4. Olinjärt med Whats Best!
|
|
- Simon Lundberg
- för 5 år sedan
- Visningar:
Transkript
1 4. Olinjärt med Whats Best! WhatsBest har ett flertal olika lösare. Har vi ett linjärt problem känner den igen det och använder sig normalt av simplexmetoden, har vi olinjära problem har den ett flertal metoder som den testar. Ibland kan automatiken dock vara lite förvirrande. Vid olinjära problem är man ofta hänvisad till olika numeriska sökmetoder. De har dock nackdelen att de normalt endast hittar lokala optimum, så om vi har ett problem där vi kan tänka oss att det finns flera lokala optimum får man kolla om det är rätt lösning som hittats. Det finns flera olika typer av beslutsvariabler i WhatsBest! Adjustable Positivt reelt tal Skapas lättast via snabbknappen För mer info se sidan (Make Adjustable), Free Integer Reelt tal som både kan vara positivt och negativt. WB! / Adjustable / Make Adjustable & Free, OBS man måste namnge områden med Free-variabler För mer info se sidan ickenegativt heltal {0, 1, 2, 3..} WB! / Integer (välj General WBINT) OBS man måste namnge områden med Integer-variabler Se sidan Binary heltal, endast {0, 1} WB! / Integer (välj Binary WBBIN) OBS man måste namnge områden med Integer-variabler Se sidan WhatsBest arbetssätt: 1. Läser av excelfilen 2. Skapar en modell 3. Klassificerar problemet och väljer lösningsmetod 4. Löser problemet 5. Lagrar resultatet i excelfilen (beslutsvariabler) 6. Kontrollerar att excel räknar ut samma värde på målcellen. En konsekvens av detta är att WhatsBest måste förstå alla funktioner vi använder. Om WhatsBest stöter på en cell som den inte förstår hur den ska beräkna, varnar den och betraktar cellen som ett konstant värde som inte påverkas av beslutsvariablerna. Ofta får man också en varning om att WhatsBest och excel kommer fram till olika värden på målcellen. Ett exempel på en funktion som inte stöds är radians() (konvertering av grader till radianer) Exempel på funktion som stöds, men bör undvikas om möjligt är IF() Se kapitel 5 för tillåtna funktioner. 17
2 WhatsBest klassificerar ett problem som Linear (lättlösta problem) Quadratic (kräver licens som vi inte har) Nonlinear (är ofta lite trixiga) Alla tre ovan kan vara med eller utan tillägg för heltal. Heltalsproblem bygger i princip på att man testar alla möjliga kombinationer av heltal, men det görs enligt en metod som åtminstone tillsammans med linjära problem reducerar antalet kombinationer som måste testas avsevärt. Metoden kallas branch-and-bound. Framgången för olinjära problem beror mycket på hur man formulerar problemet. Bra startvärden kan vara avgörande för om WhatsBest ska hitta en tillåten lösning och rätt maximum. Vid en del felmeddelanden nollställs alla beslutsvariabler, så ofta får man en betydligt beskedligare modell om man formulerar modellen så att nollställda beslutsvariablerna ger en modell som är matematiskt korrekt. Om bivillkoren dessutom är uppfyllda fungerar det i allmänhet ännu bättre. Om vi tänker oss att vi har ett isolerat rör som ska dimensioneras: r1=rörets innerdiameter r2=rörets ytterdiameter r3=isoleringens ytterdiameter Om man sätter r1, r2 och r3 som adjustable får vi ganska lätt problem om någon diameter är noll, eller om de ligger i fel ordning. Detta kan styras upp med olikheter, men det är betydligt snällare att formulera det liknande: r1=a1+0,001 r2=r1+a2+0,001 r3=r2+a3+0,001 där a1, a2 och a3 är adjustable och 0,001 är ett för problemet relativt litet tal. Rekommenderar att ni läser igenom Guidlines for Modelling with WhatsBest! sidan Resten av kapitel 6 är också lärorikt. Rekommenderade exempel: Flow Network Modeling sid Seasonal sales factoring sid Blending sid
3 Låt oss lösa vårt gamla demo-problem från Lagrange, P8.7 Konvektionskoefficienten, h, ges av: h θ = D där D är diametern på en sfärisk reaktor och θ är temperaturskillnaden till omgivningen. Värmeförlusten ges av q = ha T s T ) Den sfäriska reaktorns yta ges av: 2 A = πd Pga hållfasthetskrav har vi villkoret: D θ = 75 ( a Bestäm de D och som ger den minsta värmeförlusten. Vi startar excel och skriver in nedanstående: Diameter 1 Theta 1 h= 2,55 A= 3, Krav 1 75 q= 8, Cellerna till höger om Diameter och Theta sätter vi till ett godtyckligt numeriskt värde 1 Cellerna till höger om h=, A=, Krav och q= beräknas enligt de samband vi har. Cellen till vänster om 75 markeras och vi trycker sedan på villkorsknappen =. Sedan markerar vi de två godtyckliga cellerna och trycker på knappen Make adjustable Vi markerar cellen till höger om q= och trycker sedan på knappen Minimize Excelarket visar då följande: Diameter 1 Theta 1 h= 2,55 A= 3, Krav 1 Not = 75 q= 8, Nu är det dags att lösa problemet, vi trycker på knappen Solve (måltavlan) Whats Best skapar nu ett nytt kalkylblad, WB! Status, där den lägger en del information om lösningen: 19
4 What'sBest! (Apr 06, 2006) - Library Status Report - DATE GENERATED: apr 10, :53 PM MODEL INFORMATION: CLASSIFICATION DATA Current Capacity Limits Numerics 5 Variables 7 Adjustables Constraints Integers/Binaries 0/0 200 Nonlinears Coefficients 14 Minimum coefficient value: 1 on Blad1!D8 Minimum coefficient in formula: Blad1!D8 Maximum coefficient value: 75 on <RHS> Maximum coefficient in formula: Blad1!E10 MODEL TYPE: Nonlinear SOLUTION STATUS: LOCALLY OPTIMAL OPTIMALITY CONDITION: SATISFIED OBJECTIVE VALUE: DIRECTION: Minimize SOLVER TYPE: Multistart TRIES: 120 INFEASIBILITY: 0 Den viktigaste informationen är Solution status: Locally Optimal Växlar vi över till kalkylbladet där vi matade in nyss, ser vi: Diameter 0, Theta 136,4996 h= 6, A= 0,94844 Krav 75 = 75 q= 809,8239 Nu kan vi gå in i menyn WB! / Options / Global solver och sätta en bock framför Global Solver, OK. 20
5 Ett nytt tryck på knappen Solve-knappen ger efter några sekunder följande rapport: What'sBest! (Apr 06, 2006) - Library Status Report - DATE GENERATED: apr 10, :59 PM MODEL INFORMATION: CLASSIFICATION DATA Current Capacity Limits Numerics 5 Variables 7 Adjustables Constraints Integers/Binaries 0/0 200 Globals 4 10 Coefficients 14 Minimum coefficient value: 1 on Blad1!D8 Minimum coefficient in formula: Blad1!D8 Maximum coefficient value: 75 on <RHS> Maximum coefficient in formula: Blad1!E10 MODEL TYPE: Nonlinear SOLUTION STATUS: GLOBALLY OPTIMAL OPTIMALITY CONDITION: SATISFIED OBJECTIVE VALUE: DIRECTION: Minimize SOLVER TYPE: Global TRIES: INFEASIBILITY: 0 BEST OBJECTIVE BOUND: STEPS: 73 Nu anser Whats Best att den hittat ett globalt minimum! 21
6 Binära beslutsvariabler När man har flera alternativ så är binära beslutsvariabler användbara. Några exempel där binära beslutsvariabler b, heltal n och vanliga x: Tilläggsisolering av vinden, kostnad, minskar energibehovet med ett visst antal MWh/år. I = b kostnad Q = Q b Q innan min skning min U = 6 % I + 1, 10 Q Om val mellan flera tjocklekar I b Q = b1 kostnad1 + b2 kostnad b2 1 = Q innan b Q min U = 6 % I + 1, 10 Q b Q 1 reduktion,1 2 reduktion,2 Solfångare startkostnad för tank, sedan tillkommer per kvadratmeter solfångare. I = b startkostnad + x x yta yta ytkostnad b 1000 ingen startkostnad behövd om ingen solfångaryta x Q solinstrå ln ing normalt en sådan per dag (eller liknande) användbart x yta = Q innan x användbart min U = 6 % I + 1, 10 Q Inköp av vindkraftandelar 6000 kr / årsmwh därefter 30 öre/kwh inklusive nätavgift. (heltal andelar minst 5 andelar, högst användningen (dvs 0 andelar Ok, men inte 1-4)) Medlemsavgift 250 kr/år b 5 n minst 5 andelar, inga andelar också OK om b=0 b 1000 n b=1 krävs om n>0 n elanvändning / 1000kWh I = 6000 n investeringskostnaden min U = 6 % I + 1,10 ( elanvändning n 1000) n b Lämpliga övningsuppgifter: Övningsuppgifterna P1 och P3 från Lagrange. Exempel ackumulatortank med påbyggnad av start/stopp 22
Olinjärt med Whats Best!
Olinjärt med Whats Best! WhatsBest har ett flertal olika lösare. Har vi ett linjärt problem känner den igen det och använder sig normalt av simplexmetoden, har vi olinjära problem har den ett flertal metoder
4. Olinjärt med What sbest!
4. Olinjärt med What sbest! What sbest! har ett flertal olika lösare. Har vi ett linjärt problem känner den igen det och använder sig normalt av simplexmetoden, har vi olinjära problem har den ett flertal
4. Nonlinear problems with What s Best!
4. Nonlinear problems with What s Best! What s Best! have a number of solvers. If we have a linear problem, it recognizes that and normally uses the simplex method. If we have a nonlinear problem it has
1. Vad är optimering?
. Vad är optimering? Man vill hitta ett optimum, när något är bäst, men att definiera vad som är bäst är inte alltid så självklart. För att kunna jämföra olika fall samt avgöra vad som är bäst måste man
När det gäller en motor kanske man vill maximera verkningsgraden för att hålla nere bränslekostnaden men inte till vilket pris som helst.
Vad är optimering? Man vill hitta ett optimum, när något är bäst. Men att definiera vad som är bäst är inte alltid så självklart. När det gäller en motor kanske man vill maximera verkningsgraden för att
När det gäller en motor kanske man vill maximera verkningsgraden för att hålla nere bränslekostnaden men inte till vilket pris som helst.
Vad är optimering? Man vill hitta ett optimum när något är bäst. Men att definiera vad som är bäst är inte alltid så självklart. När det gäller en motor kanske man vill maximera verkningsgraden för att
MICROECONOMICS Mid Sweden University, Sundsvall (Lecture 2) Peter Lohmander &
MICROECONOMICS 2018 Mid Sweden University, Sundsvall (Lecture 2) Peter Lohmander www.lohmander.com & Peter@Lohmander.com NYTT MÖTE: Diskutera Ert förslag till lämpligt problem med kursledaren (Peter Lohmander)
Introduktion till att använda sig av GLPK
Introduktion till att använda sig av GLPK 1. Det finns inget grafiskt gränssnitt, som i Minitab eller Excel, utan man kör direkt i ett kommandofönster. 2. Programmet glpsol.exe och dess drivrutin (glpk44.dll-fil)
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
Richard Öhrvall, http://richardohrvall.com/ 1
Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum
TNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i
Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:
Optimering och simulering: Hur fungerar det och vad är skillnaden?
Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda
SF1626 Flervariabelanalys
Föreläsning 9 Institutionen för matematik KTH VT 2018 1 Dagens program Extremvärdesproblem (största och minsta värde) kap 13.2 Extremvärdesproblem med bivillkor Lagranges multiplikatormetod kap 13.3 (+ev
SF1625 Envariabelanalys
Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel
Histogram, pivottabeller och tabell med beskrivande statistik i Excel
Histogram, pivottabeller och tabell med beskrivande statistik i Excel 1 Histogram är bra för att dem på ett visuellt sätt ger oss mycket information. Att göra ett histogram i Excel är dock rätt så bökigt.
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Solutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013
Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Optimering av ett värmeverk
PROJEKTARBETE Optimering av ett värmeverk Värmeverket i Kristinehamn AV DANIEL BYSTRÖM OCH STEFAN UNDÉN HANDLEDARE: LARS BÄCKSTRÖM Inledning På senare år har det byggts ett stort antal kraft/värmeverk
Optimering av isoleringstjocklek på ackumulatortank
Optimering av isoleringstjocklek på ackumulatortank Projektarbete i kursen Simulering och optimering av energisystem, 5p Handledare: Lars Bäckström Tillämpad fysik och elektronik 005-05-7 Bakgrund Umeå
Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015
Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O
MICROECONOMICS Mid Sweden University, Sundsvall (Lecture 1) Peter Lohmander &
MICROECONOMICS 2018 Mid Sweden University, Sundsvall (Lecture 1) Peter Lohmander www.lohmander.com & Peter@Lohmander.com BAKGRUND: Utdrag ur kursplanen: Industriell organisation och ekonomi GR (B), Mikroekonomisk
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.
Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är
1 Ickelinjär optimering under bivillkor
Krister Svanberg, maj 2012 1 Ickelinjär optimering under bivillkor Hittills har vi behandlat optimeringsproblem där alla variabler x j kunnat röra sig fritt, oberoende av varann, och anta hur stora eller
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel med Resampling-pluginet, välj Resampling Stats for Excel i Start-menyn.
LABORATION 1: SANNOLIKHETER Lös Uppgift 1-8 nedan. Första uppgiften har ledning steg för steg, resterande uppgifter löser du på samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 2-5-5 kl 8.3-3.3 Hjälpmedel : Inga hjälpmedel utöver bifogat
EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM
EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM Vi betraktar ett begnnelsevärdesproblem IVP, initial-value problem) av första ordningen som är skrivet på normal form IVP1) Man
Regressionsanalys med SPSS Kimmo Sorjonen (2010)
1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
En uppgift eller text markerad med * betyder att uppgiften kan uppfattas som lite svårare. ** ännu svårare.
Matematik b, repetition Kan du det här? Primitiva funktioner och integraler o o o Vad menas med primitiv funktion? Kan du hitta en primitiv funktion? Vad menas med en integral? Kan du beräkna en integral?
Kalkylprogram. I övrigt kan man också söka på Google eller YouTube för att få mer information.
Anders Avdic 2018-09-14 Lektion kalkylprogram. Underlag och mallar för övningarna nedan finns i filen Excelunderlag. Färdiga lösningar finns i filerna Exempel hushållsutgifter, Exempel lånekalkyl och Exempel
6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
En introduktion till och första övning i @Risk5 for Excel
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Datorövning 1 Statistik med Excel (Office 2007, svenska)
Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
Extrempunkt. Polyeder
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den. Dvs. finna en optimal lösning, x, till modellen. Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan bättre. Upprepa, tills
Nyheter i Invest for Excel version 3.7
Nyheter i Invest for Excel version 3.7 Copyright Datapartner Oy 2014 1 Innehållsförteckning Utseende... 3 Microsoft Excel programversioner som stöds... 3 Digitalt signerad programkod... 3 Eliminering av
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
Microsoft Excel. Avancerade funktioner
Microsoft Excel Avancerade funktioner Avancerade funktioner OM() Returnerar ett värde om ett angivet villkor beräknas till SANT och ett annat värde om det beräknas till FALSKT. =OM(A6>A5;C9;OM(A6>A4;C10;OM(A6>A3;C11;
Preliminärt lösningsförslag till del I, v1.0
Preinärt lösningsförslag till del I, v1. Högskolan i Skövde SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel
CADS Data- Manager. Användarhandbok. CAD Studion AB
CADS Data- Manager Användarhandbok CAD Studion AB Innehåll 1. Installation... 2 2. Aktivering av licens... 2 3. Visa och filtrera data... 4 3.1. Propertyset definitioner... 4 3.2. Objektsegenskaper...
Datorövning 2 Statistik med Excel (Office 2007, svenska)
Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter
Datorövning 1 Statistik med Excel (Office 2007, svenska)
Datorövning 1 Statistik med Excel (Office 2007, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
SF1625 Envariabelanalys
Föreläsning 10 Institutionen för matematik KTH 19 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.
Optimering -av energibesparingar i en villa.
Optimering -av energibesparingar i en villa. Mats Karlström ce01mkm@ing.umu.se Stefan Lahti ce01sli@ing.umu.se Handledare: Lars Bäckström Inledning Än idag finns det många hus i Sverige som använder direktverkande
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Marknadsinformationsmetodik Inlämningsuppgift
Marknadsinformationsmetodik Inlämningsuppgift Uppgiften löses med hjälp av SPSS. Klistra in tabeller och diagram från SPSS i ett Worddokument och kommentera där. Använd ett försättsblad till den slutgiltiga
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Dagens föreläsning. Diverse Common Lisp. Konstanter, parametrar, globala variabler
21-1-2 1 Dagens föreläsning Hur fungerar ett Lisp system intern struktur av symbolen, tal, listan pekare - delade strukturer - eq minneshantering fri lista - sophämtning/garbage collection stack Diverse
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
Föreläsning 6: Nätverksoptimering
Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem
Laborationsinformation
Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 Information om GLPK/glpsol 1.1 Introduktion till GLPK GLPK (GNU Linear Programming
Introduktion Schenker-BTL AB, Stab IT Beskrivning över informationsintegreringmed Schenker, metodbeskrivning version 1.
Schenker har interna system som handhar information som är av intresse för våra kunder/partners. Idag finns ett flertal av dem tillgängliga via Internet, sk Online-tjänster. Dessa erbjuder inte bara hämtning
Föreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
Fältnamn /Rubrik Fältnamn /Rubrik Fältnamn /Rubrik Fältnamn /Rubrik Data Data Data Data Data Data Data Data
Datahantering i Excel Grundbegrepp I alla typer av databaser finns alltid en tabell där informationen i databasen fysiskt finns lagrad. Tabellen har samma enkla uppbyggnad som en tabell i ordbehandlingsprogrammet
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010
v. 2015-01-07 ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel vers. 2010 Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp
Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel
ANVISNINGAR Datorlaboration 1 Deskriptiv statistik med hjälp av MS Excel Detta häfte innehåller kortfattade anvisningar om hur ni använder Excel under denna laboration. Be om hjälp när/om ni tycker att
Grundläggande programmering med C# 7,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för:
Grundläggande programmering med C# 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: TEN1 NGC011 DE16, IMIT16, SYST16 och ITEK15 samt öppen för alla TentamensKod: Tentamensdatum: 170323 Tid: 09.00
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion
Staffan Romberger 2008-10-31 DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna hantera vektorer och matriser, villkorssatser
make connections share ideas be inspired SAS och Excel Jonas Wetterberg, SAS Institute Copyright 2014, SAS Institute Inc. All rights reserved.
make connections share ideas be inspired SAS och Excel Jonas Wetterberg, SAS Institute SAS och Excel Välkomna Nyheter SAS Add-In for Microsoft Office (AMO) 6.1 Demonstrera en enklare applikation för inmatning
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 1 oktober 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Datorövning 1 Statistik med Excel (Office 2010, svenska)
Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet
Hämtning av sekundärdata och introduktion till Excel
Metod och analys, 7.5hp 1 Hämtning av sekundärdata och introduktion till Excel Hämta sekundärdata från SCB Excels utformning Summera rader och kolumner Beräkna kohorter Låsning av celler Kopiera rader