När vi hade läst artikeln Elev i Finland och i Sverige berättelse från

Storlek: px
Starta visningen från sidan:

Download "När vi hade läst artikeln Elev i Finland och i Sverige berättelse från"

Transkript

1 Eva-Stina Källgården & Krister Larsson Alla elever har rätt till ledning och stimulans Det är spännande när en nyskriven text kan sätta fart på tankar om ett projekt som var aktuellt för flera decennier sedan. Det är precis vad som beskrivs i denna artikel. Författarna började bland annat resonera om vad som hade hänt med alternativkursproblemet sedan de engagerade sig i frågan under 1980-talet. När vi hade läst artikeln Elev i Finland och i Sverige berättelse från en delad skolgång av Caroline Dahlberg i Nämnaren 2012:3 kom vi att tänka på GEM-projektet, grupperingar i engelska och matematik, som vi båda var inblandade i under 80-talet. På den tiden bedrev Skolöverstyrelsen forskning kring grupperingar på högstadiet eftersom det var aktuellt att slopa allmän och särskild kurs. Från politiskt håll var man rädd för att negativa nivågrupperingar skulle uppstå. Från matematiklärarhåll var det stort motstånd i frågan. Lärarna såg större möjligheter för fler elever att lära sig mer matematik om eleverna själva valde grupptillhörighet när de kom till årskurs 7, än om alla skulle undervisas i samma klass i ytterligare tre år. Inom ramen för GEM-projektet, där Leif Hellström var ansvarig för matematikdelen, bedrevs sedan läsåret 83/84 en försöksverksamhet med andra typer av organisation av matematikundervisningen än uppdelning på alternativkurser. Hellström skrev om projektet i artikeln Kan vi lösa alternativkursproblemet? i Nämnaren 1985/86:4. Vi citerar här delar från Hellströms artikel och kommenterar dessa utifrån våra egna insatser då och vad som skett efter det under trettio år. (Citaten är lätt redigerade, red anm.) Stavsborgsskolan i Älta Eva-Stina Källgården har tidigare gjort sig känd i biennalsammanhang genom att hon och hennes kolleger erhöll Nämnarens pris för den så kallade Ältamodellen Denna har sitt ursprung i ett samarbete mellan låg-, mellan- och högstadielärare som tog upp frågor kring matematikundervisningens mål, innehåll och arbetssätt. Eva-Stina har i olika sammanhang understrukit att vägen till matematisk kunskap går via handlingar, tankar, begrepp och symboler i nu nämnd ordning. För att möta olika elevers behov av att förankra arbetet i egna erfarenheter, var det därför nödvändigt att hitta nya lösningar som gjorde det möjligt att variera såväl arbetssätt som innehåll. På Stavsborgsskolan, en femparallellig högstadieskola i Älta, arbetar man i två vertikala arbetsenheter, där man i den ena arbetar traditionellt med uppdelning i allmän och särskild kurs. I den andra enheten låter man eleverna i åk 7 49

2 efter ca sex veckors sammanhållen undervisning i sin klass inför ett nytt moment välja mellan arbete i en basgrupp, klass eller fördjupningsgrupp. Inom varje grupp har arbetet vad gäller innehållet en likartad inriktning, men man varierar lärartätheten (olika stora grupper) och arbetssätten. I basgruppen söker man förankra arbetet i konkreta situationer och man ägnar särskild uppmärksamhet åt de grundläggande färdigheterna. I fördjupningsgruppen ger man eleverna möjligheter att utifrån basstoffet göra fördjupande utvikningar. Med hjälp av gemensamma diagnostiska prov söker man kartlägga elevernas behov av stödinsatser eller fortsatt arbete inom ett moment. Då man påbörjar ett nytt moment får alla elever ett arbetsschema, som vid behov individuellt anpassas till eleven. Inom arbetsenheten försöker man rotera lärarna så att en lärare t ex i åk 7 undervisar i basgruppen, i åk 8 i klass och i åk 9 i fördjupningsgruppen. Den organisation som används vid Stavsborgsskolan kännetecknas sammanfattningsvis av följande: inledande gemensam undervisning i klass inför ett nytt moment väljer eleverna att arbeta i olika grupper med olika lärartäthet och varierande arbetssätt eleverna arbetar efter individuellt anpassade arbetsscheman inom arbetsenheten arbetar lärarna med olika typer av grupper. Eva-Stinas kommentarer trettio år senare Hellström beskriver mitt arbetssätt i meningen att vägen till matematisk kunskap går via handlingar, tankar, begrepp och symboler i nu nämnd ordning. Denna beskrivning gäller hur vi arbetade i basgruppen. Där kunde jag lära mig mer om elevers kreativa tankar vid begreppsbildning och mer om ett laborativt arbetssätt i matematik. Många föräldrar i Älta hörde av sig och uppmuntrade oss i vårt sätt att arbeta tillsammans med eleverna i de olika grupperna, men det var främst i basgruppen som vi fick besök av föräldrar som ville se hur vi arbetade. Eleverna fick möjlighet att utifrån laborationer med koppling till matematiska begrepp utveckla sitt språk och nå begreppsförståelse innan de började arbeta med uppgifterna i boken. Vid den tiden intresserade jag mig också för att konstruera effektiva matematikproblem som vi använde i fördjupningsgruppen där undervisningen utgick från problemlösning. Elevernas arbete gav både möjlighet till språkutveckling och till goda kommunikationsmöjligheter i matematik. Att lösa matematikproblemen på olika sätt geometriskt, grafiskt, numeriskt och logiskt var, och är, stimulerande. Att först tänka själv, sedan resonera med en kompis och därefter i grupper om fyra sammanställa olika lösningar på problemet blev ett naturligt sätt att arbeta. Undervisningen kunde lika gärna börja abstrakt med symboler och gå vidare till handling via begreppet, som tvärtom. När jag tio år senare började undervisa på Nacka gymnasiums yrkesprogram hade jag med mig nya kunskaper och erfarenheter. Dessa var både från bas- och fördjupningsgrupperna och gällde såväl innehåll som arbetssätt i matematik. Det blev lättare att arbeta med heterogena helklasser. Arbetssätt och innehåll gav en ny möjlighet för de elever som hade tappat intresset för matematik under sin grundskoletid. De blev nyfikna på den matematik som kopplades till deras eget tänkande och språk. Problemlösning och begreppsbildning går hand i hand i undervisningen och jag har fortsatt att använda laborativa metoder på gymnasiets övriga program och även senare i min roll som lärarutbildare. 50

3 Bergaskolan i Söderköping Krister Larsson på Bergaskolan i Söderköping har tillsammans med kolleger utvecklat en liknande organisation av undervisningen. Eleverna erbjuds att arbeta i någon av följande grupper: Gul grupp som innebär att man arbetar med högstadiets normalkurs men med viss betoning av områden som rör procent, aritmetik, geometri och huvudräkning. Algebra, ekvationslösning och bråkräkning tonas här ned. Problemlösning ges däremot stort utrymme. I denna grupp är antalet elever ca 20, vilket ger goda möjligheter att prata matematik. I Grön grupp försöker man i stor utsträckning förankra arbetet i konkreta laborationer och problem. Genom att denna grupp är liten (5 8 elever) ges betydande utrymme för en anpassning av undervisningen till enskilda elevers behov. En viktig målsättning för arbetet i denna grupp är att bryta den många gånger negativa hållningen till matematiken. Röd grupp erbjuder elever med fallenhet och intresse för matematik ett mer avancerat innehåll, där teoretiska inslag i form av algebra, ekvationslösning, bråkräkning och funktionslära är vanliga. I denna grupp är lärartätheten mindre (ca 25 elever/lärare), vilket innebär att elevernas självständiga arbete blir betydande. I samtliga grupper ges hemarbetsuppgifter där man låter uppgifternas karaktär och omfång variera så att elever i den gröna gruppen får ett hemarbete motsvarande ca 30 minuter/vecka, den gula gruppen ca 60 minuter/vecka och den röda gruppen ca 90 minuter/vecka. Högstadiearbetet inleds med fyra veckors arbete i sammanhållna klasser då eleverna i smågrupper arbetar med problemlösning. Denna period utnyttjas för att elever och lärare ska lära känna varandra. Diagnostiska prov använder man för att eleverna ska få en utgångspunkt för sitt val av grupp. Under det fortsatta arbetet kan eleverna, efter överläggning med lärare och föräldrar, byta grupp när som helst. Ofta är det läraren som tar initiativ till gruppbyte och Krister redovisar i detta sammanhang hur elever med dåligt självförtroende (oftast flickor!) föreslås gå över till en svårare grupp. Kristers kommentarer trettio år senare När jag idag läser vad som står under rubriken Bergaskolan i Söderköping stämmer den texten inte helt överens med vad vi utvecklade under resans gång. Nivågruppering var ett laddat begrepp och tolkades av många som att vi ville sortera elever, men vårt egentliga syfte var att anpassa undervisningsform och arbetssätt till elevernas olika förutsättningar. Många anser att det är en fördel att elever som jobbar tillsammans har olika förmågor och skilda sätt att tänka, och att mindre framgångsrika elever stimuleras av de som är bättre. Det är sant till en viss gräns, men när det skiljer fyra till fem årskurser i elevers kunnande i samma klass blir det kontraproduktivt. Ett viktigt ställningstagande i GEM-projektet var att eleven själv valde vilken grupp hon/han ville tillhöra och att byte tilläts när eleven så önskade. Att få den Gröna gruppen att fungera var en förutsättning för att legitimera grupperingarna. Gröna gruppen dominerades av utåtagerande pojkar och många hade haft specialundervisning under mellanstadiet. De flesta ansåg dessa elever som svaga men vi fann andra förklaringar: stort rörelsebehov, lättstörda och med dålig impulskontroll. De ville bli sedda och agerade på 51

4 ett sätt som inte passade i en större grupp. Vi beslöt oss för att inledningsvis helt eliminera traditionell matematikundervisning och ersätta den med utomhusmatematik och laborativa moment där vi hanterade tal i olika former. Vi gjorde mätningar på verkliga föremål, mätte avstånd med stegning och andra kroppsmått och kontrollerade med måttband. Vi bestämde cylindervolymen på elevernas mopedmotorer. Istället för att utföra beräkningar på måttsatta areor och volymer i en lärobok konstruerade vi verkliga ytor och kroppar i färgat papper från förutbestämda mått. När vi stötte på problem stannade vi upp, redde ut missuppfattningar och fyllde igen kunskapsluckor. Miniräknaren var ett självklart hjälpmedel. Vi ritade hellre än skrev och anammade det som eleverna själva initierade under pågående aktivitet. I de andra grupperna bedrevs undervisningen i linje med de intentioner vi hade kommit överens om. Deltagarna i GEM-projektet träffades ett antal gånger och utbytte erfarenheter. På så sätt utvecklades arbetssätt och innehåll så som Eva-Stina beskriver. Ett intensivt intresse för matematikämnet, och matematikundervisning i synnerhet, har förstärkt min uppfattning att vi matematiklärare har satts att utföra ett näst intill omöjligt uppdrag. Under läsåret 2011/12 undervisade jag helt underbara elever i gymnasiekurserna 1b, B, C och D och fann avgrundsdjupa skillnader i kunskap, färdighet, motivation, förmåga och intresse för matematikämnet. Som med allt annat så är det först när man kan en hel del om ämnet som det blir intressant och man vill lära sig mer. I dåtidens Röda grupp stimulerade eleverna varandra till att utvidga sitt kunnande inom algebra och funktionslära. Vi arbetade med rationella uttryck och ekvationer med upp till sex termer. Så gör jag inte idag. Nu anser jag det viktigare att förankra algebran i konkreta situationer och fenomen som vi först behandlar numeriskt för att sedan tillsammans komma fram till generella lösningar. Att gå in och ut i samma problem ger kunskaper på djupet, men att upprepa samma procedurer i långa rader leder bara till ytkunskaper. Men det är också med visst missmod som jag konstaterar att eleverna i Röd grupp under årskurs 9 behärskade räta linjens ekvation, grafiskt och algebraiskt, det område som eleverna idag har problem med i kurs 2 på gymnasiet. Visst är det önskvärt att alla elever når godkänt men mycket viktigare är att många fler känner stimulans och upplever matematikämnet som spännande och utmanande. Det vi gör idag, och då tänker jag på den överdrivna fokuseringen på godkänd, stämmer illa med intentionerna i styrdokumenten. Från 80-tal fram till idag Hellström avslutar sin artikel med orden: Vi kan sammanfattningsvis se hur Söderköpingsmodellen i många avseenden liknar Ältamodellen. Om flexibla grupper leder till en utveckling i dessa avseenden kan vi kanske närma oss målet en skola för alla. Att enbart variera lärartäthet eller innehåll leder troligen inte till målet. Att våga pröva nya och annorlunda perspektiv är en förutsättning för utveckling. På 80-talet upplevde vi att det inte skulle gå att nå alla elever i klassen med samma undervisning ifall allmän och särskild kurs försvann. Det var det huvudsakliga problemet i våra försök till grupperingar utifrån olika arbetssätt och innehåll i undervisningen. Eftersom tre lärare kunde knytas till två 52

5 parallella klasser om vardera ca 30 elever, hade vi möjlighet att variera både innehåll, undervisningssätt och gruppstorlek, dessutom var specialläraren med i lärarlaget halva tiden. Vi ville att fler elever skulle lära sig mer och att de dessutom skulle tycka att matematik var roligt. När vi var med i GEMprojektet märkte vi att det var basgruppens/gröna gruppens arbete i matematik som oftast stod i fokus. Undervisning som fokuserar på godkändnivå har med tiden fått många elever att tappa lusten och de väljer bort matematiken för något annat som är mer utmanande. Caroline avslutar sin artikel med I Finland har alla elever rätt att lära sig något inom ämnet. Det leder oss till frågan: Hur är det i Sverige idag inom ämnet matematik? På Skolverkets webbplats hittar vi följande skrivning om den nya skollagen: Elevernas rättigheter: För elevernas del innebär den nya lagen att de ska vara garanterade trygghet och studiero. Den nya skollagen har också tydligare fokus på kunskap. Det står framskrivet att alla elever ska ha rätt till ledning och stimulans för att kunna utvecklas så långt som möjligt, även elever som lätt når kunskapskraven. Samtidigt betonas vikten av att alla elever med dagens undervisning ska bli godkända i matematik. Med hjälp av de nationella proven jämförs skolors resultat och skolorna rangordnas efter hur stor del av eleverna som inte blir godkända. Sällan nämns hur stor andel av eleverna som når de högre betygen eller hur stor andel av eleverna som upplever matematikämnet intressant och vill lära sig mer. Hur går det för de elever som lätt når kunskapskraven? Får de, som det står i lagen, ledning och stimulans så att de utvecklas så långt som möjligt? De olika arbetsmoment som ingår i en lärartjänst på högstadiet har förändrats mycket under de trettio år som gått. Då hade vi mer tid till att arbeta med planering och utveckling av både vår egen och skolans undervisning än vad vi har idag. Under de senaste tio åren har dokumentation, bedömningsfrågor och betygsättning tagit en stor del av den tid som vi tidigare använde till undervisning. Läroboken var då elevens övningsbok, nu är det mer vanligt att det är boken som styr undervisningen, inte läraren. Tid för diskussioner med kolleger kring innehåll, olika arbetssätt och organisationsmodeller i matematik har nästan försvunnit. Tidigare fanns tid inlagd på schemat för ämneskonferenser under läsåret. Dessa har försvunnit helt eller delvis på många skolor. Vi hoppas att lärare på alla stadier åter får tid och möjlighet att utveckla arbetet tillsammans med eleverna och att en kompetensutbildning, där undervisningen i klassrummet är i fokus, prioriteras. Litteratur Hellström, L. (1981/82). Metodisk förnyelse i matematikundervisningen hinder, begränsningar och möjligheter. Nämnaren 1981/82:1, Hellström, L. (1984). Alternativa grupperingar i matematikundervisningen på högstadiet. Nr 493. Malmö: Lärarhögskolan. Hellström, L. (1985). Undervisningsmetodisk förändring i matematik: villkor och möjligheter. Avhandling. Lund : Univ. Malmö. Nämnaren (1987). Individualisering i Temanummer Matematik i skolan. 1986/87:2 3, Wallby, K., Carlsson, S. & Nyström, P. (2001). Elevgrupperingar en kunskapsöversikt med fokus på matematikundervisning. Stockholm: Skolverket. I Nämnarens artikelregister finner du flera artiklar som berättar mer om artikelförfattarnas arbete. 53

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun Bilaga 1 Verksam hetsrapport 2015-02-18 Dnr 400-2014:2725 efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun 1 (8) Innehåll Inledning Bakgrundsuppgifter

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper

När vi läste Skolverkets rapport Svenska elevers matematikkunskaper Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Kurskod: GRNMAT2 Verksamhetspoäng: 600

Kurskod: GRNMAT2 Verksamhetspoäng: 600 Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 lust att utforska matematiken som sådan. Matematisk verksamhet är till sin lad till den samhälleliga, sociala och tekniska utvecklingen. Kunskaper

Läs mer

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik

Syfte. Malmö stad Komvux Malmö Södervärn PRÖVNING. prövning grundläggande matematik prövning grundläggande matematik Malmö stad Komvux Malmö Södervärn PRÖVNING Kurs: Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer.

Läs mer

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.

ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Terminsplanering årskurs 6 Matematik Ärentunaskolan

Terminsplanering årskurs 6 Matematik Ärentunaskolan Inledning Terminsplanering årskurs 6 Matematik Ärentunaskolan På Ärentunaskolan arbetar vi med läromedlet MatteBorgen. Förutom uppgifter i boken arbetar vi med problemlösning och tränar olika strategier

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1

Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen Det här materialet är riktat till lärare och lärarlag och är ett stöd för skolans nulägesbeskrivning av matematikundervisning. Målet är

Läs mer

Kursplan Grundläggande matematik

Kursplan Grundläggande matematik 2012-12-06 Kursplan Grundläggande matematik Grundläggande matematik innehåller tre delkurser, sammanlagt 600 poäng: 1. Delkurs 1 (200 poäng) GRNMATu, motsvarande grundskolan upp till årskurs 6 2. Delkurs

Läs mer

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg

Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:

Läs mer

Ger bilder stöd för förståelsen av och förmågan att minnas kunskapskraven?

Ger bilder stöd för förståelsen av och förmågan att minnas kunskapskraven? Ger bilder stöd för förståelsen av och förmågan att minnas kunskapskraven? Inledning Många elever har svårt att förstå och minnas kunskapskraven. I utvärderingar av min undervisning får ofta frågor kopplade

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Matematik 4 PRÖVNINGSANVISNINGAR Kurskod MATMAT04 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 4 Skriftligt prov (4h) Muntligt prov Bifogas Provet består av två delar.

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

30-40 år år år. > 60 år år år. > 15 år

30-40 år år år. > 60 år år år. > 15 år 1 av 14 2010-11-02 16:21 Namn: Skola: Epostadress: 1. Kön Kvinna Man 2. Ålder < 30 år 30-40 år 41-50 år 51-60 år > 60 år 3. Har varit verksam som lärare i: < 5 år 6-10 år 11-15 år > 15 år 4. Har du en

Läs mer

LPP Matematik åk 4 Vt-14

LPP Matematik åk 4 Vt-14 LPP Matematik åk 4 Vt-14 Skolans värdegrund, uppdrag, mål och riktlinje Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Lokal pedagogisk planering i matematik för åk 8

Lokal pedagogisk planering i matematik för åk 8 Lokal pedagogisk planering i matematik för åk 8 Arbetsområde Geometri kap. 3 PRIO Syfte http://www.skolverket.se/laroplaner-amnen-ochkurser/grundskoleutbildning/sameskola/matematik#anchor2 formulera och

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Ämnesblock matematik 112,5 hp

Ämnesblock matematik 112,5 hp 2011-12-15 Ämnesblock matematik 112,5 hp för undervisning i grundskolans år 7-9 Ämnesblocket omfattar ämnesstudier inklusive ämnesdidaktik om 90 hp, utbildningsvetenskaplig kärna 7,5 hp och VFU 15 hp.

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Erik Östergren lärarutbildningen, 5hp HT 2015

Erik Östergren lärarutbildningen, 5hp HT 2015 Kurslitteratur Matematik ett kärnämne (Nämnaren Tema) Diverse artiklar All kurslitteratur kommer att finnas tillgänglig på Studentportalen. Kurshemsida http://studentportalen.uu.se Undervisning 20 lektionstillfällen.

Läs mer

Nu består Diamant av 127 diagnoser, avsedda

Nu består Diamant av 127 diagnoser, avsedda Marie Fredriksson & Madeleine Löwing Diamantdiagnoser för hela grundskolan Diamantdiagnoserna har nu anpassats till Lgr 11 och är utvidgade till att omfatta kursplanens matematikinnehåll till och med årskurs

Läs mer

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:

Här är två korta exempel på situationer då vi tillämpar den distributiva lagen: Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag

Läs mer

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg. Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden

Läs mer

TESTVERSION. Inledande text, Diamant

TESTVERSION. Inledande text, Diamant Inledande text, Diamant Diamant är en diagnosbank i matematik som består av 55 diagnoser, avsedda för grundskolan. Fokus ligger på grundläggande begrepp och färdigheter. Tanken med diagnoserna är att de

Läs mer

Att arbeta med elever med särskild begåvning i grundskolan. Cecilia Eriksson

Att arbeta med elever med särskild begåvning i grundskolan. Cecilia Eriksson Att arbeta med elever med särskild begåvning i grundskolan Cecilia Eriksson 2017-01-09 1 Följ med på en resa från en idé om fördjupningsgrupper, till samarbete mellan speciallärare och lärare, till elevhälsa

Läs mer

Metoder för beräkningar med potenser med rationella exponenter.

Metoder för beräkningar med potenser med rationella exponenter. Kurskod: MATMAT02a Kursen matematik 2a omfattar punkterna 1 7 under rubriken Ämnets syfte. Centralt innehåll Kommentar Begrepp i kursen matematik 2a Metoder för beräkningar vid budgetering. Budgetering

Läs mer

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera.

Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. 1 Indelning av grundläggande vuxenutbildning i matematik i delkurser c, d, e och f. 150 verksamhetspoäng vardera. Bakgrund Den nya kursplanen i matematik för grundläggande vuxenutbildning börjar gälla

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Kursplanen i ämnet matematik

Kursplanen i ämnet matematik DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kursplanen i ämnet matematik Läsåret 2011/12 införs en samlad läroplan för var och en av de obligatoriska skolformerna grundskolan, grundsärskolan, sameskolan

Läs mer

Har du inte räknat färdigt än? Vad är matematik? Var och hur används matematik? Vad är matematikkunnande? Varför ska vi lära oss matematik?

Har du inte räknat färdigt än? Vad är matematik? Var och hur används matematik? Vad är matematikkunnande? Varför ska vi lära oss matematik? Har du inte räknat färdigt än? Vad är matematik? Var och hur används matematik? Vad är matematikkunnande? Varför ska vi lära oss matematik? Vad är matematik? Nationalencyklopedin En abstrakt och generell

Läs mer

Jag tror att alla lärare introducerar bråk

Jag tror att alla lärare introducerar bråk RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.

Läs mer

NYA PI OCH LÄROPLANSGRUNDERNA

NYA PI OCH LÄROPLANSGRUNDERNA NYA PI OCH LÄROPLANSGRUNDERNA Läromedlet Nya Pi för årskurs 7 9 följer den nya läroplanen. Serien erbjuder alla elever utmaningar på deras egen kunskapsnivå och positiva matematikupplevelser. Nya Pi uppmuntrar

Läs mer

Matematikundervisning genom problemlösning

Matematikundervisning genom problemlösning Matematikundervisning genom problemlösning En studie om lärares möjligheter att förändra sin undervisning Varför problemlösning i undervisningen? Matematikinlärning har setts traditionell som en successiv

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 1

Enhet / skola: Lindens skola i Lanna Åk: 1 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Matematiklyftet. Malmöbiennetten 2013. Nationellt centrum för Matematikutbildning Göteborgs Universitet. Anette Jahnke

Matematiklyftet. Malmöbiennetten 2013. Nationellt centrum för Matematikutbildning Göteborgs Universitet. Anette Jahnke Matematiklyftet Malmöbiennetten 2013 Nationellt centrum för Matematikutbildning Göteborgs Universitet Anette Jahnke #malyft Matematiklyftet Matematiklyftet Fortbildning av alla lärare som undervisar i

Läs mer

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock

Geometri. Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Geometri Matematik åk 4-6 - Centralt innehåll Geometriska objekt och dess egenskaper: polygoner, cirklar, klot, koner, cylindrar, pyramider och rätblock Konstruktion av geometriska objekt Skala Symmetri

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Nyheter om matematik från Skolverket. oktober 2017

Nyheter om matematik från Skolverket. oktober 2017 Nyheter om matematik från Skolverket oktober 2017 Innehåll Några korta nyheter Nytt material för förskoleklass Revideringar i styrdokument Korta nyheter Rapport Nära examen. Inventering av synpunkter på

Läs mer

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter. Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med

Läs mer

Kvalitetsredovisning och verksamhetsplan för Åkerö skola

Kvalitetsredovisning och verksamhetsplan för Åkerö skola Kvalitetsredovisning och verksamhetsplan för Åkerö skola Kvalitetsredovisning 2017/2018 Verksamheter inom skolväsendet ska på huvudmanna- och enhetsnivå systematiskt och kontinuerligt planera, följa upp

Läs mer

Pedagogisk dokumentation kring Matematikverkstaden på Bandhagens skola.

Pedagogisk dokumentation kring Matematikverkstaden på Bandhagens skola. Pedagogisk dokumentation kring Matematikverkstaden på Bandhagens skola. Åh, nu förstår jag verkligen sa en flicka på 10 år efter att ha arbetat med bråk i matematikverkstaden. Vår femåriga erfarenhet av

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17

15 högskolepoäng. Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Grundläggande matematik fo r la rare med inriktning mot arbete i fo rskoleklass och grund-skolans a rskurs 1-3, 15 hp VT17 Provmoment: Tentamen Matematik, 5 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng

Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT ho gskolepoäng Grundläggande matematik fo r grundlärare med inriktning mot arbete i grundskolans a rskurs 4-6, 15 hp VT17 Provmoment: Tentamen Matematik, 4 hp, tillfälle 1 Ladokkod: TE01 Tentamen ges fo r: Studenter

Läs mer

Förslag den 25 september Matematik

Förslag den 25 september Matematik Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

EV3 Design Engineering Projects Koppling till Lgr11

EV3 Design Engineering Projects Koppling till Lgr11 EV3 Design Engineering Projects Koppling till Lgr11 När man arbetar med LEGO i undervisningen så är det bara lärarens och elevernas fantasi som sätter gränserna för vilka delar av kursplanerna man arbetar

Läs mer

Sedan Söderbaumska skolan i Falun startade som en fristående grundskola

Sedan Söderbaumska skolan i Falun startade som en fristående grundskola R Breili, J Chrisander, A Jonsson & S Lundberg Estetiska lärprocesser i matematikundervisningen Fyra kollegor beskriver hur ett arbetssätt med estetiska lärprocesser utvecklar matematikundervisningen.

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande:

Undervisningen i ämnet matematik ska ge eleverna förutsättningar att utveckla följande: Matematik Skolverkets förslag, redovisat för regeringen 2010-09-23. Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans

Läs mer

Lärarhandledning matematik

Lärarhandledning matematik Kartläggningsmaterial för nyanlända elever Lärarhandledning matematik 1 2 Steg 3 Det här materialet är det tredje steget i kartläggningen av nyanlända elevers kunskaper. Det syftar till att ge läraren

Läs mer

Vilken kursplanskompetens behöver rektor?

Vilken kursplanskompetens behöver rektor? Vilken kursplanskompetens behöver rektor? Vad ville ni rektorer att vi skulle ta upp? Ur utvärderingen Fördjupning av kursplanerna i matematik - bra om vi ligger steget före Kursplanens olika delar - förståelse

Läs mer

Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor

Rapport av genomförd Lesson study av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från

Läs mer

Mönster statiska och dynamiska

Mönster statiska och dynamiska Modul: Didaktiska perspektiv på matematikundervisningen 1 Del 3: Fantasi, mönster och sannolikhet Mönster statiska och dynamiska Berit Bergius & Lena Trygg, NCM I många matematiska aktiviteter ska deltagarna

Läs mer

Verksamhetsrapport. Skoitnst.. 7.1,ktion.en

Verksamhetsrapport. Skoitnst.. 7.1,ktion.en Skoitnst.. 7.1,ktion.en Bilaga 1 Verksamhetsrapport Verksamhetsrapport efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid den fristående gymnasieskolan JENSEN gymnasium Uppsala i Uppsala

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p

Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p 11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel

Läs mer

Matematikutveckling i förskoleklassen

Matematikutveckling i förskoleklassen Glittmark, Magnusson, Olsson & Terner Matematikutveckling i förskoleklassen Som en konsekvens av att elever som får intensivundervisning i åk 9 visar stora brister i taluppfattning satsar Varbergs kommun

Läs mer

Aha-upplevelser och tidsbrist

Aha-upplevelser och tidsbrist maria nordlund Aha-upplevelser och tidsbrist Vad är det som är glädjen och vad är svårigheten med att undervisa i matematik? Här redovisas några av de upplevelser som lärarna i åk 5 och 9 redovisade i

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

När en Learning study planeras väljs ett område som upplevs som problematiskt

När en Learning study planeras väljs ett område som upplevs som problematiskt K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn

Läs mer

Matematik på lågstadiet genom algebra och problemlösning. Ämnesdidaktiskt utvecklingsarbete

Matematik på lågstadiet genom algebra och problemlösning. Ämnesdidaktiskt utvecklingsarbete Matematik på lågstadiet genom algebra och problemlösning Ämnesdidaktiskt utvecklingsarbete Gudrun Malmers Stiftelse Elevintervjuer med elever i årskurs 1 i grundskolan. Eleverna deltar i ett 3-årigt utvecklingsprojekt

Läs mer

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder,

formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, Arbetsområde: Huvudsakligt ämne: Negativa tal Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas: formulera och lösa problem

Läs mer

Arbetsområde: Jag får spel

Arbetsområde: Jag får spel Arbetsområde: Jag får spel Huvudsakligt ämne: Matematik, åk 7-9 Läsår: Tidsomfattning: 6-9 lektioner à 60 minuter Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för

Läs mer

Matematikutveckling med stöd av alternativa verktyg

Matematikutveckling med stöd av alternativa verktyg Matematikutveckling med stöd av alternativa verktyg Vad ska man ha matematik till? Vardagslivet Yrkeslivet Skönheten och konsten Underbart att veta att det finns räcker inte det+ LGR11 Undervisningen ska

Läs mer

Den skolan som jag arbetar vid framhåller inkludering som ledord.

Den skolan som jag arbetar vid framhåller inkludering som ledord. Helena Eriksson Taluppfattning i heterogena elevgrupper I denna artikel presenteras en uppgiftsdesign som syftar till att utveckla elevers uppfattning av naturliga och rationella tal. Uppgifterna har använts

Läs mer

Madeleine Zerne, rektor på Hagbyskolan

Madeleine Zerne, rektor på Hagbyskolan Madeleine Zerne, rektor på Hagbyskolan F-6 skola med 340 elever Rektorer på matematikkonferens Tre rektorer från Linköpings kommun, Gunilla Norden, Anna Samuelsson och Madeleine Zerne Rektorskonferens

Läs mer

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Temat för föreläsningen Ny läroplan, nya utmaningar! Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Mona Røsseland Författare till Pixel Hur lyfter PIXEL matematiken? Läraren

Läs mer

LPP för årskurs 2, Matte V.46-51 HT12

LPP för årskurs 2, Matte V.46-51 HT12 LPP för årskurs 2, Matte V.46-51 HT12 Värdegrund och uppdrag Skolan ska vara öppen för skilda uppfattningar och uppmuntra att de förs fram. Den ska framhålla betydelsen av personliga ställningstaganden

Läs mer

Ansvar för matematiklärande Effekter av undervisningsansvar i det flerspråkiga klassrummet. Åse Hansson. Åse Hansson.

Ansvar för matematiklärande Effekter av undervisningsansvar i det flerspråkiga klassrummet. Åse Hansson. Åse Hansson. Ansvar för matematiklärande Effekter av undervisningsansvar i det flerspråkiga klassrummet Åse Hansson Åse Hansson ase.hansson@ped.gu.se Göteborgs universitet Institutionen för didaktik och pedagogisk

Läs mer

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband. Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

Kvalitetsrapport. Vedevågs skola

Kvalitetsrapport. Vedevågs skola Kvalitetsrapport Vedevågs skola Läsåret 2018 2019 Innehållsförteckning 1. Grundfakta... 3 2. Resultat... 4 Normer och värden, elevers ansvar och inflytande... 4 Kunskaper, bedömning och betyg... 6 3. Enhetens

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att

Läs mer

Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4

Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:

Läs mer

Karin Wallby, NCM SMAL HÖSTMÖTE STOCKHOLM 20 OKTOBER 2017

Karin Wallby, NCM SMAL HÖSTMÖTE STOCKHOLM 20 OKTOBER 2017 Karin Wallby, NCM SMAL HÖSTMÖTE STOCKHOLM 20 OKTOBER 2017 Arbete med anknytning till matematiklyftet Filmer Nya moduler: Matematikundervisning med digitala verktyg II Matematikdidaktik och specialpedagogik

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Kunskapskrav och nationella prov i matematik

Kunskapskrav och nationella prov i matematik Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens

Läs mer

Matematikvisionen Ht 2002- vt 2006

Matematikvisionen Ht 2002- vt 2006 Matematikvisionen Ht 2002- vt 2006 Sammanfattning av Utbildningsförvaltningens satsning på kompetensutveckling av matematiklärare på gymnasiet i projektet Nollvisionen/Matematikvisionen. Nollvisionen MaA

Läs mer