Precalibrated Ion Beam Identification Detector
|
|
- Elisabeth Bengtsson
- för 7 år sedan
- Visningar:
Transkript
1 Precalibrated Ion Beam Identification Detector Philippe Klintefelt Collet Rikard Lundmark Chalmers University of Technology 15 juni 2012 Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
2 Introduktion Introduktion Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
3 GSI GSI Gesellschaft Für Schwerionenforschung Acceleratorbaserad anläggning för tungjonsforskning i Tyskland. Bild från R. Thies Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
4 GSI Cave C Bild från Y. Aksyutina Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
5 GSI Identifikation av joner i ett experiment Identifikation A/Z bestäms av fragmentseparatorn (FRS). Z bestäms genom att mäta energiförlust och hastighet och applicera Bethes formel. Här redan absolutkalibrerade skalor! Bild från Alina & ShiftB. Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
6 Bakgrund och frågeställning Experimentfaser Identifikation 1 Experimentuppställningen förbereds. 2 Utrustningen kalibreras (kräver stråle). 3 Experimentet utförs (kräver stråle). 4 Vidare kalibrering Setup Calibration Time the proposed detector might save Experiment Calibration Beamtime required (expensive) Time Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
7 Bakgrund och frågeställning Frågeställning 1 Kommer den föreslagna detektorn att fungera? 2 Om den fungerar, hur väl fungerar den? Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
8 Bakgrund och frågeställning Tillvägagångssätt 1 Identifiera isotoper som är lämpliga att identifieras med detektorkonstruktionen i fråga. 2 Skapa och köra Geant4-simuleringar av detektorn. 3 Analysera utdata från simuleringarna som om det vore verklig detektor-data. Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
9 Detektordesign Wedges Scintillator tubes (cyan) Shielding (red) Ge detector Beam blocker Scintillator plates Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
10 Detektor partikel-interaktion Partiklar och detektorkomponenter a f är inkommande partiklar. A E är detektorkomponenter. γ 1, γ 2, β 1, β 2 är sönderfallspartiklar. a b c d Beam e f F A A E D γ 1 β 1 β 2 C C C C B F γ 2 Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
11 Identifikationsprocess sammanfattning Sammanfattning Identifikationen i fyra steg: 1 A/Z och Z mäts upp av experimentuppställningen. 2 Partikeln implanteras ett scintillatorrör. 3 Partikeln β och γ-sönderfaller. 4 γ-energin mäts av Ge-detektorn och analyseras. Experimental setup Measurement of experimental particle properties Ion flight Proposed detector Scintillator tube Implantation Time β- and γ-decays γ-photon propagation Ge-detector γ-photon energy measurement Data transfer Analysis software Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
12 Identifikation Identifikation av lämpliga nuklider Krav på nuklider som skall identifieras av PIBID Betasönderfaller till exciterat tillstånd i dotternuklid. Halveringstid 1 ms t 1/2 1 s. Alltför kort halveringstid nukliderna kan hinna sönderfalla innan de når detektorn. För lång halveringstid en ny nuklid kan hinna implanteras i scintillatorrören innan den första sönderfaller. Sannolikheten för minst en emitterad γ-energi är 10 % per sönderfall. Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
13 Introduktion och GSI Detektordesign Metod Resultat Slutsats Identifikation Nuklidkarta 152 Default nuclide color Stable isotopes PIBID detectable ITAG detectable Particle instable identifierbara nuklider (22 i överlapp med ITAG). Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
14 Detektorsimulering och analys Simulering-analys-flödet Other simulation Settings results Settings Settings *Geometry *Ion types etc... *Time between events *Mixing ratio etc... *Accuracy *Double implant handling etc... Graphs Realistic results Detector simulation PIBIDS Event mixer Data analysis software Simulation results Statistics Preliminary analysis (ROOT) Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
15 Identifikation i 17 C-området Identifikation av joner i ett experiment Identifikation Simuleringar kördes för nuklider nära 17 C. Olika tid mellan inkommande joner, hantering av dubbelimplantation och andra inställningar prövades. Default nuclide color Stable isotopes PIBID detectable ITAG detectable Particle instable Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
16 Identifikation i 17 C-området Identifikationsplott för nukliderna runt 17 C Ser bra ut! Men: tiden är 13 timmar. Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
17 Optimeringar? Optimeringsförsök Mindre scintillatorer Resultat: relativt större andel felidentifikationer. Relative number of correct coincidences Relative number of correct coincidences versus scintillator tube diameter events/s 30 events/s Scintillator tube diameter /[mm] Annat material mellan scintillatorrören Resultat: vissa material ger större antal träffar, men mer inkorrekta sådana. Tunnare material mellan scintillatorrören Resultat: svårare att göra identifikation (mer brus). Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
18 Optimeringar? Optimeringsförsök Strålskydd framför skyddet mellan scintillatorerna Resultat: Tunt strålskydd ger något bättre noggrannhet än inget alls. Dock: kan förhindra joner som annars skulle passerat igenom hela uppställningen. Större radie på germaniumdetektorn Resultat: Mer brus. Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
19 Sammanfattning Resultat Nuklider identifierbara av detektorn har sökts fram. Detektorn fungerar. Identifikation i 17 C-området ungefär 10 gånger för långsam gentemot önskvärd tidsåtgång. Vad händer i framtiden? Vidare studier av detektordesign? Smartare identifikationsalgoritmer? Philippe Klintefelt Rikard Lundmark PIBID 15 juni / 19
Kalibrationsdetektor för Crystal Ball. Andreas Heinz. Håkan Johansson
Kalibrationsdetektor för Crystal Ball Thomas Axelsson Vedad Babic Per M Hansson Johannes Laurell Håkansson Nikita S Kudelkin Niklas Rosholm Handledare: Andreas Heinz Co-Handledare: Håkan Johansson Institutionen
Tentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 2012-08-30 em Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Kärnfysik och radioaktivitet. Kapitel 41-42
Kärnfysik och radioaktivitet Kapitel 41-42 Tentförberedelser (ANMÄL ER!) Maximipoäng i tenten är 25 p. Tenten består av 5 uppgifter, varje uppgift ger max 5 p. Uppgifterna baserar sig på bokens kapitel,
Radioaktivt sönderfall Atomers (grundämnens) sammansättning
Radioaktivitet Radioaktivt sönderfall Atomers (grundämnens) sammansättning En atom består av kärna (neutroner + protoner) med omgivande elektroner Kärnan är antingen stabil eller instabil En instabil kärna
Kvantfysikens principer, FK2003 Extramaterial 2: Stern-Gerlach med fotoner, v1.1
Marcus Berg, 008-06-04 Kvantfysikens principer, FK003 Extramaterial : Stern-Gerlach med fotoner, v. Det står inget om S-G med fotoner i Feynman, så det här extrabladet utgör kurslitteratur för den här
Theory Swedish (Sweden)
Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.
Det står inget om S-G med fotoner i Feynman, så de här extrasidorna utgör kurslitteratur
Kvantfysikens principer, FK003 Extramaterial : Stern-Gerlach med fotoner Marcus Berg, 008--0 Det står inget om S-G med fotoner i Feynman, så de här extrasidorna utgör kurslitteratur för den här biten av
LEB of Super-FRS. Martin Winkler HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany
LEB of Super-FRS Martin Winkler HISPEC/DESPEC/PRESPEC Meeting, March 1, 2010, GSI, Germany Status Super-FRS Status EB Magnet Development (India) Status Civil Construction (modularized version and consequences)
Partikeläventyret. Bernhard Meirose
Partikeläventyret Bernhard Meirose Vad är Partikelfysik? Wikipedia: "Partikelfysik eller elementarpartikelfysik är den gren inom fysiken som studerar elementarpartiklar, materiens minsta beståndsdelar,
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar
Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar 1. Den ryska fysikern P.A. Čerenkov upptäckte att om en partikel rör sig snabbare än ljuset i ett medium, ger den ifrån sig ljus. Denna effekt
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
5. Bestämning av cesiumaktivitet
5. Bestämning av cesiumaktivitet (Med hjälp av effektivitetskurva för NaI-detektor) 5.1 Laborationens syfte Att bestämma aktiviteten från Cs och 137 Cs i ett prov som tagits på livsmedel, växter eller
Tentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Sönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o
Isotop Kemisk symbol Halveringstid Huvudsaklig strålning Uran-238 238 U 4,5 109 år α Torium-234 234 Th 24,1 d β- Protaktinium-234m 234m Pa 1,2 m β- Uran-234 234 U 2,5 105 år α Torium-230 230 Th 8,0 105
Föreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
Bildlabb i PACS. Exponerade på samma sätt
Bildlabb i PACS Tekniskt fantom Kliniskt fantom Exponerade på samma sätt Bildkvalitetslab i PACS Labben illustrerar effekter på bildkvalitet och patientdos vid förändringar av Rörspänning Patient -tjocklek
Elektromagnetisk strålning. Lektion 5
Elektromagnetisk strålning Lektion 5 Bestämning av ljusets hastighet Galilei lyckades inte bestämma ljusets hastighet trots flitiga försök Ljuset färdas med en hastighet av 300000 km/s genom tomma rymden
TILLÄMPAD ATOMFYSIK Övningstenta 2
TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
4 Halveringstiden för 214 Pb
4 Halveringstiden för Pb 4.1 Laborationens syfte Att bestämma halveringstiden för det radioaktiva sönderfallet av Pb. 4.2 Materiel NaI-detektor med tillbehör, dator, högspänningsaggregat (cirka 5 kv),
PRODUKTION OCH SÖNDERFALL
PRODUKTION OCH SÖNDERFALL Inom arkeologin kan man bestämma fördelningen av grundämnen, t.ex. i ett mynt, genom att bestråla myntet med neutroner. Man skapar då radioisotoper som sönderfaller till andra
Fartbestämning med Dopplerradar
Vågrörelselära, 5 poäng 007 03 14 Uppsala Universitet Projektarbete Fartbestämning med Dopplerradar Per Mattsson, FA Olov Rosén, FA 1 1. Innehållsförteckning. Sammanfattning......3 3. Inledning......3
Neutronaktivering. Laboration i 2FY808 - Tillämpad kvantmekanik
Neutronaktivering Laboration i 2FY808 - Tillämpad kvantmekanik Datum för genomförande: 2012-03-30 Medlaborant: Jöns Leandersson Handledare: Pieter Kuiper 1 av 9 Inledning I laborationen används en neutronkälla
Tentamen, Kvantfysikens principer FK2003, 7,5 hp
Tentamen, Kvantfysikens principer FK2003, 7,5 hp Tid: 17:00-22:00, tisdag 3/3 2015 Hjälpmedel: utdelad formelsamling, utdelad miniräknare Var noga med att förklara införda beteckningar och att motivera
CHALMERS ROCK PROCESSING SYSTEM
CHALMERS ROCK PROCESSING SYSTEM Dynamisk Simulering av Krossanläggningar PHD GAUTI ASBJÖRNSSON Optimal Krossning - Malning PHD JOHANNES QUIST Modellering och Styrning av Krossanläggningar MSC MARCUS JOHANSSON
Föreläsning 4 Acceleration och detektion av partiklar
Föreläsning 4 Acceleration och detektion av partiklar Enheter och stråleffekter Strålnings växelverkan med materia Acceleration av partiklar Detektion av partiklar Se även: http://physics.web.cern.ch/physics/particledetector/briefbook/
Monte-Carlo Simulations of Nuclear Reactions at Relativistic Energies
Monte-Carlo Simulations of Nuclear Reactions at Relativistic Energies Bachelor Thesis in Engineering Physics STEFAN BULLER JOEL MAGNUSSON TORBJÖRN RATHSMAN Department of Fundamental Physics Chalmers University
Lösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β +=
Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett γ
27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2
Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen
1 Den Speciella Relativitetsteorin
1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från
Modelling and Simulation of Mold filling in gravity casting of Aluminium and MMC alloys.
Modelling and Simulation of Mold filling in gravity casting of Aluminium and MMC alloys. Akhil Manne Pramod S Hiregoudra MASTER THESIS WORK 2018 PRODUCT DEVELOPMENT AND MATERIALS ENGINEERING Abstract This
Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)
Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att
1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?
Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera
Repetitionsuppgifter. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Repetitionsuppgifter Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL
1. Mätning av gammaspektra
1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.
Miljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion
Miljöfysik Föreläsning 5 Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Energikällor Kärnkraftverk i världen Fråga Ange tre fördelar och tre nackdelar
TILLÄMPAD ATOMFYSIK Övningstenta 3
TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Krävs för att kunna förklara varför W och Z bosoner har massor.
Higgs Mekanismen Krävs för att kunna förklara varför W och Z bosoner har massor. Ett av huvudmålen med LHC. Teorin förutsäger att W och Z bosoner är masslösa om inte Higgs partikeln introduceras. Vi observerar
Från atomkärnor till neutronstjärnor Christoph Bargholtz
Z N Från atomkärnor till neutronstjärnor Christoph Bargholtz 2006-06-29 1 C + O 2 CO 2 + värme? E = mc 2 (mc 2 ) före > (mc 2 ) efter m = m efter -m före Exempel: förbränning av kol m m = 10 10 (-0.0000000001
Atomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)
Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod F0006T Kursnamn Fysik 3 Datum LP4 10-11 Material Laborationsrapport radioaktivitet Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Fredagen den 21/12 2012 kl. 14.00-18.00 i TER2 och TER3 Tentamen består av 2 A4-blad (inklusive
GAMMASPEKTRUM 2008-12-07. 1. Inledning
GAMMASPEKTRUM 2008-12-07 1. Inledning I den här laborationen ska du göra mätningar på gammastrålning från ämnen som betasönderfaller. Du kommer under laborationens gång att lära dig hur ett gammaspektrum
Studiematerial till kärnfysik del II. Jan Pallon 2012
Frågor att diskutera Kapitel 4, The force between nucleons 1. Ange egenskaperna för den starka kraften (växelverkan) mellan nukleoner. 2. Deuterium är en mycket speciell nuklid när det gäller bindningsenergi
Aalto-Universitetet Högskolan för ingenjörsvetenskaper. KON-C3004 Maskin- och byggnadsteknikens laboratoriearbeten DOPPLEREFFEKTEN.
Aalto-Universitetet Högskolan för ingenjörsvetenskaper KON-C3004 Maskin- och byggnadsteknikens laboratoriearbeten DOPPLEREFFEKTEN Försöksplan Grupp 8 Malin Emet, 525048 Vivi Dahlberg, 528524 Petter Selänniemi,
Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik
en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2011-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra
Lösningar till problem del I och repetitionsuppgifter R = r 0 A 13
Lösningar till problem del I och repetitionsuppgifter 0 Problem I. 6 0 08 Beräkna kärnradien hos 8 O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R = r 0 A 3 får vi R =. 6 3 = 3. 0 fm, R
Föreläsning 11 Kärnfysiken: del 3
Föreläsning Kärnfysiken: del 3 Kärnreaktioner Fission Kärnreaktor Fusion U=-e /4πε 0 r Coulombpotential Energinivåer i atomer Fotonemission när en elektron/atom/molekyl undergår en övergång Kvantfysiken
Distribuerad data-analys inom CMS-experimentet
Distribuerad data-analys inom CMS-experimentet Distribuerad data-analys inom CMS-experimentet Tomas Lindén Forskningsinstitutet för fysik CMS programmet De andra Finlandssvenska fysikdagarna 13.-15. November
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2
Föreläsning 13 Kärnfysik 2 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 4 Lösningar 1. Sök på internet efter information om det senast upptäckta grundämnet. Vilket masstal och ordningsnummer har det och vilka är de angivna egenskaperna? Hur har
Röntgenstrålning och Atomkärnans struktur
Röntgenstrålning och tomkärnans struktur Röntgenstrålning och dess spridning mot kristaller tomkärnans struktur - Egenskaper. Isotoper. - Bindningsenergi - Kärnmodeller - Radioaktivitet, radioaktiva sönderfall.
Vad är PET? PET: Positron Emissions Tomografi. Nuklearmedicinsk undersöknings-metod som använder annhilationsfotoner. Visar funktion
Vad är PET? PET: Positron Emissions Tomografi Nuklearmedicinsk undersöknings-metod som använder annhilationsfotoner Visar funktion Onkologi Klinisk användning Diagnostik/Utredning av sjukdom Stadiumindelning
Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)
1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??
Föreläsning 12 Partikelfysik: Del 1
Föreläsning 12 Partikelfysik: Del 1 Vad är de grndläggande delarna av material? Hr växelverkar de med varandra? Partikelkolliderare Kvarkar Gloner Vi är nästan i sltet av historien Med den här krsen har
Kapitel 4. Materievågor
Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett
Lösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N
Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett kvantum
Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar
Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder
Lösningar till problem del I och repetitionsuppgifter R r 0 A 13
Lösningar till problem del I och repetitionsuppgifter 03 Problem I. 6 0 08 Beräkna kärnradien hos 8O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R r 0 A 3 får vi R. 6 3 3. 0 fm, R. 0 /
Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt
Laborationer i miljöfysik Gammaspektrometri
Laborationer i miljöfysik Gammaspektrometri 1 Inledning Med gammaspektrometern kan man mäta på gammastrålning. Precis som ett GM-rör räknar gammaspektrometern de enskilda fotonerna i gammastrålningen.
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
1. 2. a. b. c a. b. c. d a. b. c. d a. b. c.
1. Lina sitter och läser en artikel om utgrävningarna i Motala ström. I artikeln står det att arkeologerna funnit bruksföremål som är 7 år gamla. De har daterat föremålen med hjälp av kol-14-metoden. Förklara
Frågor till filmen Vi lär oss om: Ljus
Frågor till filmen Vi lär oss om: Ljus 1. Hur är vår planet beroende av ljus? 2. Vad är ljus? 3. Vad är elektromagnetisk energi? 4. Vad kallas de partiklar som energin består av? 5. Hur snabbt är ljusets
Supersymmetri. en ny värld av partiklar att upptäcka. Johan Rathsman, Lunds Universitet. NMT-dagar, Lund, Symmetrier i fysik
en ny värld av partiklar att upptäcka, Lunds Universitet NMT-dagar, Lund, 2014-03-10 1 i fysik 2 och krafter 3 ska partiklar och krafter 4 på jakt efter nya partiklar Newtons 2:a lag i fysik Newtons andra
ATOM OCH KÄRNFYSIK. Masstal - anger antal protoner och neutroner i atomkärnan. Atomnummer - anger hur många protoner det är i atomkärnan.
Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (p + ) Elektroner (e - ) Neutroner (n) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att de bildar ett skal.
FAFA Föreläsning 7, läsvecka 3 13 november 2017
FAFA55 2017 Föreläsning 7, läsvecka 3 13 november 2017 Schrödingers ekvation kan tolkas som en ekvation som har sin utgångspunkt i A) konservering av rörelsemängd B) energikonservering C) Newtons andra
Materiens Struktur. Lösningar
Materiens Struktur Räkneövning 5 Lösningar 1. Massorna för de nedan uppräknade A = isobarerna är 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 63,935812u 63,927968u 63,929766u 63,929146u 63,936827u Tabell 1: Tabellen
2. Spetsen på en symaskinsnål rör sig i en enkel harmonisk rörelse med frekvensen f = 5,0 Hz. Läget i y-led beskrivs alltså av uttrycket
TENTAMEN I FYSIK FÖR n1, 14 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Prov 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]
Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:
III Astropartikelfysik och subatomär fysik
III Astropartikelfysik och subatomär fysik III.1. Sammanfattande bedömning Under de senaste tjugo åren har vår förståelse för såväl naturens mest fundamentala beståndsdelar och processer som universums
KF-II: Gammaspektroskopi
Laboration i Kärnfysik 1. Inledning 1.1. Innehållsförteckning 1. Inledning 1.1. Innehållsförteckning 1.2. Läsanvisningar 1.3. Labuppgifter 2. Teori 2.1. Emission av γ-kvanta och inre konversion 2.2. γ-strålnings
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Preliminärt lösningsförslag till Tentamen i Modern Fysik,
Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs
RADIOAKTIVITET OCH STRÅLNING
RADIOAKTIVITET OCH STRÅLNING 1 Inledning 1.1 Radioaktivt sönderfall och strålning Atomens kärna består av positivt laddade positroner och neutrala neutroner. Ett grundämne har alltid ett konstant antal
Repetition kärnfysik Heureka 1: kap version 2019
Repetition kärnfysik Heureka 1: kap. 14-15 version 2019 Kärnfysik Atomkärnan består av protoner och neutroner. Dessa har följande massor: partikel massa i u massa i kg elektron 0,0005486 9,109 10-31 proton
REDOGÖRELSE 7-29/71. 6. Blyanalys genom röntgenfluorescens med en 88 kev 109 Cd strålkälla och Ge(Li)-detektor
35 (6o) 6. Blyanalys genom röntgenfluorescens med en 88 kev 109 Cd strålkälla och Ge(Li)-detektor Röntgenfluorescens är en analysmetod som vid lämpliga prov är helt ickeförstörande och utan inverkan på
DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP
DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation
Fredrik Jonasson Björn Sparresäter
TVE-F 18 024 Examensarbete 15 hp September 2018 Monte Carlo-simuleringar av germaniumdetektor för gammaspetroskopi Fredrik Jonasson Björn Sparresäter Abstract Monte Carlo-simuleringar av germaniumdetektor
Swema 03. Bruksanvisning vers 1.01 MB
Swema 03 Bruksanvisning vers 1.01 MB20130530 SWEMA AB Pepparv. 27 SE-123 56 FARSTA Tel: +46 8 94 00 90 Fax: +46 8 93 44 93 E-mail: swema@swema.se Hemsida: www.swema.se Innehållsförteckning: 1. Introduktion...
RSJE10 Radiografi I Delkurs 2 Strålning och teknik I
RSJE10 Radiografi I Delkurs 2 Strålning och teknik I Del 1 Joniserande strålning och dess växelverkan Lena Jönsson Medicinsk strålningsfysik Lunds universitet RSJE10 Radiografi I Röntgenbilden Hur olika
If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.
If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed
Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Torsdagen den 5:e juni 2008, kl. 08:00 12:00 Fysik del B2 för tekniskt
Introduktion till strålningens växelverkan. Atomen och atomkärnan Radioaktivt sönderfall. Användande av strålning
Introduktion till strålningens växelverkan. tomen och atomkärnan Radioaktivt sönderfall auger elektroner Röntgen strålning Radioaktiv strålning Michael Ljungberg/Medical Radiation Physics/Clinical Sciences
Atomkärnans struktur
Föreläsning 18 tomkärnans struktur Rutherford, Geiger och Marsden påvisade ~1911 i spridningsexperiment att atomen hade sin positiva laddning och massa koncentrerad till en kärna. I vissa fall kunde α-partiklarna
8 Röntgenfluorescens. 8.1 Laborationens syfte. 8.2 Materiel. 8.3 Teori. 8.3.1 Comptonspridning
8 Röntgenfluorescens 8.1 Laborationens syfte Att undersöka röntgenfluorescens i olika material samt använda röntgenfluorescens för att identifiera grundämnen som ingår i okända material. 8. Materiel NaI-detektor
M = den svängande fjäderns massa K = den svängande fjäderns fjäderkonstant A = dimensionslös konstant
UPPGIFT 1: SLINKY SPRING Tid: 50 min. Materiel: Fjäder, plåt, linjal, kronometer, stativ och klämmor. Beskrivning: En "slinky spring" på horisontellt underlag sträcks ut sträckan x under inflytande av
Simulering som beslutsstöd * Required
Simulering som beslutsstöd * Required 1. Hos vilket företag eller organisation arbetar du? Om du ej vill uppge, lämna rutan tom Hur stor kunskap och erfarenhet anser du dig själv ha inom följande områden?
Föreläsning 4 Acceleration och detektion av partiklar
Föreläsning 4 Acceleration och detektion av partiklar Enheter och stråleffekter Reaktioner och tvärsnitt Strålnings växelverkan med materia Acceleration av partiklar Detektion av partiklar Se även: http://physics.web.cern.ch/physics/particledetector/briefbook/
Linjedetektor AX110Q Manual Best.nr: 13255
Linjedetektor AX110Q Manual Best.nr: 13255 Introduktion AX 110Q har fyra fotoelektriska detektorer på olika höjd i kapslingen. Detektering sker när alla fyra infraröda strålar påverkas samtidigt. Detta
Snabba metoder att mäta radioaktiva ämnen i människokroppen - bättre underlag för beslut. Underrubrik
Snabba metoder att mäta radioaktiva ämnen i människokroppen - bättre underlag för beslut Underrubrik 2 Författare: Professor Mats Isaksson, Sahlgrenska akademin, Göteborgs universitet MSB:s kontaktpersoner:
Christian Hansen CERN BE-ABP
Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952
Tentamen i fysik B2 för tekniskt basår/termin VT 2014
Tentamen i fysik B för tekniskt basår/termin VT 04 04-0-4 En sinusformad växelspänning u har amplituden,5 V. Det tar 50 μs från det att u har värdet 0,0 V till dess att u har antagit värdet,5 V. Vilken
Lösningsförslag. Universitetet i Linköping Institutionen för Fysik och Mätteknik Arno Platau. Tentamen för "BFL 110, Tekniskt Basår, Fysik del 3"
1 Uniersitetet i Linköping Institutionen för Fysik oh Mätteknik Arno Platau Lösningsförslag entamen för "BFL 110, ekniskt Basår, Fysik del 3" Onsdagen den 6 Maj 004, kl. 8:00-1:00 1.. I ett hamninlopp,
De nya dosgränserna för ögats lins
De nya dosgränserna för ögats lins - Konsekvenserna för personalstrålskyddet Röntgenveckan Uppsala 2013 Innehåll! Vad är på gång och vilka berörs?! Mätning av dosen till ögats lins! Typiska doser vid olika
Tentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
KEM A02 Allmän- och oorganisk kemi. KÄRNKEMI FOKUS: användbara(radio)nuklider A: Kap
KEM A02 Allmän- och oorganisk kemi KÄRNKEMI FOKUS: användbara(radio)nuklider A: Kap 17.6 17.8 Periodiska systemet finns alla grundämnen? SVAR: NEJ! Exempel på lätta kärnor som inte finns, dvs ej stabila:
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller