsning 5

Laboration: Att inhägna ett rektangulärt område

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

LABORATION 3 - Regressionsanalys

Utveckling av metod och prototyp för detektering av lastförskjutning

Matematisk statistik kompletterande projekt, FMSF25 Övning om regression

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laboration 2

F13 Regression och problemlösning

TVM-Matematik Adam Jonsson

TAIU07 Matematiska beräkningar med Matlab

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Uppgift 1. Deskripitiv statistik. Lön

Tentamen i Matematisk statistik Kurskod S0001M

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Regressionsanalys av huspriser i Vaxholm

Matematisk statistik för D, I, Π och Fysiker

Föreläsning 12: Regression

Instruktioner till Inlämningsuppgift 1 och Datorövning 1

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

Datorlaboration 2 Konfidensintervall & hypotesprövning

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys

a) Anpassa en trinomial responsmodell med övriga relevanta variabler som (icketransformerade)

Lösningar till linjära problem med MATLAB

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1

Föreläsning 13: Multipel Regression

Föreläsning G60 Statistiska metoder

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

Frisörer och Faktorer

10.1 Enkel linjär regression

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

TAMS65 - Seminarium 4 Regressionsanalys

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 13, Matematisk statistik 7.5 hp för E, HT-15 Multipel linjär regression

Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007

Laboration 2 multipel linjär regression

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 8 ( ) OCH INFÖR ÖVNING 9 ( )

Föreläsning 12: Linjär regression

F14 Repetition. Måns Thulin. Uppsala universitet Statistik för ingenjörer 6/ /15

Lunds tekniska högskola Matematikcentrum Matematisk statistik. FMS035: Matematisk statistik för M Datorlaboration 5

732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: minuter beroende på variant Material: TI-82/83/84 samt tärningar

Finansiell statistik. Multipel regression. 4 maj 2011

LABORATION 3 - Regressionsanalys

Datorövning 5 Exponentiella modeller och elasticitetssamband

Resultat. Principalkomponentanalys för alla icke-kategoriska variabler

Multipel linjär regression

Föreläsning 15, FMSF45 Multipel linjär regression

5 Stokastiska vektorer 9. 6 Multipel regression Matrisformulering MK-skattning av A.3 Skattningarnas fördelning...

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011

Begrepp Värde (mätvärde), medelvärde, median, lista, tabell, rad, kolumn, spridningsdiagram (punktdiagram)

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Tentamen'i'TMA321'Matematisk'Statistik,'Chalmers'Tekniska'Högskola.''

FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Transkript:

LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen Enkel linjär regression Multipel linjär regression 1 Förberedelseuppgifter Som förberedelse till laborationen bör du repetera normalfördelningsdiagram, läsa igenom hela regressionsstencilen och hela laborationshandledningen. Till laborationens start har du med dig lösningar till förberedelseuppgifterna. 1. Ange modellen för enkel linjär regression med normalfördelade fel. Hur skattar man, och 2? Vilken fördelning får och? Hur gör man konfidensintervall för, ochñ0 = + x 0? Hur kan man testa huruvida linjens lutning är 0? 2. Vad är ett prediktionsintervall och hur räknas det ut? 3. Vad är ett kalibreringsintervall och hur kan det konstrueras? 4. Residualanalys är ett centralt moment i all regressionsanalys. Hur bör residualerna se ut vid en korrekt regressionsanalys? Ange några tekniker för att kontrollera detta. 5. Ange modellen för multipel linjär regression på matrisform. Hur ser normalekvationerna ut och hur löser man dessa? Vad blir kovariansmatrisen för? 6. Lös uppgift ST35. 2 Enkel linjär regression Vid enkel linjär regression söker man anpassa en rät linje till datamaterialet, dvs modellen är y i = + x i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Vi kommer i den följande framställningen att arbeta med matrisformuleringen av modellen, Y = X +, där de ingående matriserna har följande form: y 1 1 x 1 y 2 Y =., X = 1 x 2 ( ).., 2 = och = 1.. y n 1 x n n Vi skall använda MATLAB-funktionenÖ Ö som skattar parametrar, beräknar konfidensintervall för dem, beräknar residualer och litet till. Gör ÐÔÖ Ö för att se vad funktionen gör. Uppgift: AnvändÖ Ö för att räkna uppgift ST35. En n 1-kolumn med ettor fås med ÓÒ Ò ½µoch två kolumner ½och ¾läggs bredvid varandra med ½ ¾.

2 Laboration 5, Matstat AK för CDE, VT08 2.1 Fallgropar För att illustrera vådan av att okritiskt anpassa en linjär modell till ett givet datamaterial har F. J. Anscombe konstruerat ett datamaterial, som ser ut på följande sätt: observation x 1, x 2, x 3 y 1 y 2 y 3 x 4 y 4 1 10 8.04 9.19 7.46 8 6.58 2 8 6.95 8.14 6.77 8 5.76 3 13 7.58 8.74 12.74 8 7.71 4 9 8.81 8.77 7.11 8 8.84 5 11 8.33 9.26 7.81 8 8.47 6 14 9.96 8.10 8.84 8 7.04 7 6 7.24 6.13 6.08 8 5.25 8 4 4.26 3.10 5.39 8 5.56 9 12 10.84 9.13 8.11 8 7.91 Ù ÔÐÓØ ¾¾½µ 10 7 4.82 7.26 6.42 8 6.89 ÔÐÓØ ܽ ݽ ³ ³µ 11 5 5.68 4.74 5.73 19 12.50 Datamaterialet finns lagrat i filen Ò ÓÑ ºÑ Øoch kan laddas in i MATLAB med kommandot ÐÓ Ò ÓÑ. Med kommandotû Ófår du reda på aktuella variabler i minnet. En lämplig början är alltid att ta sig en titt på datamaterialet. Börja med att plottaý½motü½, dvs Plotta sedan y 2 mot x 2, y 3 mot x 3, samt y 4 mot x 4 (mha kommandot Ù ÔÐÓØkan du få varje plot för sig i ett och samma fönster det ger en bra överblick). Vi skall nu helt aningslöst till var och en av datamängderna anpassa en linjär modell enligt ½ ÓÒ Þ Ü½µµÜ½ y i = + x i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Vi börjar med att konstruera matrisen X (enligt notationen i det inledande avsnittet ovan) för den Ø ½ Ø ½ ݽ första datamängden på följande sätt: Med MATLABs inbyggda minsta-kvadrat-lösare kan vi snabbt och enkelt få fram vår skattning av som ݽ Ø ½ Ø ½ Ø Ù ÔÐÓØ ¾¾½µ Denna ÓÐ vänsterdivision med matrisen ½innebär att MATLAB beräknar vänsterinversen till ½, och om ÔÐÓØ ܽ ݽ ص systemet är överbestämt bestämmer MATLAB automatiskt minsta-kvadrat-lösningen. Nu kan vi bestämma den skattade regressionslinjen och sedan rita in denna ovanpå punktdiagrammet över det första datamaterialet. Är det rimligt att teckna sambandet mellan den förklarande variabelnü½och den beroende variabeln ݽsom ett linjärt samband? För att studera hur väl vår modell stämmer med givna data beräknar vi först vektorn av residualer. Om modellen är korrekt skall residualerna ungefärligen (vi använder skattade parametrar) vara observationer av likafördelade stokastiska variabler. För att undersöka hur det förhåller sig med detta utför vi en residualanalys enligt beskrivningen i kurslitteraturen. Vi kan t ex plotta residualerna gentemot den förklarande variabeln.

ÙÖ Ù ÔÐÓØ ¾¾½µ Ö ½ ݽ¹Ý½ Ø ÔÐÓØ ܽ Ö ½ ³ ³µ Laboration 5, Matstat AK för CDE, VT08 3 Ò ÓÑ Om vårt modellantagande är korrekt skall vi inte kunna skönja någon systematisk variation i diagrammet. Kan du finna något beroende? Nu vill vi göra motsvarande för de övriga tre datamaterialen, dvs lösa ekvationssystemen, skatta regressionslinjerna och rita ut residualerna. För att du ska slippa göra alla dessa kommandon finns de sammanställda i MATLAB-filen Ò ÓÑ ºÑ. Skriv alltså för att få skattningar och plottar och besvara sedan följande frågor: Uppgift: Jämför värdena på de skattade koefficienterna för var och en av fyra regressionslinjerna. Studera och jämför residualplottarna för de fyra olika fallen. Vad har denna lilla studie att förtälja den som helt slentrianmässigt och okritiskt vill använda en linjär regressionsmodell? 3 Ù ÔÐÓØ Polynomregression ÔÐÓØ Ó¾µ i filenó¾º Ø, och den kan laddas in i MATLAB med kommandotðó Ó¾º Ø. Datamaterialet som du skall arbeta med i detta avsnitt är koldioxidhalter uppmätta över en vulkan varje månad under en period av 32 år, dvs totalt finns 32 12 = 384 mätvärden. Materialet finns Mätvärdena hamnar då i en vektor med namnetó¾. Plotta mätvärdena. Det Þ Þ ÖÓ ½¾ ¾µ finns uppenbarligen en kraftig periodicitet (årsvariation) i mätningarna, och en sådan låter sig inte så lätt fångas med en polynomiell regressionsfunktion. Detta problem kan lösas på flera sätt. Ett är att införa en sinus-funktion som modellerar variationen, ett annat är att differentiera datasekvensen, dvs undersöka z i = y i y i 1 i stället för y-värdena själva. Vi skall dock välja den mycket Þ µ Ó¾ enkla lösningen att medelvärdesbilda över varje år. Detta fordrar litet trixande i MATLAB. Först ÔÐÓØ Þµ skapar vi en 12 32-matris med bara nollor. Sedan överför vi mätvärdena till denna matris. Ý Ñ Ò Þµ Värdena ió¾överförs här kolonnvis, så att första kolonnen iþinnehåller mätvärdena från första året osv. Kontrollera gärna detta. Vi kan nu använda funktionenñ Òför att beräkna årsmedelvärdena.

Ý Ý³ 4 Laboration 5, Matstat AK för CDE, VT08 Slutligen vill vi att mätvärdena skall finnas i en kolonnvektor för att regressionsberäkningarna skall se ut som vanligt. Ü ½ ¾µ³ Kom ihåg att³betecknar transponat. Vi har nu skapat den mätvärdesvektor vi skall arbeta med. Vi skapar även en vektor med den förklarande variabeln (årtalet, räknat från lämplig nollpunkt). ÔÐÓØ Ü Ý ³Ó³µ (Utrycket skapar en radvektor med värden från till isteg om.) Plotta mätvärdena. Uppenbarligen är den periodiska variationen borta, vilket också var syftet med medelvärdesbildningen. Vi skall nu göra polynomregression på materialet, dvs vår modell är y i = 0 + 1x i + 2x 2 i +... + kx k i + i, i = 1,..., n, där i är oberoende likafördelade störningar med väntevärdet 0 och variansen 2. Som modellen är skriven ovan är den olinjär, ty ett polynom är inte en linjär funktion, men vi kan göra den linjär genom att införa de nya förklarande variablerna x ij = x j i för j = 1,..., k, i = 1,..., n, och skriva y i = 0 + 1x i1 + 2x i2 +... + kx ik + i, i = 1,..., n. Detta är den modell vi skall arbeta med. ÐÔÖ Ö ½ ÓÒ Þ ÜµµÜ 3.1 Enkel linjär regression Ø ½ Ø ½ ÒØ Ö ½ Ö ½ ÒØ Ø Ø Ö Ö Ý ½ ¼º¼ µ Vi ÔÐÓØ Ü Ý ³Ó³ Ü ½ Ø ½µ börjar med att anpassa en linjär funktion till datamaterialet, dvs polynomets ordningsgrad k = 1. Skattningarna ÔÐÓØ Ö ½ ³ ³µ av 0 och 1 erhålles med hjälp av funktionenö Ö. Uppgift: Verkar en rät linje vara en tillfredsställande regressionsmodell? Diagrammet visar att residualerna i mitten av mätserien tycks komma från en annan fördelning är residualerna i början och slutet av densamma. Alternativt finns en stark korrelation mellan störningarna vilket strider mot oberoendeantagandet. Vi drar alltså slutsatsen att en enkel linjär regressionsmodell inte passar det aktuella datamaterialet.

Laboration 5, Matstat AK för CDE, VT08 5 ܽ Ü 3.2 ܾ ܺ ¾ Kvadratisk regression Nästa steg är att försöka anpassa en kvadratisk funktion till mätvärdena, dvs vi använder ordningstalet ¾ ÓÒ Þ ÜµµÜ½Ü¾ k = 2 för regressionspolynomet. Först skapar vi vektorer som innehåller de förklarande variablerna x i1 = x i och x i2 = xi 2. Ø ¾ Ø ¾ ÒØ Ö ¾ Ö ¾ ÒØ Ø Ø Ö Ö Ý ¾ ¼º¼ µ ÔÐÓØ Ü Ý ³Ó³ Ü ¾ Ø ¾µ Sedan ÔÐÓØ Ö ¾ ³ ³µ samlar vi de förklarande variablerna i matrisen ¾. Vi kan nu beräkna skattningarna av 0, 1 och 2. Uppgift: Verkar den kvadratiska modellen vara bättre än den linjära? Kan residualerna tänkas komma från samma fördelning? ÒÓÖÑÔÐÓØ Ö ¾µ Vi skall nu undersöka om residualerna eventuellt kan komma från en normalfördelning. Detta kan vi göra genom att plotta dem i ett normalfördelningsdiagram. Uppgift: Verkar det rimligt att anta normalfördelade störningar? Är väntevärdet av dessa lika med 0? Undersök detta både genom att titta på normalfördelningsdiagrammet och genom att använda funktionenñ Ò. ¾ ÙÑ Ö ¾º ¾µ»¾ Skatta felens varians 2 genom att dela residualkvadratsumman med n 3 = 29. Avsluta med att studera de 95 %-iga konfidensintervallen för 0, 1 och 2 (finns i Ø ¾ ÒØ). Uppgift: Är 2 signifikant skild från 0, dvs om H 0 : 2 = 0 och H 1 : 2 0, kan vi då förkasta H 0 (på nivån 5 %)? I så fall kan vi med gott samvete anta den kvadratiska modellen före den linjära. På samma sätt kan man gå vidare och testa om en tredjegradsterm i regressionsfunktionen är relevant. Vi skall nu använda en färdigskriven funktionö Ù och låta den göra grovjobbet. Undersök med ÐÔ-kommandot vad funktionenö Ù gör och vad den har för inparametrar.

ÐÔÖ Ù Ö Ù Ü Ýµ 6 Laboration 5, Matstat AK för CDE, VT08 Undersök de olika möjligheternaö Ù ger dig att studera en regressionsmodell och välj olika gradtal i modellen. Uppgift: Fick du några varningsmeddelanden i kommandofönstret? Vad kan det i så fall bero på? Uppgift: Gör en bedömning av figurerna och utskriften med de skattade parametrarna och konfidensintervallen och avgör vilken polynommodell som är mest adekvat. 4 Multipel regression I och med att vi redan vid enkel linjär regression arbetat med matrismodeller, erbjuder multipel linjär regression inget nytt vad beträffar parameterskattningarna. Vi får utöka matrisen X med ytterligare en kolonn för varje ny förklarande variabel, men minsta-kvadrat-problemet löser vi på samma sätt som tidigare. 4.1 Cementdata I detta smått klassiska experiment (beskrevs i Industrial And Engineering Chemistry redan 1932) har man i 13 försök mätt värmeutvecklingen i stelnande cement som funktion av viktprocenten av några ingående ämnen. I filen Ñ ÒØfinns följande variabler kolonnvis: cem1 viktprocent av 3CaO Al 2 O 3 cem2 viktprocent av 3CaO SiO 2 cem3 viktprocent av 4CaO Al 2 O 3 Fe 2 O ÐÓ Ñ ÒØº Ø 3 cem4 viktprocent av 2CaO SiO Ñ ÒØ 2 värme utvecklad värme i kalorier per gram cement ÓÖÖÓ Ñ ÒØµ Vissa av de fyra cementvariablerna samvarierar kraftigt med varandra vilket påverkar regressionsanalysen. Utnyttja gärnaóööó, som räknar ut korrelationsmatrisen. Plotta de olika cementva- Ü Ñ ÒØ ½ µ Ñ ÒØ µ riablerna mot värme och även de olika cementvariablerna mot varandra. ÐÔÔÐÓØÑ ØÖ Ü ÔÐÓØÑ ØÖ Ü Ñ ÒØµ Uppgift: Vilka variabler verkar samvariera?

Laboration 5, Matstat AK för CDE, VT08 7 ÓÒ ½ ½µÜ Ø Ø Ö ¹ Ø Ø ¾ ÙÑ Ö º ¾µ» Börja Î Ø Ø ¾ ÒÚ ³ µ med att bestämma en full regressionsmodell med värme som responsvariabel och samtliga fyra cementvariabler ÔÐÓØ Ö ³Ó³µ som förklarande variabler: Uppgift: Vilka regressionskoefficienter är signifikant skilda från noll? Ser det bra ut? (t-kvantiler kan fås medø ÒÚ ½¹¼º¼»¾ µsom ger t 0.05/2 (f )-värdet) Ø Ø Ø Ø ÒØ Ö Ö ÒØ Ø Ø Ö Ö ¼º¼ µ Givetvis kunde vi också använt funktionenö Ö direkt ÐÔ Ø ÔÛ Ø ÔÛ µ Förmodligen är du inte alls nöjd med den fulla regressionsmodellen du just bestämt för cementdata, t ex samvarierade några av de förklarande variablerna kraftigt och kanske skall inte alla vara med. Försök komma fram till en bra regressionsmodell, vilket ju inte är helt lätt... Funktionen Ø ÔÛ kan vara till stor hjälp vid modellvalet Uppgift: Vilken modell kom du fram till? 5 Kalibrering av flödesmätare (om du hinner) Bakgrund Kalibrering av en flödesmätare genomförs oftast i en speciell kalibreringsrigg. Här finns en referensmätare eller referensmetod för att mäta flödet. För att erhålla en god bild av hur den testade flödesmätaren fungerar utförs kalibreringen vid ett stort antal flöden. Tyvärr kan man även vid kalibrering råka ut för situationer där den testade mätaren störs av testförhållandena. Om t.ex. pulsationer uppträder i flödet kommer detta att negativt påverka resultaten för den testade mätaren. Detta visar sig oftast vid låga flödeshastigheter, då ultraljudsmätare tenderar att överskatta flödeshastigheten. Detta orsakas av att vi erhåller en laminär flödesprofil i röret, vilket medför att en ultraljudsmätare kan överskatta flödet med upp till 33% vid fullt utbildad laminär strömning.

8 Laboration 5, Matstat AK för CDE, VT08 Vid låga flöden ser vi även att vi har stora fluktuationer i resultaten. Detta beror troligen på att vi har flödespulsationer i flödesriggen vilka kommer att orsaka fluktuerande resultat för ultraljudsflödesmätaren, bland annat orsakat av s.k. aliasproblem (d.v.s mätsystemet arbetar med en för låg sampelfrekvens i förhållande till frekvenserna hos det uppmätta). Vid höga flöden uppträder troligen kavitation (ett slags bubbelbildning) inne i ultraljudsflödesmätaren vilket kan förklara de positiva felen och den ökade spridningen för strömningshastigheter över 6.3 m/s. Metod Vi har nu tillgång till data från en kalibrering av en ultraljudsflödesmätare. Datamaterialet, som kommer från institutionen för värme- och kraftteknik, omfattar 71 mätningar och är lagrat i matrisen ÐÓÛ, där varje rad innehåller data från en mätning, variabeln ܾavser referensflödesmätningar från kalibreringsriggen och ݾavser respektive flöden uppmätta med den testade ultraljudsflödesmätaren (flödeshastigheterna givna i enheten m/s). Den använda kalibreringsriggen använder kontinuerlig vägning av det genomströmmande vattnet för att bestämma ett massflöde som sedan kan räknas om till medelhastighet i röret, vilket är vad ultraljudsmätaren mäter. Tanken är här att vi med hjälp av de gjorda mätningarna med givare och referens skall skatta parametrarna i en enkel linjär regressionsmodell. Vi antar då att referensmätningarnas fel kan försummas i jämförelse med ultraljudsgivarens (varför måste vi bekymra oss om detta?) och att ultraljudsgivarens fel är oberoende, likafördelade och har väntevärdet noll. ÐÓ ÐÓÛºÑ Ø För att studera detta datamaterial ska vi använda funktionenö Ù vars finesser du förhoppningsvis redan bekantat dig med. Observera att du t.ex. automatiskt kan rita ut konfidensintervall och Ö Ù Ü½ ݽµ prediktionsintervall genom att markera i tillämplig ruta. För att bilden skall bli tydligare börjar vi med att studera en liten delmängd av materialet, 10 talpar av flödesmätningar som ges i variablerna ܽoch ݽ. Använd nu funktionen interaktivt för att göra följande beräkningar: Beräkna det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40m/s. Beräkna också ett 95%-igt konfidensintervall för detta förväntade värde. Beräkna dessutom ett 95%-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40m/s. Identifiera dessa två intervall i figuren och förklara vad det är som skiljer dem åt. Notera också värdena på de två intervallen eftersom du ska använda dem senare i laborationen. När vi sedan skall använda den kalibrerade ultraljudsmätaren, innebär det i princip att vi läser baklänges i kalibreringskurvan. Antag att vi med ultraljudsmätaren får mätvärdet 0.48m/s. Beräkna ett 95%-igt konfidensintervall för den sanna flödeshastigheten (dvs det värde som kalibreringsriggen skulle ge). Identifiera i figuren de kurvor som används vid den grafiska bestämningen av detta konfidensintervall och förklara varför det är just dem, man skall använda.

Laboration 5, Matstat AK för CDE, VT08 9 När vi enligt det ovanstående beräknat olika konfidens- och prediktionsintervall har vi stillatigande förutsatt att mätfelen hos ultraljudsmätaren är normalfördelade med konstant varians. Var i beräkningarna utnyttjas detta antagande? Om vi vill använda kalibreringskurvan i seriösa sammanhang måste vi först utföra en modellvalidering, dvs vi måste kontrollera att den linjära regressionsmodellen ger en adekvat beskrivning av sambandet. Vi kan bland annat validera modellen genom en grafisk residualanalys. Vid en sådan residualanalys får följande tre diagram, som alla kan fås iö Ù, anses vara standard: Residualer gentemot observerade eller predikterade y-värden. Ö Ù Ü¾ ݾµ Residualer gentemot den oberoende variabelns värden. Residualer i normalfördelningsdiagram. Detta skall vi nu ta itu med, men låt oss göra detta med en modell anpassad till hela datamaterialet. Då kan vi också passa på att studera vissa andra egenskaper hos de olika intervallskattningarna. Upprepa nu beräkningarna från första frågepunkten ovan, dvs Beräkna det förväntade värdet enligt ultraljudsmätaren, då flödet enligt kalibreringsriggen är 0.40m/s. Beräkna också ett 95%-igt konfidensintervall för detta förväntade värde. Beräkna dessutom ett 95%-igt prediktionsintervall för en framtida observation från ultraljudsmätaren, då kalibreringsriggen ger mätvärdet 0.40m/s. Skriv ner de båda intervallen. Jämför intervallbredderna baserade på de 10 mätningarna med motsvarande intervallbredder för den modell som är anpassad till alla de 71 mätpunkterna, Nu är det inte säkert att du lyckats pricka in precis samma x-värde i de två fallen, men vissa allmänna iakttagelser bör ändå vara möjliga. Jämför de två konfidensintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras? Jämför de två prediktionsintervallen. Skiljer de sig väsentligt åt (eller inte)? Hur kan det förklaras? Innan vi törs använda den skattade regressionslinjen för prediktion, måste vi naturligtvis förvissa oss om att modellen är adekvat. Ger plottarna anledning att förkasta modellen eller anser du att du på goda grunder kan använda den skattade regressionslinjen för kalibrering av ultraljudsmätaren?