Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus
|
|
- Pernilla Sandström
- för 8 år sedan
- Visningar:
Transkript
1 Vetenskaplig Metod och Statistik Maja Llena Garde Fysikum, SU Vetenskapens Hus
2 Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Sida 2 av 19
3 Experiment NE: prövning av en hypotes, en teori eller en konstruktion för att om möjligt bekräfta eller vederlägga den. Ett experiment ska lösa fyra uppgifter: 1. Realisera Få fram det fenomen man vill titta på. 2. Separera Isolera det man vill titta på så att man inte har en massa annat som påverkar. 3. Kontrollera Kontrollera det som kan påverka fenomenet. 4. Observera Studera fenomenet. Sida 3 av 19 NE = Nationalencyklopedin
4 Exempel Vi vill mäta hur lång tid det tar att koka upp en liter saltlösning för olika salthalter Realisera Separera Kontrollera Observera Detta gäller naturligtvis också när man vill mäta antalet myoner under olika omständigheter. Sida 4 av 19
5 Realisera Ordna en experimentuppställning. Vi behöver: Saltlösningar Kastrull Spis Klocka Termometer... Fundera på hur er experimentuppställning ser ut Sida 5 av 19 Realisera Separera Kontrollera Observera
6 Variabler Saker som kan påverka är: hur varmt det är i rummet hur bra plattan fungerar lufttrycket hur noga vi mätt hur mycket vatten vi har hur noga vi mätt salthalten hur noga vi mätt utgångstemperaturen hur noga vi mäter tiden... Hitta motsvarande variabler i ert experiment Sida 6 av 19
7 Separera och Kontrollera Det finns ofta många saker som kan påverka det man vill mäta i sitt experiment. Man kan kontrollera detta genom: 1. Konstanthållning försöka att hålla alla variabler konstanta. 2. Kontrollerad variation genomför samma försök med flera olika ingångsvärden, men håll resterande variabler konstanta. De variabler man inte har kontroll över är rimligen felkällor; slumpmässiga, systematiska eller både och. Sida 7 av 19 Realisera Separera Kontrollera Observera
8 Kontroll av variabler Kontrollerad variation Vi varierar salthalten och mäter hur koktiden ändras med salthalten Konstanthållning För att få en bra mätning på koktiden för de olika salthalterna bör vi se till att alla andra variabler är konstanta. (Vi bör ha samma lufttemperatur, använda samma platta, samma mängd saltlösning samma utgångstemperatur...) Men vi kan inte garantera att vi mäter lika bra varje gång... Hitta motsvarande exempel för ert experiment Sida 8 av 19
9 Felkällor Det blir alltid lite fel när man mäter. Det kan vara både slumpmässiga fel, systematiska fel eller både och. Slumpmässiga fel minimerar man genom att göra många likvärdiga mätningar och sen ta medelvärdet av resultatet. Exempel: Man mäter inte lika exakt varje gång. Systematiska fel är svårare att hitta men kan läggas till efteråt. Exempel: Tidtagaruret visar alltid lite för kort tid Hitta motsvarande felkällor för ert experiment Sida 9 av 19
10 Exempel på mätvärden från en experimentuppställning A Slump (liten spridning) B Slump (liten spridning) och systematisk skiftning C Slump (stor spridning) Sida 10 av 19
11 Normalfördelning... Fördelningen är typisk för utfallet av många förlopp som beror på slumpen och används inom bl.a. natur och samhällsvetenskap för att beskriva variationen hos olika variabler.... (NE) Standardavvikelse är ett statistiskt mått på utspridningen hos data eller en fördelning.... (NE) Sida 11 av 19 NE = Nationalencyklopedin
12 Normalfördelning 68.2 % (ca två tredjedelar) av observationerna ligger mellan gränserna ± 95.4 % av observationerna ligger inom intervallet ± % av observationer inom gränserna ± 3 Man brukar ange 1 gränser Sida 12 av 19
13 Observera Vi gör ett antal mätningar för varje saltlösning och skriver ner resultaten. Nu gäller det att tolka våra mätvärden och presentera dem på ett vettigt sätt. Sida 13 av 19 Realisera Separera Kontrollera Observera
14 Hur anger man felen? 10 ± 1 min Tid [min] Skrivs inte ut. Bara som exempel här. 10 min ± 10% Notera att axeln inte går ner till noll! Salthalt [%] Sida 14 av 19
15 Tolka resultatet Ser vi någon skillnad i hur lång tid det tar att koka upp lösningen? Om ändringen är mindre än felmarginalen kan vi inte säga att vi ser någon ändring. Sida 15 av 19
16 Dåliga exempel... Tydlig minskning... Och inte statistiskt säkerställt är ingen bra ursäkt... Temperaturen är under det normala för årstiden... Hendersons diagram över sambandet mellan en ökad global uppvärmning och ett minskat antal pirater. Sida 16 av 19
17 Experimentlogg Anteckna allt som ni gör så noga att ni kan gå tillbaka och göra om det eller kanske hitta felkällor ni inte tänkte på. Datum Experimentuppställning och förhållanden (temperatur, tryck...) Sudda inte! Stryk istället över och skriv nytt om ni ändrar något. Det är bra att kunna följa hur man tänkte. Använd ett block, inte lösbladssystem. Sida 17 av 19
18 Sammanfattning När man ställer upp ett experiment bör man bara variera en faktor i taget. Det är viktigt att försöka ta hänsyn allt som kan störa experimentet. Det man inte kan kontrollera får man se som en felkälla. När man presenterar sina resultat bör man redovisa möjliga felkällor. Skriv en experimentlogg!!! Sida 18 av 19
19 Att fundera på Vad är vår hypotes? Hur bör experimentuppställningen se ut? Vilka variabler har vi att ta hänsyn till? Vilken variabel vill vi variera? Hur ska vi kontrollera resterande variabler? Vilka felkällor har vi? Hur ska vi presentera våra resultat? Sida 19 av 19
20 Sida 20 av 19 Extraslides
21 Att lägga ihop mätfel Ett sätt att lägga ihop olika osäkerheter till ett totalt fel är att använda sig av kvadratisk addition Uppskattat fel på tidsmätning ~5% Uppskattat fel på mätinstrumentet ~5% Uppskattat fel på grund av tryckskillnader ~0.5% Uppskattat fel på grund av temperaturskillnader ~1% Exempelsiffror! Ni måste själva fundera på vad som är rimligt! Sammanlagt fel = (5²+5²+0.5²+1²) 11% Sida 21 av 19
Vetenskaplig metod och Statistik
Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Statistikens grunder. Mattias Nilsson Benfatto, Ph.D
Statistikens grunder Mattias Nilsson Benfatto, Ph.D Vad är statistik? Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information.
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Översikt. Experimentell metodik. Mer exakt. Människan är en svart låda. Exempel. Vill visa orsakssamband. Sidan 1
Översikt Experimentell metodik Vad är ett kognitionspsykologiskt experiment? Metod Planering och genomförande av experiment Risker för att misslyckas Saker man måste tänka på och tolkning av data 2 Människan
Forskningsmetodik 2006 lektion 2
Forskningsmetodik 6 lektion Per Olof Hulth hulth@physto.se Slumpmässiga och systematiska mätfel Man skiljer på två typer av fel (osäkerheter) vid mätningar:.slumpmässiga fel Positiva fel lika vanliga som
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Transport över membran Undersökning osmos och växtceller (potatis)
Transport över membran Undersökning osmos och växtceller (potatis) 1. Instuderingsuppgifter transport över cellmembran 2. Planering av ett försök med potatisstavar i olika saltlösningar Teori: sid 31-38
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
EXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
17/10/14. Kvantitativ metod och grundläggande statistik. Varför. Epidemiologi
Kvantitativ metod och grundläggande statistik Varför Sjuksköterskans yrkesutövning skall vila på vetenskaplig grund Kritiskt förhållningssätt, att kunna läsa artiklar och bedöma om slutsatser är rimliga
STATISTISK POWER OCH STICKPROVSDIMENSIONERING
STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd
Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod:
Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod: 61ST01 Tentamen ges för: GSJUK12h SSK11 VHB 7,5 Hp (2hp) Tentamenskod: Tentamensdatum: 2015-02-20 Tid: 09-12 Hjälpmedel: Inga hjälpmedel Totalt
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Sju sätt att visa data. Sju vanliga och praktiskt användbara presentationsformat vid förbättrings- och kvalitetsarbete
Sju sätt att visa data Sju vanliga och praktiskt användbara presentationsformat vid förbättrings- och kvalitetsarbete Introduktion I förbättringsarbete förekommer alltid någon form av data, om inte annat
Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Kunskap genom vetenskap. observationer och experiment
Kunskap genom vetenskap. observationer och experiment Vetenskaplig metod Vetenskaplighet Fakta är vetenskapligt fastlagt/visat om - ngt är systematiskt undersökt - den är öppet för granskning Undersökningen
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.
Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller
VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK
VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK TERM Analytisk statistik Bias Confounder (förväxlingsfaktor)) Deskriptiv statistik Epidemiologi Fall-kontrollstudie (case-control study)
Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt
Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer
Ingenjörsmetodik IT & ME 2011 Föreläsning 11
Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
Beskrivande statistik
Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Föreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två
STOCKHOLMS UNIVERSITET FYSIKUM
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och
Kort om mätosäkerhet
Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan
Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor
Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
TMS136. Föreläsning 4
TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,
1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
Föreläsning 1: Introduktion. Vad är statistik?
Föreläsning 1: Introduktion Vad är statistik? 1 Statistiska undersökningar Ett gemensamt syfte för alla undersökningar är att få ökad kunskap om ett visst problemområde Det kanske viktigaste sättet att
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Föreläsning 7 FK2002
Föreläsning 7 FK2002 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har
Föreläsning 1. 732G60 Statistiska metoder
Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt
Krafter märkbara men osynliga
Krafter märkbara men osynliga Arbeta med hypotes och prövning Lärarhandledningen, uppgift 7, sida 231 (elevblad på sida 247), elevboken sida 70. Utvecklar förmåga Genomföra systematiska undersökningar
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden
Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
1 Den Speciella Relativitetsteorin
1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från
Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Psykologi som vetenskap
Psykologi som vetenskap Begrepp och metoder Forskningsetik Av Jenny Wikström, KI till Psykologprogrammet HT10 Kurslitteratur: Myers Psychology, Kap.1 Kurs: Introduktion till psykologi 7,5 hp Psykologi
Föreläsning G70 Statistik A
Föreläsning 1 732G70 Statistik A 1 Population och stickprov Population = den samling enheter (exempelvis individer) som vi vill dra slutsatser om. Populationen definieras på logisk väg med utgångspunkt
Projekt: Filmat tornfall med modell av tornet. Benjamin Tayehanpour, Adrian Kuryatko Mihai
Projekt: Filmat tornfall med modell av tornet Benjamin Tayehanpour, Adrian Kuryatko Mihai Abstrakt Detta dokument avhandlar vad som händer när ett torn faller. Såväl elastiska som stela kroppar behandlas.
Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända
Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling
Föreläsning 8 för TNIU23 Integraler och statistik
Föreläsning 8 för TNIU Integraler och statistik Krzysztof Marciniak ITN, Campus Norrköping, krzma@itn.liu.se www.itn.liu.se/ krzma ver. - 9--6 Inledning - lite om statistik Statistik är en gren av tillämpad
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Del A: Begrepp och grundläggande förståelse
STOCKHOLMS UNIVERSITET FYSIKUM K.H Tentamensskrivning i Experimentella metoder, 12p, för kandidatprogrammet i fysik, 9/6 2015, 9-14. Införda beteckningar skall förklaras och uppställda ekvationer motiveras.
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
nyckeln till intresse och förståelse Kinesiskt ordspråk: Jag hör och jag glömmer, jag ser och jag minns, jag gör och jag förstår.
Öppna laborationer nyckeln till intresse och förståelse Toppkompetens, Åbo 6.3, Helsingfors 7.3, Vasa 23.4.2014 Berit Kurtén-Finnäs Kinesiskt ordspråk: Jag hör och jag glömmer, jag ser och jag minns, jag
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Sociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation
Uppgift 1 Vikt Vikt är en variabel på kvotskalan. Det gör att vi kan räkna med aritmetiskt medelvärde (m) som centralmått (Djurefeldt, 2003:59). Medelvärdet är 35,85 kg. Det saknas värden för två observationer,
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
SVÄNGNINGSTIDEN FÖR EN PENDEL
Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion
Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten
Repetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Lärare 1. Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum
Lärare 1 Lärare 1 Binomial och normalfördelning Fel i statistiska undersökningar Att tolka undersökningar Falska samband Jämföra i tid och rum Lärare 2 Att utföra undersökningar Sneda statistiska underlag
EXAMINATION KVANTITATIV METOD
ÖREBRO UNIVERSITET Hälsoakademin Idrott B, Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-09 (090209) Examinationen består av 8 frågor, några med tillhörande följdfrågor. Frågorna 4-7 är knutna till
Föreläsning 5: Att generalisera
Föreläsning 5: Att generalisera Pär Nyman par.nyman@statsvet.uu.se 4 september 2015-1 - Generaliseringar Generalisering innebär att vi drar slutsatser om någonting annat än det vi har studerat. Vi använder
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Finansiell statistik, vt-05. Kontinuerliga s.v. variabler. Kontinuerliga s.v. F7 Kontinuerliga variabler
5 45 4 5 5 5 5 Öppningskurs 5 9 7 5 9 7 4 45 49 5 57 6 65 abb Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 Kontinuerliga variabler Kontinuerliga s.v.
LMA201/LMA521: Faktorförsök
Föreläsning 1 Innehåll Försöksplanering Faktorförsök med två nivåer Skattning av eekterna. Diagram för huvudeekter Diagram för samspelseekter Paretodiagram Den här veckan kommer tillägnas faktorförsök.
Föreläsning 5: Att generalisera
Föreläsning 5: Att generalisera Pär Nyman par.nyman@statsvet.uu.se 25 januari 2016-1 - Generaliseringar Generalisering innebär att vi drar slutsatser om någonting annat än det vi har studerat. Vi använder
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
Lufttryck i ballong laboration Mätteknik
(SENSUR) Lufttryck i ballong laboration Mätteknik Laborationen utfördes av: (Sensur) Rapportens författare: Sjöström, William Uppsala 8/3 2015 1 av 7 1 - Inledning Om du blåser upp en ballong av gummi
Tentamen vetenskaplig teori och metod, Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1
Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod: 61ST01 Tentamen ges för: SSK GSJUK13v Tentamenskod: Tentamensdatum: 2015 10 02 Tid: 09:00 12:00 Hjälpmedel: Inga hjälpmedel Totalt
Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
LMA521: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
LMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Studietyper, inferens och konfidensintervall
Studietyper, inferens och konfidensintervall Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Studietyper Experimentella studier Innebär
Läs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27
4 Diskret stokastisk variabel
4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används
2 Materia. 2.1 OH1 Atomer och molekyler. 2.2 10 Kan du gissa rätt vikt?
2 Materia 2.1 OH1 Atomer och molekyler 1 Vid vilken temperatur kokar vatten? 2 Att rita diagram 3 Vid vilken temperatur kokar T-sprit? 4 Varför fryser man ofta efter ett bad? 5 Olika ämnen har olika smält-
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Fysik Kunskapens användning
Delmål Delmål 2010-06-14 Fysik Kunskapens användning utvecklar sin förmåga att göra kvantitativa, kvalitativa och etiska bedömningar av konsekvenser av mänskliga verksamheter och olika tekniska konstruktioner
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Beskrivande statistik Kapitel 19. (totalt 12 sidor)
Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande
Statistiska analyser C2 Bivariat analys. Wieland Wermke
+ Statistiska analyser C2 Bivariat analys Wieland Wermke + Bivariat analys n Mål: Vi vill veta något om ett samband mellan två fenomen n à inom kvantitativa strategier kan man undersöka detta genom att