Lösningsförslag till Problem i kapitel 5 i Mobil Radiokommunikation

Storlek: px
Starta visningen från sidan:

Download "Lösningsförslag till Problem i kapitel 5 i Mobil Radiokommunikation"

Transkript

1 Lösningsförslag till Problem i kapitel 5 i obil Radiokommunikation 5. Rayleighfädande kanal med medelsignalenergin/bit Ws. AVGB med spektraltätheten N / W/Hz. ottagare som fungerar tillfredsställande med ett signalbrusförhållande [γ ] db > 4 db. a) Bråkdel av tiden som [γ ] db < 4 db. b) insta antal valdiversitetskanaler för att bråkdelen av tiden som [γ ] db < 4 db, efter sammanvägning, skall bli mindre än,. γ N 5 Ws W/Hz Lägsta SNR γ 4/,5 som mottagaren klarar. a) Bestäm hur stor del av tiden som Γ < γ. Kanalen är rayleighfädande signalbrusförhållandet Γ är exponentialfördelat: P Γ (γ) e γ/γ för γ för γ < P(Γ < γ ) P Γ (γ ) e γ /γ e,5/5,49 d.v.s. [SNR] db < 4 db under 5 % av tiden. b) Fördelningsfunktionen för en godtycklig gren i är P Γi (γ) e γ/γ för γ för γ < γ 5 Fördelningsfunktionen för diversitetssystemets resulterande Γ är P Γ (γ) P(Γ < γ) P(Γ < γ,γ < γ,,,γ < γ) {oberoende grenar} (P(Γ i < γ)) P Γi (γ) e γ/γ för γ för γ < I vårt fall är γ γ 4/,5 och P(Γ < γ ) P Γ (γ ) e γ /γ 4

2 e,5/5 4 varav 3,5 välj Ett diversitetssystem med okorrelerade och rayleighfördelade grenar, var och en med samma medel-snr, γ. Beskrivning av tre olika sammanvägningsmetoder samt approximativ fördelningsfunktion för signalbrusförhållandet för var och en efter sammanvägning om antalet grenar,, är stort. Ledning: Summan av ett stort antal grenar är approximativt normalfördelad. I Valdiversitet - välj bästa gren. F Γ (γ) P(Γ i < γ) e γ/γ II Optimalviktsdiversitet - sammanväger samtliga grenar med optimalvikt. edelvärdet av signalbrusförhållandet, Γ i, i varje gren är γ. edelvärdet av summan av grenars signalbrusförhållande, alla med samma fördelning, är γ. Variansen för varje gren vid rayleighfördelning är γ. Variansen för grenar är γ. Centrala gränsvärdessatsen ger då att resulterande γ är normalfördelat enligt γ N γ, γ med fördelningsfunktionen III F Γ (γ) Φ γ γ γ Likaviktsdiversitet - sammanväger samtliga grenar med samma vikt. Den sammanvägda enveloppen ges då av uttrycket (5.) på sidan 86: A A i i där A i är rayleighfördelad medan den resulterande signalens SNR ges av (5.) på samma sida:

3 γ A N N Då är stort är A i i z A i i, enligt centrala gränsvärdessatsen, approximativt normalfördelad med, se (.54) och (.55) på sidan 74: E[A i ] σ π σ Ai σ π 4 och z N σ π, σ π 4 Vi kan nu skriva. γ g(z) där N z N γ z. Täthetsfunktionen för γ blir: p Γ (γ) df Γ (γ) dγ df Z(g(z)) dz p Z(z) g (z) p Z(z) z N Nγ z dz dg(z) df Z(g(z)) dz dg(z) dz σ Z π exp N Fördelningsfunktionen: P Γ (γ) γ p Γ (x) dx N γ σ Z N γ m Z N x v substitution: x v N dx v N 3

4 N σ Z π N γ v exp v m Z σ Z N v dv σ Z π N γ exp v m Z σ Z dv v m Z t σ Z σ Z dt dv σ Z π N γ m Z σ Z e t / dt Φ N γ m E Z b σ Z Φ N γ σ π σ π 4 γ σ N Φ N γ σ N π N σ N π 4 Φ γ γ π 4 γ π Rayleighfädande kanal på vilken sänds datameddelanden med BPSK. edelsignalbrusförhållandet γ 3/. a) Felsannolikheten utan diversitet. b) Antalet diversitetskanaler om felsannolikheten skall minska till 5. Sammanvägningsmetoden är optimalviktsdiversitet. c) Felsannolikheten för en kanal enbart störd av AVGB och med samma signalbrusförhållande. a) γ 3/ 9,95. Eftersom γ kan vi använda (4.39) på sidan 54: 4

5 P f 4γ 4 9,95 b) Enligt (5.4) på sidan 95 ges villkoret för bitfelssannolikheten vid optimalviktsdiversitet och PSK vid SNR > av följande olikhet: P fd Pröva olika värden på,5 4γ < 5 P fd 5.4 Välj 4. c) Enligt (4.) på sidan 47 är bitfelssannolikheten vid AVGB: Paketradiosystem där paketlängden koherenstiden varje paket upplever kanalen som konstant, d.v.s. långsam flat rayleighfädning. Paketen mottas korrekt om [SNR] db > db γ mot. edel-[snr] db [γ ] db db i basstationen. a) Sannolikheten att meddelandet tas emot korrekt. b) Sannolikheten att, om det finns ytterligare en basstation med medel- [SNR] db 5 db, ett av meddelandena tas emot korrekt., 4,7 4 3, 5 4 8,6 7 P PSK Q γ Q 9,95 Q 6,37,3 SNR i den första basstationen kallas Γ. a) P{Γ > γ mot } γ mot p(γ) dγ e γ/γ dγ e γ/γ γ γmot γ mot e γ mot/γ exp / / e, 9 % 5

6 5.5 b) För den andra kanalen med medel-[snr] db 5 db gäller på samma sätt att P{Γ > γ mot } exp /,79 5/ Om kanalerna är oberoende gäller: P{max(Γ,Γ ) > γ mot } P{max(Γ,Γ ) < γ mot } P{(Γ < γ mot ) (Γ < γ mot )} P{Γ < γ mot } P{Γ < γ mot } (,95)(,79) +,79 +,95,95,79, % Ett valdiversitetssystem för mottagning av meddelanden modulerade med DPSK. Kanalen är utsatt för långsam rayleighfädning. edelsignalbrusförhållandet i varje gren är [γ ] db db. Bitfelssannolikheten för en, två och tre oberoende diversitetsgrenar. Diversitetssystemets bitfelssannolikhet ges av uttrycket (5.35) på sidan 95: P fd där för fallet DPSK P e (γ) P DPSK, fixt γ, ges av uttrycket (4.3) på sidan 47: medan täthetsfunktionen, p(γ), för SNR i valdiversitetssystemet ges av (5.7) på sidan 8: I P e (γ )p(γ ) dγ P e (γ) P DPSK e /N e γ p(γ ) γ exp γ γ exp γ γ P fd e γ e γ γ/γ dγ exp γ + dγ γ γ 6

7 γ + exp γ + γ γ γ + γ γ + γ ( + ),45 ; jämför även med uttrycket (4.35) på sidan 53. II P fd e γ e γ γ/γ e γ/γ dγ exp γ γ + exp γ γ + γ γ γ dγ γ Jämför detta resultat med det, för stora värden på SNR, angivna approximativa uttrycket (5.44) på sidan 97: III 3 γ γ + exp γ γ + γ + γ γ + exp γ γ + γ. γ + γ + + 7, P fd γ 7,5 3 P fd e γ 3 e γ γ/γ e γ/γ dγ γ 3 exp γ γ + γ e γ/γ + e γ/γ dγ γ 3 exp γ γ + exp γ γ + + exp γ γ + 3 γ γ γ dγ 3 γ γ γ + γ γ + + γ γ ,75 3. Jämför detta resultat med det, för stora värden på SNR, angivna approximativa uttrycket (5.44) på sidan 97: 7

8 P fd 3 γ 3 3, Ett två-kanals valdiversitetssystem med icke-koherent FSK. Båda kanalerna är utsatta för långsam flat rayleighfädning och har lika stor medeleffekt. inskningen i medeleffekt i förhållande till ett system utan diversitet om felhalten uppgår till 4. I Utan diversitet edelsignalbrusförhållandet γ fås av (4.39) på sidan 54: P varav γ 4 f γ 4 II ed två-kanals valdiversitet Diversitetssystemets bitfelssannolikhet ges av uttrycket (5.35) på sidan 95: P fd P e (γ )p(γ ) dγ där för fallet icke-koherent FSK P e (γ) P IK, uttrycket (4.7) på sidan 48: fixt γ, ges av P e (γ) P IK e /N e γ / medan täthetsfunktionen, p(γ), för SNR i valdiversitetssystemet ges av (5.7) på sidan 8: p(γ ) γ exp γ γ exp γ γ Bitfelshalten kan nu tecknas:. P fd e γ/ e γ γ/γ e γ/γ dγ exp γ γ + exp γ γ + 4 γ γ γ dγ 8

9 5.7 varav γ 97 [γ ] db,9 db, d.v.s. 4,9 7, db lägre medelsignalbrusförhållande än utan diversitet. Jämför även med det approximativa uttrycket (5.46) på sidan 97 gällande för γ : varav γ 73, [γ ] db,4 db, d.v.s. en skillnad på,5 db i förhållande till det mer exakta uttrycket. Flat rayleighfädande paketrundradiosystem. edelsignalbrusförhållandet i mottagaren är [γ ] db 45 db medan korrekt mottagning minst kräver 3 db γ mot. Koherenstiden paketlängden paketen upplever kanalen som konstant. a) Sannolikheten att ett paket tas emot korrekt. b) Sannolikheten att ett paket tas emot korrekt om det finns ytterligare en oberoende antenn med medel-[snr] db 4 db och att endast en antenn behöver ta emot meddelandet korrekt. γ γ γ + exp γ γ + γ + γ γ + 4 exp γ γ + 4 γ γ + γ P fd γ γ - 4 a) Signalbrusförhållandet i huvudmottagaren kallas Γ. P{Γ > γ mot } γ mot p(γ) dγ e γ/γ dγ γ γ mot e γ/γ γmot e γ mot /γ exp 3/ 97 % 45/ b) För den andra antennen med medel-[snr] db 4 db gäller på samma sätt att P{Γ > γ mot } exp 3/,95 4/ Om kanalerna är oberoende gäller: 9

10 5.8 P{max(Γ,Γ ) > γ mot } P{max(Γ,Γ ) < γ mot } P{(Γ < γ mot ) (Γ < γ mot )} P{Γ < γ mot } P{Γ < γ mot } (,969)(,95) +,95 +,969,95,969,997 99,7 %. En kanal med långsam flat rayleighfädning modulerad med icke-koherent FSK medan datatakten är 36 kbit/s. Bitfelssannolikheten är 7 3. Antalet valdiversitetsgrenar för att nedbringa felhalten till 6. Enligt (5.7) sidan 8 är täthetsfunktionen vid valdiversitet med grenar: p(γ ) γ exp γ γ exp γ γ edelsignalbrusförhållandet γ fås enligt (4.39) på sidan 54:. P f γ 7 3 varav γ 43. Enligt (4.36) sidan 53 är bitfelssannolikheten vid fixt SNR P e (γ ) e γ /. Enligt (5.35) på sidan 95 kan vi nu teckna bitfelssannolikheten för diversitetsarrangemanget: P fd P e (γ)p(γ) dγ γ e γ/ e γ/γ e γ/γ dγ γ e γ/ γ/γ e γ/γ i i e γ/γ i dγ i γ ( ) i i exp γ + γ + i γ dγ

11 i γ ( ) i i γ + + i γ exp γ γ + + i γ 5.9 Kravet är att P fd 6. ed γ 43 provar vi olika värden på. 3 4 Välj 4! En radiokommunikationslänk utsatt för flat rayleighfädning. För önskad överföringskvalitet krävs att [SNR] db [γ mot ] db db. edel- [SNR] db är db. För att uppnå tidstillgängligheten 98 %, är systemet kompletterat med ett frekvensvaldiversitetsarrangemang där tillgänglig effekt delas mellan ett antal olika frekvenskanaler. i γ ( ) i i a) Antal diversitetskanaler för att uppnå tidstillgänglighetskravet. b) Största möjliga tidstillgänglighet. a) ed är medelsignalbrusförhållandet i den enda kanalen γ. γ γ + + i P fd γ P fd γ + γ P fd 3 γ + γ γ P fd 4 γ + 3 γ γ + 6 γ Enligt (.6) på sidan 76 är tidstillgängligheten: T till P{Γ > γ mot } γ mot e γ/γ dγ e γ mot/γ exp /,95 γ / ed är medelsignalbrusförhållandet i var och en av de två

12 kanalerna γ. Tidstillgängligheten blir 5 T till P{Γ > γ mot } P{Γ γ mot } P{Γ,Γ γ mot } P{Γ γ mot } P{Γ γ mot } exp γ mot γ exp,967 5 ed 3 är medelsignalbrusförhållandet i var och en av de tre kanalerna γ T till exp γ mot γ. Tidstillgängligheten blir b) Allmänt kan tidstillgängligheten för det angivna frekvensvaldiversitetsarrangemanget tecknas: T till ( e, ) Pröva olika värden på : 3 exp 3 4 T till ( e,4 ) 4,988 5 T till ( e,5 ) 5,996 6 T till ( e,6 ) 6,996 7 T till ( e,7 ) 7,998 8 T till ( e,8 ) 8,995 7 ger maximal tidstillgänglighet 99, % 3,98 98 %

Lösningsförslag till Problem i kapitel 7 i Mobil Radiokommunikation

Lösningsförslag till Problem i kapitel 7 i Mobil Radiokommunikation Lösningsförslag till Problem i kapitel 7 i Mobil adiokommunikation 7. 7. Två lognormalt fördelade stokastiska variabler X och Y med log-standardavvikelserna σ logx och σ logy. Att den stokastiska variabeln

Läs mer

Lösningsförslag till Problem i kapitel 6 i Mobil Radiokommunikation

Lösningsförslag till Problem i kapitel 6 i Mobil Radiokommunikation Lösningsförslag till Problem i kapitel 6 i Mobil Radiokommunikation 6. En NMT 9 mobiltelefon med sändning och mottagning via MHz åtskilda kanaler. Mottagare och sändare åtskilda av duplexfilter. Telefonen

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Tentamen i Trådlös Internet-access

Tentamen i Trådlös Internet-access Mittuniversitetet Inst. för IT och Medier, ITM Stefan Pettersson 005-04-30 Tentamen i Trådlös Internet-access Tid: Kl 9.00-14.00. Hjälpmedel: Valfri miniräknare. Bifogad formelsamling. Ansvarig lärare:

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat.

Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Föreläsning 5. Funktioner av slumpvariabler. Ett centralt resultat. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Ytterligare begrepp Viktiga

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS63 Tentamen 8-8- Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof Elias,

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Föreläsning 4: Konfidensintervall (forts.)

Föreläsning 4: Konfidensintervall (forts.) Föreläsning 4: Konfidensintervall forts. Johan Thim johan.thim@liu.se 3 september 8 Skillnad mellan parametrar Vi kommer nu fortsätta med att konstruera konfidensintervall och vi kommer betrakta lite olika

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 24 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

Stokastiska vektorer och multivariat normalfördelning

Stokastiska vektorer och multivariat normalfördelning Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

(a) Anta att Danmarksprojektet inte lyckas hålla budgeten. Vad är då sannolikheten att Sverigeprojektet inte heller lyckas hålla budgeten? Motivera!

(a) Anta att Danmarksprojektet inte lyckas hålla budgeten. Vad är då sannolikheten att Sverigeprojektet inte heller lyckas hålla budgeten? Motivera! TENTAMEN: Statistik och sannolikhetslära (LMA10) Tid och plats: 08:30-1:30 den augusti 016, SB Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 1 poäng, 4: 18 poäng, 5: 4 poäng. Maximalt

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

Hemtenta 2 i Telekommunikation

Hemtenta 2 i Telekommunikation Hemtenta 2 i Telekommunikation Tentamen omfattar 4*4=16 poäng. För godkänt krävs minst 8 poäng. Individuell Inlämning senast 2005-10-07 till Jan-Åke Olofsson jan-ake.olofsson@tfe.umu.se eller Björn Ekenstam,

Läs mer

Blandade problem från elektro- och datateknik

Blandade problem från elektro- och datateknik Blandade problem från elektro- och datateknik Sannolikhetsteori (Kapitel 1-10) E1. En viss typ av elektroniska komponenter anses ha exponentialfördelade livslängder. Efter 3000 timmar brukar 90 % av komponenterna

Läs mer

0 om x < 0, F X (x) = c x. 1 om x 2.

0 om x < 0, F X (x) = c x. 1 om x 2. Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Normalfördelning, Centrala gränsvärdessatsen, Approximationer Jan Grandell & Timo Koski 06.02.2012 Jan Grandell & Timo Koski () Matematisk statistik

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik

Läs mer

(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO-

(a) på hur många sätt kan man permutera ordet OSANNOLIK? (b) hur många unika 3-bokstavskombinationer kan man bilda av OSANNO- Tentamenskrivning för TMS6, Matematisk Statistik. Onsdag fm den 1 maj, 217. Examinator: Marina Axelson-Fisk. Tel: 1-7724996 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte (bifogas).

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Omtentamen i Trådlös Internet-access

Omtentamen i Trådlös Internet-access Mittuniversitetet Inst. för IT och medier, ITM Stefan Pettersson 005-06-0 Omtentamen i Trådlös Internet-access Tid: 08.00-13.00. Hjälpmedel: Valfri miniräknare. Bifogad formelsamling. Ansvarig lärare:

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Lösningsförslag till Problem i kapitel 3 i Mobil Radiokommunikation

Lösningsförslag till Problem i kapitel 3 i Mobil Radiokommunikation Lösningsförslag till Problem i kapitel 3 i Mobil Radiokommunikation 3.1 En mottagarantenn med 50 Ω matningsimpedans och 10 db antennförstärkning befinner sig i ett fält med styrkan 75 dbµv/m vid frekvensen

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel.

Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret stokastisk variabel. Övning 1 Vad du ska kunna efter denna övning Diskret och kontinuerlig stokastisk variabel. Fördelningsfunktionen för en kontinuerlig stokastisk variabel. Täthetsfunktionen för en kontinuerlig och en diskret

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

Fysiska lagret. Kanal. Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus)

Fysiska lagret. Kanal. Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus) Fysiska lagret Sändare Digital information Kanal Mottagare Problem är att kanalen har vissa begränsningar: Kanalen är analog Kanalen är bandbreddsbegränsad och är oftast störd (av brus) Kanalens kapacitet

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2

Tentamen den 11 april 2007 i Statistik och sannolikhetslära för BI2 Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

Summor av slumpvariabler

Summor av slumpvariabler 1/18 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 9/2 2011 2/18 Dagens föreläsning Parkeringsplatsproblemet Räkneregler för väntevärden Räkneregler

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

Matematisk statistik TMS064/TMS063 Tentamen

Matematisk statistik TMS064/TMS063 Tentamen Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

FÖRELÄSNING 7:

FÖRELÄSNING 7: FÖRELÄSNING 7: 2016-05-10 LÄRANDEMÅL Normalfördelningen Standardnormalfördelning Centrala gränsvärdessatsen Konfidensintervall Konfidensnivå Konfidensintervall för väntevärdet då variansen är känd Samla

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =

Läs mer

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2

P(ξ > 1) = 1 P( 1) = 1 (P(ξ = 0)+P(ξ = 1)) = 1 0.34. ξ = 2ξ 1 3ξ 2 Lösningsförslag TMSB18 Matematisk statistik IL 101015 Tid: 12.00-17.00 Telefon: 101620, Examinator: F Abrahamsson 1. Varje dag levereras en last med 100 maskindetaljer till ett företag. Man tar då ett

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det

Läs mer

1.1 Gradienten i kroklinjiga koordinatsystem

1.1 Gradienten i kroklinjiga koordinatsystem 1 Föreläsning 4 1.1 Gradienten i kroklinjiga koordinatsystem Sats 1 i sfäriska koordinater; i cylindriska koordinater. Bevis. I kartesiska koordinater har vi att Φ = r ˆr + 1 r θ ˆθ + 1 ˆϕ (1 r sin θ ϕ

Läs mer

Föreläsning 7: Stokastiska vektorer

Föreläsning 7: Stokastiska vektorer Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

Kapitel 9 Egenskaper hos punktskattare

Kapitel 9 Egenskaper hos punktskattare Sannolikhetslära och inferens II Kapitel 9 Egenskaper hos punktskattare 1 Egenskaper hos punktskattare En skattare är en funktion av stickprovet och således en slumpvariabel. En bedömning av kvaliteten

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:

Läs mer

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 29 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentamen TEN, HF, 9 maj 9 Matematisk statistik Kurskod HF Skrivtid: 4:-8: Lärare och examinator : Armin Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statistik ") och miniräknare av

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Övning 3 Vecka 4, 19 23.1.2015 Gripenberg I1. Vi antar att antalet telefonsamtal som kommer till ett servicenummer under en tidsperiod med längden

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

TAMS79: Föreläsning 6. Normalfördelning

TAMS79: Föreläsning 6. Normalfördelning TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,

Läs mer

Repetitionsföreläsning

Repetitionsföreläsning Slumpförsök Repetitionsföreläsning Föreläsning 15 Sannolikhet och Statistik 5 hp Med händelser A B... avses delmängder av ett utfallsrum. Slumpförsök = utfallsrummet + ett sannolikhetsmått P. Fredrik Jonsson

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Statistisk analys av komplexa data

Statistisk analys av komplexa data Statistisk analys av komplexa data Trunkerade data och Tobitregression Bertil Wegmann Avdelning statistik, IDA, Linköpings universitet November 10, 2015 Bertil Wegmann (statistik, LiU) Trunkerade data

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 15 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 5 / TEN januari 08, klockan 4.00-8.00 Examinator: Jörg-Uwe Löbus (Tel: 0709-6087) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

FÖRELÄSNING 8:

FÖRELÄSNING 8: FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data

Läs mer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z

Läs mer

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5 LÖSNINGAR TILL Matematisk statistik Tentamen: 29 7 kl 8 3 Matematikcentrum FMSF45 Matematisk statistik AK för D,I,Pi,F, 9 h Lunds universitet MASB3 Matematisk statistik AK för fysiker, 9 h. För tiden mellan

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del I MS-A Grundkurs i sannolikhetskalkyl och statistik Exempel, del I G Gripenberg Aalto-universitetet januari G Gripenberg (Aalto-universitetet) MS-A Grundkurs i sannolikhetskalkyl och statistikexempel, del

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se

Läs mer

Diversitetsavstånd CDMA2000/450

Diversitetsavstånd CDMA2000/450 Diversitetsavstånd CDMA2000/450 Av: Carl Elofsson Per Ängskog Mats Nilsson Introduktion Inom skogsindustrin växer behovet av att kunna ha en snabb och säker datauppkoppling till de maskiner som arbetar

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen

Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen Stokastiska Processer F2 Föreläsning 1: Repetition från grundkursen Denna föreläsning kommer mest att vara en repetition av stoff från grundkursen. Längden på detta dokument kan tyckas vara oproportionerligt

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer