Local event detection with neural networks (application to Webnet data)

Relevanta dokument
PFC and EMI filtering

Mapping sequence reads & Calling variants

12.6 Heat equation, Wave equation

Beijer Electronics AB 2000, MA00336A,

Resultat av den utökade första planeringsövningen inför RRC september 2005

A study of the performance

Michael Q. Jones & Matt B. Pedersen University of Nevada Las Vegas

Theory 1. Summer Term 2010

District Application for Partnership

Adding active and blended learning to an introductory mechanics course

Preschool Kindergarten

Module 6: Integrals and applications

Mönster. Ulf Cederling Växjö University Slide 1

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Hur fattar samhället beslut när forskarna är oeniga?

Changes in value systems in Sweden and USA between 1996 and 2006

Riskhantering. med exempel från Siemens

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

2.1 Installation of driver using Internet Installation of driver from disk... 3

INDUKTIV SLINGDETEKTOR INDUCTIVE LOOP DETECTOR

RUP är en omfattande process, ett processramverk. RUP bör införas stegvis. RUP måste anpassas. till organisationen till projektet

Fysisk aktivitet och hjärnan

Alla Tiders Kalmar län, Create the good society in Kalmar county Contributions from the Heritage Sector and the Time Travel method

FÖRBÄTTRA DIN PREDIKTIVA MODELLERING MED MACHINE LEARNING I SAS ENTERPRISE MINER OSKAR ERIKSSON - ANALYSKONSULT

Konditionsövervakning av roterande maskiner. Tomas Tibbling Bently Nevada - GE Digital Solutions

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Chapter 2: Random Variables

Sammanfattning hydraulik

Discovery FSQ, IAA Utgåva/Edition 11. SE Habo. Klass 2 IAA FSQ-I 26W. 4 mm c c mm N L

Indikatorer för utvecklingen av de Europeiska energisystemen

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

The reception Unit Adjunkten - for newly arrived pupils

DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15

Investeringsbedömning

EVALUATION OF ADVANCED BIOSTATISTICS COURSE, part I

För att justera TX finns det ett tool med namnet MMDVMCal. t.ex. /home/pi/applications/mmdvmcal/mmdvmcal /dev/ttyacm0

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Fall detection using smartphone application

Datorbaserad mätteknik

J. Japan Association on Odor Environment Vol. -1 No. 0,**0 431

Metodprov för kontroll av svetsmutterförband Kontrollbestämmelse Method test for inspection of joints of weld nut Inspection specification

The Arctic boundary layer

TEXTURED EASY LOCK BLOCK INSTALLATION GUIDE. australianpaving.com.au

Medical Informatics Period 2, 2009

Klicka här för att ändra format

Sectra Critical Security Services. Fel bild

Use it or lose it - Barnhälsovårdens ansvar för barns hjärnor som framtidsinvestering. Anna Sarkadi

Beacon BluFi Bluzone. Givarna har mycket hög känslighet och kan mäta mycket små förändringar.

Kursutvärderare: IT-kansliet/Christina Waller. General opinions: 1. What is your general feeling about the course? Antal svar: 17 Medelvärde: 2.

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

A QUEST FOR MISSING PULSARS

Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori

Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power Networks

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

Alias 1.0 Rollbaserad inloggning

Salmonella control in pig production in Sweden. Helene Wahlström, Zoonosiscenter, SVA

Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.

Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.

Datasäkerhet och integritet

Det här med levels.?

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

Image quality Technical/physical aspects

Kursplan. NA1032 Makroekonomi, introduktion. 7,5 högskolepoäng, Grundnivå 1. Introductory Macroeconomics

The Algerian Law of Association. Hotel Rivoli Casablanca October 22-23, 2009

Rev No. Magnetic gripper 3

SÖ 2005:10. Agreement in the Form of an Exchange of Letters on the Taxation of Savings Income

GÄVLE Anna Ryymin Salla Salovaara

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

The present situation on the application of ICT in precision agriculture in Sweden

MCP-16RC, Air Purification

M850-LTHN. Installationsmanual och användarhandbok

Styrteknik: Binära tal, talsystem och koder D3:1

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Strategy for development of car clubs in Gothenburg. Anette Thorén

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

Introduction to the Semantic Web. Eva Blomqvist

2.45GHz CF Card Reader User Manual. Version /09/15

Grafisk teknik. Sasan Gooran (HT 2006)

Isolda Purchase - EDI

balans Serie 7 - The best working position is to be balanced - in the centre of your own gravity! balans 7,45

3rd September 2014 Sonali Raut, CA, CISA DGM-Internal Audit, Voltas Ltd.

Bridging the gap - state-of-the-art testing research, Explanea, and why you should care

Calculate check digits according to the modulus-11 method

ASIC TENTAMEN TSTE81. Tid: Lördag 24 april 2004 kl. 14:00 18:00. Ansvarig lärare: Oscar Gustafsson, ,

Rättvis kostnadsfördelning av IT-infrastrukturinvesteringar

Magic Grippers System för att enkelt bygga robotgrippers / grippers. -- Kort presentation -- Beställ komplett katalog

EASA Standardiseringsrapport 2014

Make a speech. How to make the perfect speech. söndag 6 oktober 13

xperia p manual svenska

Support for Artist Residencies

Det finns en handledning till kortet på hemsidan. AVR STK500.


D-RAIL AB. All Rights Reserved.

Höj kompetensen på din arbetsplats - ta hjälp av en seniorforskare

Application Note SW

Why WE care? Anders Lundberg Fire Protection Engineer The Unit for Fire Protection & Flammables Swedish Civil Contingencies Agency

Transkript:

Local event detection with neural networks (application to Webnet data) J. Doubravová, J. Horálek 1 and J. Wiszniowski 2 1 Department of Seismology Institute of Geophysics, Czech Academy of Sciences 2 Department of Seismology Institute of Geophysics, Polish Academy of Sciences Workshop CzechGeo/EPOS, 16.11.2016

seismic networks produce huge volumes of continuous data good seismic event detection for manual processing to reduce false alarms to be inspected (specic) for automatic processing detect all the weak events (sensitive) in articial neural networks the useful information is extracted (even if we are not able to describe the algorithm) in articial neural networks the forward problem is solved fast

Biology facts neural network - interface between organism and environment information from receptors spread through neurons to eectors in cerebral cortex 15-33 billion neurons dendrites (inputs), synaptic terminals (output, connected to up to 5000 other neurons dendrites) synaptic permeability between dendrite and axon is adjusted if the activity of dendrites is above threshold - neuron generates an electric impulse

Formal neuron n real inputs x = dendrites, bias x 0 = 1 weights w = synaptic permeability, w 0 = h threshold activation potential ξ = n w i x i i=0 activation function y = σ(ξ )

Articial neural network to solve more complex problems - neural networks typical applications: classication, pattern recognition, regression

Arti cial neural networks - introduction WEBNET data Single Layer Recurrent Neural Network con guration SLRNN training WEBNET data 22 stations in total 13 stations online 250Hz, three component ground-velocity records J. Doubravová, J. Horálek and J. Wiszniowski Local event detection with neural networks (application to

SLRNN - network architecture WEBNET data Single Layer Recurrent Neural Network conguration SLRNN training outputs of neurons are fed back as inputs = recurrence, memory delays of more samples D 1..D d (1, 2, 4, and 8 samples) 8 neurons, 18 inputs, 3 outputs (event, P, S)

SLRNN - input data processing WEBNET data Single Layer Recurrent Neural Network conguration SLRNN training STA window 2x shortest period, LTA window 10x longest period decimation to 0.2 s time steps - compromise between the acceptable computational load and good separation of individual waves Frequency response [ ] 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10 0 10 1 10 2 Frequency [Hz] Z N E Filter Z 0.6-1 Hz bank Z 25-40 Hz 9 x half-octave E 0.6-1 Hz IIR filters E 25-40 Hz N 2 + E 2 vertical 0.6-1 Hz vertical 25-40 Hz horizontal 0.6-1 Hz horizontal 25-40 Hz STA/LTA vertical STA/LTA 0.6-1 Hz ratios for each freq. band STA/LTA horizontal 25-40 Hz downsample 50 x 18x ANN inputs

Training WEBNET data Single Layer Recurrent Neural Network conguration SLRNN training supervised learning: nd w ij to get the best t of the actual and required outputs 100 events for each station (dierent magnitudes, locations or focal mechanisms) 100 examples of disturbances and non-local events (quarry blasts, regional or teleseismic events, disturbances by wind or storms...)

Training - example WEBNET data Single Layer Recurrent Neural Network conguration SLRNN training Learning Importance Weight of Events(LIWE) - sensitivity of event output to S wave onset = very important parameter

Tests Relation to SNR Undetected events Cost function and ROC for various LIWE sensitivity = detected events / all events specicity = rejected disturbances / all disturbances

Tests Relation to SNR Undetected events ROC for joint and individual training in case that the training P- and S-onset picks are not evenly present on all stations, it is helpful to use joint training if the picks are complete for the station and all events, individual training performs better

Signal-to-noise ratio Tests Relation to SNR Undetected events the worst trained stations (KAC and ZHC) also those with higher noise the best trained stations (LBC, POC, VAC) with lower noise (higher SNR)

Tests Relation to SNR Undetected events Undetected events - examples Events M L = 2.3 and M L = 2.2 masked by a coda of M L = 3.8 earthquake

Tests Relation to SNR Undetected events Undetected events - examples detection of M L = 0.3 event failed on station KAC due to higher noise level

SLRNN proved to be an appropriate tool for local event detection LIWE - very important, aects the number of successful trials in case the training P- and S-onset picks are not evenly present on all stations => joint training helps if the picks are complete for the station and all events => individual training performs better Outlook use the network = coincidence - rejection of false alarms + conrmation of events try to teach similar network for Reykjanet data