Så bra kommer våra batterier att vara 2030! Josh Thomas The Ångström Advanced Battery Centre, Department of Materials Chemistry, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden. & LiFeSiZE AB Blomgatan 4E, SE-752 31 Uppsala, Sweden. jot@lifesize.se Energiledarkonferensen: Så räddar tekniken oss till 2030! Solna, 12 november 2009
Så mycket större/kraftfullare/billigare/säkrare/ grönare kommer våra batterier att vara 2030! Energiledarkonferensen: Så räddar tekniken oss till 2030! Solna, 12 november 2009 Josh Thomas The Ångström Advanced Battery Centre, Department of Materials Chemistry, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden. & LiFeSiZE AB Blomgatan 4E, SE-752 31 Uppsala, Sweden. jot@lifesize.se
What s wrong in our World today? the clean ones! sun wind, wave... etc.!!! coal, oil, gas, wood Energy resources available Current utilization
And how can we put it right? Re: Så räddar tekniken oss till 2030! the clean ones! sun wind, wave... etc. Sci. & Techn. coal, oil, gas, wood Energy resources available Desired utilization
Energiformer i världen idag 6% 1% 0.5% 7% 4% 36% 24% 21% De vanligaste är de smutsigaste!
How can batteries help?
Clearly we must invest in RENEWABLES! BUT... the wind doesn t blow every day, nor does the sun shine on demand or at night! An indisputable future scenario: Renewable E-sources + efficient E-conversion + E-storage 4% 6% 1% 0.5% renewable E-sources + fuel-cells + batteries
Today s (Li-ion) battery research focusses on: - cheaper, larger, safer, greener (Li-ion) batteries with higher energy- and power-densities 1. EV/HEV:s 2. Quality grid-power (the smart grid ) Grid power Transport 3. Uninterruptible Power Supply (UPS) systems Wind Sun Wave From renewable E-sources
Bilen = miljöboven!!!! Storstadsskalan Global-scale Globalskalan Exhaust emission C O 2 emission Energy supply & demand
Luftföroreningar i världens städer Världens 10 smutsigaste städer ( 7 i Kina ) 1. Taipei 2. Milano!! 3. Beijing 4. Urumchi 5. Mexico 6. Lanzhou 7. Chongqing 8. Jinan 9. Shijiazhuang 10. Teheran 14000 12000 10000 8000 6000 4000 2000 0 Cars Buses Trucks Projektion CO 2 emissioner (milj ton) 2000 2005 2010 2015 2020 2025 2030 1.400 1.200 1.000 2006 : >300 milj bilar i Europa 800 600 400 200 0
En tillfällig lösning...... men en vändpunkt! *
Better (H)EVs to come! Fuel Economy Current HEVs t.ex. PRIUS ICE Vehicles Plug-in (H)EV s Fun to Drive
På längre sikt?
* * ca. 2030!?
On a broader scale: sustainable electrical power supplies Power gen. HT HT HTA (20000V) BT(230V) A sustainable E-system: Centralised och decentralised power supplies 1 Central battery storage +-+- +- LT 50 150 KVA +-+- +- LT LT box (Centralised) (Decentralised) 2 +-+-+- +-+-+- Grid-coupled solar panels system... through better batteries Individual battery storage 3 +-+-+- +-+-+- Remote Solar panels (off-grid) 4 An el-tank in the basement!
So we need better batteries! I what way will they be better?
The first battery? A clay jar containing an iron rod surrounded by a copper cylinder; when filled with vinegar + an electrolytic solution, the battery produced 1.1 volts DC. Present day Iraq: 250 BC to 640 AD
Where are we today after two centuries? Alessandro Volta, 1799 (Cu/Zn) 80% of electronics market today 1839 Fuel cell 1859 Pb-battery 1899 Ni-Cd (Swedish) 1973 Li-metal 1975 Ni-MH 1979 Li-polymer Li-ion: Sony 1990 Very slow development - definitely NOT Moore s law! Li-ion-polymer: 2000 «Research in the field of batteries moves at glacier pace» N.Y.Times: 2001
Li-jonbatteriet ger oss bästa möjlighet till uppskalning! (det tar >20 år att ta fram ett helt nytt batterikoncept)
Olika batterimaterial... - + electrolyt Grafit LiNi 0.8 Co 0.2 O 2 Li + (Kisel) Nanorör (VO x) LiFePO 4 PF - 6 BF - 4 NiSi LiMn 2 O 4 CF 3 SO - 2 Cu 6 Sn 5 (Li 2 FeSiO 4 ) N(SO 2 CF 3 ) - 2 Cu 2 Sb V 6 O 13 InSb EC * MnSb DEC * Mn 2 Sb SnSb Sn-glaser DMC etc. organisk lösningsmedel
Möjliga vägar fram? 1. Bättre bulk-material (e.g., LiFeSiZE AB!) 2. Nanomaterial 3. Mikro-arkitekturer
1. Bättre bulk-material?
Bättre batteri Ett bättre batteri = en bättre KATOD Bättre material Säkrare anod Men vi klarar uppskalningen med vad vi har redan idag Stabilare elektrolyt KATODEN fördröjer uppskalningen av teknologin Katoden måste bli bättre... Högre kapacitet ( prestanda ) Högre effekt ( prestanda ) Högre säkerhet ( prestanda ) Längre livstid ( prestanda )... Lägre pris ( marknad ) Lägre toxicitet ( miljö )
Better batteries... esp. for EV scale-up Better materials Safer anodes We can scale up with what we already have at lower voltages, but: * Cu/graphite sustainability!!! * LiPF 6!!!! More stable electrolytes The CATHODE is hindering the scaling up of the technology! Higher capacity ( performance ) cathodes Higher power ( performance ) Safer ( performance ) Longer lifetime ( performance )... Lower cost ( market ) More abundant materials ( market / environment ) Non-toxic ( environment )
Ett nytt HEV/P-HEV/EV katodmaterial?... från Uppsala Dagens mobiltelefon/laptop material -LiCoO 2, Li(Co,Ni)O 2, LiNi 1-y-z Co y Al z O 2 Större batterier kräver billigare katodmaterial Fe-baserad material LiFePO 4 (A123, etc. idag) Li 2 FeSiO 4 (litiumjärnsilikat) ( Fe- och Si-oxider >10% av jordskorpan!) De gamla grekernas grundelement: Earth-Air-Fire-Water!
... an Uppsala University spin-off Company Goal: We develop Fe-based cathodes for Li-ion batteries for large-scale applications (transport and sustainable energy storage)... an inestimably large - but tough - market! - develop a CHEAP green synthesis method for Li 2 FeSiO 4 ( LFS ) - produce/sell Li-ion battery cathodes based on LFS
Common Li-ion battery cathode materials a) Layered: LiCoO 2 -> Li 0.5 CoO 2 : ~3.9V, ~140 mah/g b) Spinels: LiMn 2 O 4 -> Mn 2 O 4 : ~3V or ~4.0V, 148 mah/g Instability? Solution:doping c) Olivines: LiFePO 4 -> FePO 4, ~3.6V, ~170 mah/g d) Orthosilicates Li 2 FeSiO 4 -> LiFeSiO 4, ~2.85V, ~ 170 mah/g Poor electronic conductivity! Solutions: -doping -nano-coating -nano-sizing
Extract >1 Li to give higher capacity at higher voltage...... the Holy Grail of the Li-ion battery? e.g., for x = 0.5 (transport?) Li +2 (Fe 2+ 1-x Mn2+ x )SiO 4 Li + 1-x (Fe3+ 1-x Mn4+ x )SiO 4 + (1+x)Li+ + (1+x)e - a 1.5-electron reaction
Li 2 FeSiO 4 synthesis Solid-state synthesis: Temperature C 700 350 time Ball-milling e.g., FeC 2 O 4. 2H 2 O + Li 2 SiO 3 + C-precursor Heat treatment 700ºC in a CO/CO 2 gas flow (20 h) BUT: Solgel, wet chemical and hydrothermal process routes also result in useable active materials
SEM picture of Li 2 FeSiO 4 after ball-milling for 12h: 85 mah/g SEM picture of Li 2 FeSiO 4 after 2 months mixing/grinding: 125 mah/g 200nm
A cheap, fast microwave-assisted process? Mixture of reagents: LiAc, Fe(Ac)2, TEOS, Solvent: TEG CEM Focused Microwave TM synthesis system Quartz vessel acetone evap. Ball-milling, 2h w/ acetone Microwave heating 300 o C, 15 min Drying 150 o C, 4 h (vacuum) XRD,SEM TGA, EC test acetone evap. Ball-milling, 2h w/ acetone w/ 20 wt% sucrose Post heat-treatment 600 o C, 30 min (10 o C/min) N 2 flow (100 ml/min) Li 2 FeSiO 4?
Shorter, cheaper synthesis methods capacity (mah/g) 750 o C, 24 h time 140 2 months 130 122 120 Microwave, 300 o C, 15 min 600 o C, 30 min 600 o C, 10 h 14days 700 o C, 1 h Hydrothermal 150 o C, 14 days Grinding RT, 2 months 12 h Solvothermal 120 o C, 20 h 20 Project-2 MWprocess Project STprocess Sol- formation RT, 12 h Pechini synthesis Hydrothermal synthesis Solid state reaction 45 min
2. Nanomaterial?
Nano-materials? Energy density (Wh/kg) 300 200 100 Incremental changes: The chances of making significant advances are slim Li-ion NiCd NiMH Nano-materials! 1970 1980 1990 2000 2010 year
Particle-size: cathode material bulk-fe 2 O 3 vs. nano-fe 2 O 3 5 Voltage (Volts vs. Li + /Li) 4.5 4 3.5 3 2.5 2 1.5 1 0.5 M-Fe 2 O 3 C h a r ge C apacity (L i per F e 2 O 3 ) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 Cycle number 0 0.5 1 x in Li x Fe 2 O 3 100 80 60 40 20 C apacity (m A h /g ) Voltage (Volts vs. Li + /Li) 4.5 4 3.5 3 2.5 2 1.5 Charge Capacity (Li per Fe 2 O 3 ) 0.6 0.5 0.4 0.3 0.2 0.1 0 0 4 8 12 16 20 24 28 32 36 40 Cycle number 100 80 60 40 20 Capacity (mah/g) n-fe 2 O 3 0 0.5 1 x in Li x Fe 2 O 3 Larcher et al. J. Electrochem. Soc., 150 (2003) A133-A139.
3. Mikro-arkitekturer?
Today s rechargeable Li-ion battery 2D!
A basic MB design principle: Perforated substrates with high aspect-ratio give higher electrode surface area-to to-volume ratio The geometric Area Gain (A.G.) per given substrate footprint d-diameter s-interhole spacing t-substrate thickness πd d.. = t + 2 + 2 AG ( d s) 2
Porous alumina as a template for nano-electrodes Along the pores From the side... for 3D-microbatteries (3D-MB:s)!! Johansson, Boman et al. (Materialkemi/UU)
Al-pillared CC (Edström et al.)
TiO 2 ALD-coated onto Al CC pillars (Edström et al.)
Result: 120.0 TiO2 0.014 100.0 3D Normalized Capacity Discharge Capacity (mah) 0.012 0.01 0.008 0.006 80.0 60.0 40.0 0.004 20.0 0.002 0.0 Al Pillars 2D 0 10 20 0 30 40 50 Cycle Number 0 5 10 15 20 25 30 35 40 Cycle Number Æ Complete coverage of the nanostructured CC Æ Good cycling stability
e.g., Smart dust - för miljöbevakning Integrerad solcell/3d-mb * Solkraft källa mm-kuber!
Att sammanfatta...
Portable/on-board electrical energy demands will continue to increase over the coming decades: Portable communications: - more laptops, PDA s, cellular phones, video cameras, power tools, and integrated applications like PDA s with a cellular phone. (Hybrid?) electric cars, scooters, bicycles: - motivated by higher gasoline costs and the need for a greener" environment. These will all need better batteries of different types...
PROBABLE TECHNOLOGICAL TRENDS IN BATTERIES OVER THE NEXT 10-20 YEARS... More hybrid systems - integrating the advantages of different devices, e.g., battery + supercapacitor, battery + fuel cell, primary + rechargeable cell, etc. Li-ion technology will penetrates new applications, esp. with larger Li-ion batteries replacing other technologies. No dramatically new battery chemistries yet but new battery engineering will soon emerge.
Energy density The development of Li-ion batteries over the next 20-30 years x 2 Sustainability! Still far from Moore s law!!! Li-air 250 Wh/kg, 800Wh/l Li-S Na-ion chemistry Organic cathodes Conversion cathodes (nano) A123 Sony Sony Sony Future 2007 2015 2020 Future Future 1990 1995 2005??????
Vi har knappast kommit igång, spec. i den stora-batteri världen...... 2030:s batterier kommer säkerligen att vara bättre än dagens på alla sätt! Tack för mig! josh.thomas@mkem.uu.se jot@lifesize.se