Så bra kommer våra batterier att vara 2030! Josh Thomas

Relevanta dokument
Fordonsindustrins framtida utmaningar: Batterianvändning ur ett fordonsperspektiv. Göran Lindbergh, KTH och SHC Batterifondsprogrammet, 6 april 2016

Indikatorer för utvecklingen av de Europeiska energisystemen

SOLAR LIGHT SOLUTION. Giving you the advantages of sunshine. Ningbo Green Light Energy Technology Co., Ltd.

City Mobility Transport Solutions -Environmental and economic sustainability by new technology Trondheim 26th of June

Grass to biogas turns arable land to carbon sink LOVISA BJÖRNSSON

PFC and EMI filtering

Regional Carbon Budgets

Boiler with heatpump / Värmepumpsberedare

PowerCell Sweden AB. Ren och effektiv energi överallt där den behövs

BATTERITEKNIK & PRODUKTION- STRATEGISK MÖJLIGHET FÖR SVERIGE!

INSTALLATION INSTRUCTIONS

Högtemperaturlitiumbatterier för fordonstillämpningar

Fossilförbannelse? Filip Johnsson Institutionen för Energi och Miljö Pathways to Sustainable European Energy Systems

Fuel for thought energi, transporter och nollutsläpp 2050 LARS J. NILSSON - MILJÖ- OCH ENERGISYSTEM, LUNDS UNIVERSITET

University of Technology

Varför ett nytt energisystem?

Urban Runoff in Denser Environments. Tom Richman, ASLA, AICP

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

Vätebränsle. Namn: Rasmus Rynell. Klass: TE14A. Datum:

Begränsa den globala temperaturökningen < 2ºC: Minskad energianvändning

Why Steam Engine again??

Utvärdering av elektroder i helceller: Si-Grafit / NMC

Energiforskningens roll i klimatfrågan exempel från Chalmers

End consumers. Wood energy and Cleantech. Infrastructure district heating. Boilers. Infrastructu re fuel. Fuel production

Utvärdering av elektroder i helceller: Si-Grafit / NMC

HÅLLBAR STADSBYGGNAD. Hur gör man - och var gör man vad?

ERS (Electrical Road System) Slide-in project within FFI program

Säkrare batterisystem och elektrifierade fordon

A VIEW FROM A GAS SYSTEM OPERATOR. Hans Kreisel, Weum/Swedegas Gasdagarna, 16 May 2019

Global Carbon Law Pathway to Paris

Den Disruptiva Utmaningen. Christian Sandström, Tekn Dr. Chalmers och Ratio. Disruptive, Computer Sweden 16 oktober 2014

Riskhantering. med exempel från Siemens

DE TRE UTMANINGARNA..

Inkvarteringsstatistik. Göteborg & Co

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Ångström Advanced Battery Centre

Vågkraft. Verification of Numerical Field Model for Permanent Magnet Two Pole Motor. Centrum för förnybar elenergiomvandling

Rev No. Magnetic gripper 3

SEKAB IN SHORT. SEKAB: Founded: Head quarter: Turn over 2010: Employees: Owners: Outsourcing:

Module 6: Integrals and applications

Effektiva transporter En förutsättning för vår konkurenskraft En del av miljöproblemet - En del av lösningen

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Country report: Sweden

Omställning av busstrafiken till eldrift

Mönster. Ulf Cederling Växjö University Slide 1

BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström

Green Charge Southeast a Leading Effort for Electric Vehicles in Sweden. Project Overview, Spring 2014 Dr. Henrik Ny, BTH

Affärsmodellernas förändring inom handeln

Support Manual HoistLocatel Electronic Locks

Sustainable transport solutions. Rolf Willkrans Sustainability & Public Affairs Volvo Group Headquarters

BATTERY (MATERIALS) CHALMERS - FROM FUNDAMENTALS TO SAFETY TESTS

Nolato Cerbo är en del av Nolato Medical, global och ledande leverantör av polymera produkter och system. Med vårt varumärke Cerbo erbjuder vi ett bre


SIPTex. Svensk innova6onspla8orm för tex6lsortering

The road to Recovery in a difficult Environment

Gävle. CCIC, Innovative Cities Svenska Kommun Försäkrings AB Nidaros Forsikring. (Swedish Municipality Insurance Co Ltd)

Making electricity clean

Leading the way towards truly sustainable shipping. Carl Fagergren Project Manager Ship design & Newbuilding 1

Instruction Manual. Svenska, English. Power Bank. Model: PRBN

Innovation Enabled by ICT A proposal for a Vinnova national Strategic innovation Program

The Arctic boundary layer

WAVES4POWER Fosnavåg 24 oktober 2016

Värmepumpar i ett nytt. Vision Monica Axell SP Sveriges Tekniska Forskningsinstitut

Lösningar på klimatfrågan - värderingar och försanthållanden

De vanligaste litiumjonbatterierna

Här kan du sova. Sleep here with a good conscience

COPENHAGEN Environmentally Committed Accountants

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

The Swedish National Patient Overview (NPO)

Olika uppfattningar om torv och

Här kan du checka in. Check in here with a good conscience

How to get a tree into a pipe?

Helsinki, 30 November Väino Tarandi, KTH & buildingsmart SWEDEN

Utmaningar och möjligheter vid 100% förnybar elproduktion

E.ON Gas operational areas. Gas lines Vehicle gas LPG

SNÄCKVÄXLAR WORM GEARBOXES

Flexible Assembly of Environmental Cars

(Place for logo if desired) Lars Holmquist Göteborg Energi

Att analysera företagsdynamik med registerdata (FAD) Martin Andersson

Ulrika Bokeberg, Director Public Transport Authority, Region Västra Götaland, Sweden

Gröna bränslen för tunga dieselfordon Patrik Thärnå

Koldioxidavskiljning ur rökgaser Filip Johnsson Department of Space, Earth and Environment, Division of Energy Technology Sweden

Hög intensitet. Låg effektivitet. Hög materiell tillväxt

EUSME -gratis Horizon 2020-support till småföretag (SME) EU/SME

Stora Leverantörsdagen

moderna I Åke axelsson moderna II Åke axelsson

Magic Grippers System för att enkelt bygga robotgrippers / grippers. -- Kort presentation -- Beställ komplett katalog

Är passivhus lämpliga i fjärrvärmeområden?

Mikro/Nanoelektronik. Jan Andersson, Adj. Prof. STC Center Mittuniversitetet, Sundsvall STC Sensible Things that Communicate

Utveckling av energimarknader i EU. politik och framgångsrika medlemsstater

Syns du, finns du? Examensarbete 15 hp kandidatnivå Medie- och kommunikationsvetenskap

Nätuppbyggnad och automatiker för ökad tillgänglighet

Idé och Projektarena Blå tillväxt Skagerrak Olika lösningar mot green, clean shipping; Metanol är ej alternakv Peter Grundevik SSPA Sweden AB

The present situation on the application of ICT in precision agriculture in Sweden

Innovation in the health sector through public procurement and regulation

Environmental benefits CO 2

Strategy for development of car clubs in Gothenburg. Anette Thorén

Per Eckemark, Oct 16, Ökade krav på överföring och flexibilitet i transmissionsnätet

Transkript:

Så bra kommer våra batterier att vara 2030! Josh Thomas The Ångström Advanced Battery Centre, Department of Materials Chemistry, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden. & LiFeSiZE AB Blomgatan 4E, SE-752 31 Uppsala, Sweden. jot@lifesize.se Energiledarkonferensen: Så räddar tekniken oss till 2030! Solna, 12 november 2009

Så mycket större/kraftfullare/billigare/säkrare/ grönare kommer våra batterier att vara 2030! Energiledarkonferensen: Så räddar tekniken oss till 2030! Solna, 12 november 2009 Josh Thomas The Ångström Advanced Battery Centre, Department of Materials Chemistry, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden. & LiFeSiZE AB Blomgatan 4E, SE-752 31 Uppsala, Sweden. jot@lifesize.se

What s wrong in our World today? the clean ones! sun wind, wave... etc.!!! coal, oil, gas, wood Energy resources available Current utilization

And how can we put it right? Re: Så räddar tekniken oss till 2030! the clean ones! sun wind, wave... etc. Sci. & Techn. coal, oil, gas, wood Energy resources available Desired utilization

Energiformer i världen idag 6% 1% 0.5% 7% 4% 36% 24% 21% De vanligaste är de smutsigaste!

How can batteries help?

Clearly we must invest in RENEWABLES! BUT... the wind doesn t blow every day, nor does the sun shine on demand or at night! An indisputable future scenario: Renewable E-sources + efficient E-conversion + E-storage 4% 6% 1% 0.5% renewable E-sources + fuel-cells + batteries

Today s (Li-ion) battery research focusses on: - cheaper, larger, safer, greener (Li-ion) batteries with higher energy- and power-densities 1. EV/HEV:s 2. Quality grid-power (the smart grid ) Grid power Transport 3. Uninterruptible Power Supply (UPS) systems Wind Sun Wave From renewable E-sources

Bilen = miljöboven!!!! Storstadsskalan Global-scale Globalskalan Exhaust emission C O 2 emission Energy supply & demand

Luftföroreningar i världens städer Världens 10 smutsigaste städer ( 7 i Kina ) 1. Taipei 2. Milano!! 3. Beijing 4. Urumchi 5. Mexico 6. Lanzhou 7. Chongqing 8. Jinan 9. Shijiazhuang 10. Teheran 14000 12000 10000 8000 6000 4000 2000 0 Cars Buses Trucks Projektion CO 2 emissioner (milj ton) 2000 2005 2010 2015 2020 2025 2030 1.400 1.200 1.000 2006 : >300 milj bilar i Europa 800 600 400 200 0

En tillfällig lösning...... men en vändpunkt! *

Better (H)EVs to come! Fuel Economy Current HEVs t.ex. PRIUS ICE Vehicles Plug-in (H)EV s Fun to Drive

På längre sikt?

* * ca. 2030!?

On a broader scale: sustainable electrical power supplies Power gen. HT HT HTA (20000V) BT(230V) A sustainable E-system: Centralised och decentralised power supplies 1 Central battery storage +-+- +- LT 50 150 KVA +-+- +- LT LT box (Centralised) (Decentralised) 2 +-+-+- +-+-+- Grid-coupled solar panels system... through better batteries Individual battery storage 3 +-+-+- +-+-+- Remote Solar panels (off-grid) 4 An el-tank in the basement!

So we need better batteries! I what way will they be better?

The first battery? A clay jar containing an iron rod surrounded by a copper cylinder; when filled with vinegar + an electrolytic solution, the battery produced 1.1 volts DC. Present day Iraq: 250 BC to 640 AD

Where are we today after two centuries? Alessandro Volta, 1799 (Cu/Zn) 80% of electronics market today 1839 Fuel cell 1859 Pb-battery 1899 Ni-Cd (Swedish) 1973 Li-metal 1975 Ni-MH 1979 Li-polymer Li-ion: Sony 1990 Very slow development - definitely NOT Moore s law! Li-ion-polymer: 2000 «Research in the field of batteries moves at glacier pace» N.Y.Times: 2001

Li-jonbatteriet ger oss bästa möjlighet till uppskalning! (det tar >20 år att ta fram ett helt nytt batterikoncept)

Olika batterimaterial... - + electrolyt Grafit LiNi 0.8 Co 0.2 O 2 Li + (Kisel) Nanorör (VO x) LiFePO 4 PF - 6 BF - 4 NiSi LiMn 2 O 4 CF 3 SO - 2 Cu 6 Sn 5 (Li 2 FeSiO 4 ) N(SO 2 CF 3 ) - 2 Cu 2 Sb V 6 O 13 InSb EC * MnSb DEC * Mn 2 Sb SnSb Sn-glaser DMC etc. organisk lösningsmedel

Möjliga vägar fram? 1. Bättre bulk-material (e.g., LiFeSiZE AB!) 2. Nanomaterial 3. Mikro-arkitekturer

1. Bättre bulk-material?

Bättre batteri Ett bättre batteri = en bättre KATOD Bättre material Säkrare anod Men vi klarar uppskalningen med vad vi har redan idag Stabilare elektrolyt KATODEN fördröjer uppskalningen av teknologin Katoden måste bli bättre... Högre kapacitet ( prestanda ) Högre effekt ( prestanda ) Högre säkerhet ( prestanda ) Längre livstid ( prestanda )... Lägre pris ( marknad ) Lägre toxicitet ( miljö )

Better batteries... esp. for EV scale-up Better materials Safer anodes We can scale up with what we already have at lower voltages, but: * Cu/graphite sustainability!!! * LiPF 6!!!! More stable electrolytes The CATHODE is hindering the scaling up of the technology! Higher capacity ( performance ) cathodes Higher power ( performance ) Safer ( performance ) Longer lifetime ( performance )... Lower cost ( market ) More abundant materials ( market / environment ) Non-toxic ( environment )

Ett nytt HEV/P-HEV/EV katodmaterial?... från Uppsala Dagens mobiltelefon/laptop material -LiCoO 2, Li(Co,Ni)O 2, LiNi 1-y-z Co y Al z O 2 Större batterier kräver billigare katodmaterial Fe-baserad material LiFePO 4 (A123, etc. idag) Li 2 FeSiO 4 (litiumjärnsilikat) ( Fe- och Si-oxider >10% av jordskorpan!) De gamla grekernas grundelement: Earth-Air-Fire-Water!

... an Uppsala University spin-off Company Goal: We develop Fe-based cathodes for Li-ion batteries for large-scale applications (transport and sustainable energy storage)... an inestimably large - but tough - market! - develop a CHEAP green synthesis method for Li 2 FeSiO 4 ( LFS ) - produce/sell Li-ion battery cathodes based on LFS

Common Li-ion battery cathode materials a) Layered: LiCoO 2 -> Li 0.5 CoO 2 : ~3.9V, ~140 mah/g b) Spinels: LiMn 2 O 4 -> Mn 2 O 4 : ~3V or ~4.0V, 148 mah/g Instability? Solution:doping c) Olivines: LiFePO 4 -> FePO 4, ~3.6V, ~170 mah/g d) Orthosilicates Li 2 FeSiO 4 -> LiFeSiO 4, ~2.85V, ~ 170 mah/g Poor electronic conductivity! Solutions: -doping -nano-coating -nano-sizing

Extract >1 Li to give higher capacity at higher voltage...... the Holy Grail of the Li-ion battery? e.g., for x = 0.5 (transport?) Li +2 (Fe 2+ 1-x Mn2+ x )SiO 4 Li + 1-x (Fe3+ 1-x Mn4+ x )SiO 4 + (1+x)Li+ + (1+x)e - a 1.5-electron reaction

Li 2 FeSiO 4 synthesis Solid-state synthesis: Temperature C 700 350 time Ball-milling e.g., FeC 2 O 4. 2H 2 O + Li 2 SiO 3 + C-precursor Heat treatment 700ºC in a CO/CO 2 gas flow (20 h) BUT: Solgel, wet chemical and hydrothermal process routes also result in useable active materials

SEM picture of Li 2 FeSiO 4 after ball-milling for 12h: 85 mah/g SEM picture of Li 2 FeSiO 4 after 2 months mixing/grinding: 125 mah/g 200nm

A cheap, fast microwave-assisted process? Mixture of reagents: LiAc, Fe(Ac)2, TEOS, Solvent: TEG CEM Focused Microwave TM synthesis system Quartz vessel acetone evap. Ball-milling, 2h w/ acetone Microwave heating 300 o C, 15 min Drying 150 o C, 4 h (vacuum) XRD,SEM TGA, EC test acetone evap. Ball-milling, 2h w/ acetone w/ 20 wt% sucrose Post heat-treatment 600 o C, 30 min (10 o C/min) N 2 flow (100 ml/min) Li 2 FeSiO 4?

Shorter, cheaper synthesis methods capacity (mah/g) 750 o C, 24 h time 140 2 months 130 122 120 Microwave, 300 o C, 15 min 600 o C, 30 min 600 o C, 10 h 14days 700 o C, 1 h Hydrothermal 150 o C, 14 days Grinding RT, 2 months 12 h Solvothermal 120 o C, 20 h 20 Project-2 MWprocess Project STprocess Sol- formation RT, 12 h Pechini synthesis Hydrothermal synthesis Solid state reaction 45 min

2. Nanomaterial?

Nano-materials? Energy density (Wh/kg) 300 200 100 Incremental changes: The chances of making significant advances are slim Li-ion NiCd NiMH Nano-materials! 1970 1980 1990 2000 2010 year

Particle-size: cathode material bulk-fe 2 O 3 vs. nano-fe 2 O 3 5 Voltage (Volts vs. Li + /Li) 4.5 4 3.5 3 2.5 2 1.5 1 0.5 M-Fe 2 O 3 C h a r ge C apacity (L i per F e 2 O 3 ) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 Cycle number 0 0.5 1 x in Li x Fe 2 O 3 100 80 60 40 20 C apacity (m A h /g ) Voltage (Volts vs. Li + /Li) 4.5 4 3.5 3 2.5 2 1.5 Charge Capacity (Li per Fe 2 O 3 ) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 24 28 32 36 40 Cycle number 100 80 60 40 20 Capacity (mah/g) n-fe 2 O 3 0 0.5 1 x in Li x Fe 2 O 3 Larcher et al. J. Electrochem. Soc., 150 (2003) A133-A139.

3. Mikro-arkitekturer?

Today s rechargeable Li-ion battery 2D!

A basic MB design principle: Perforated substrates with high aspect-ratio give higher electrode surface area-to to-volume ratio The geometric Area Gain (A.G.) per given substrate footprint d-diameter s-interhole spacing t-substrate thickness πd d.. = t + 2 + 2 AG ( d s) 2

Porous alumina as a template for nano-electrodes Along the pores From the side... for 3D-microbatteries (3D-MB:s)!! Johansson, Boman et al. (Materialkemi/UU)

Al-pillared CC (Edström et al.)

TiO 2 ALD-coated onto Al CC pillars (Edström et al.)

Result: 120.0 TiO2 0.014 100.0 3D Normalized Capacity Discharge Capacity (mah) 0.012 0.01 0.008 0.006 80.0 60.0 40.0 0.004 20.0 0.002 0.0 Al Pillars 2D 0 10 20 0 30 40 50 Cycle Number 0 5 10 15 20 25 30 35 40 Cycle Number Æ Complete coverage of the nanostructured CC Æ Good cycling stability

e.g., Smart dust - för miljöbevakning Integrerad solcell/3d-mb * Solkraft källa mm-kuber!

Att sammanfatta...

Portable/on-board electrical energy demands will continue to increase over the coming decades: Portable communications: - more laptops, PDA s, cellular phones, video cameras, power tools, and integrated applications like PDA s with a cellular phone. (Hybrid?) electric cars, scooters, bicycles: - motivated by higher gasoline costs and the need for a greener" environment. These will all need better batteries of different types...

PROBABLE TECHNOLOGICAL TRENDS IN BATTERIES OVER THE NEXT 10-20 YEARS... More hybrid systems - integrating the advantages of different devices, e.g., battery + supercapacitor, battery + fuel cell, primary + rechargeable cell, etc. Li-ion technology will penetrates new applications, esp. with larger Li-ion batteries replacing other technologies. No dramatically new battery chemistries yet but new battery engineering will soon emerge.

Energy density The development of Li-ion batteries over the next 20-30 years x 2 Sustainability! Still far from Moore s law!!! Li-air 250 Wh/kg, 800Wh/l Li-S Na-ion chemistry Organic cathodes Conversion cathodes (nano) A123 Sony Sony Sony Future 2007 2015 2020 Future Future 1990 1995 2005??????

Vi har knappast kommit igång, spec. i den stora-batteri världen...... 2030:s batterier kommer säkerligen att vara bättre än dagens på alla sätt! Tack för mig! josh.thomas@mkem.uu.se jot@lifesize.se