UPG5 och UPG8 Miniprojekt 1: 2D datorgrafik

Storlek: px
Starta visningen från sidan:

Download "UPG5 och UPG8 Miniprojekt 1: 2D datorgrafik"

Transkript

1 UPG5 och UPG8 Miniprojekt 1: 2D datorgrafik I den här uppgiften studerar vi hur man kan använda sig av linjära avbildningar för att modifiera bilder i två dimensioner Mycket är repetition av vissa grundbegrepp ur linjära algebran, men avsnitten om translation är antagligen nya för de flesta studenter 1 Linjära avbildningar (linear transformations) Minns att en avbildning (eller funktion) F kallas linjär om den uppfyller F (αx + βy) = αf (x) + βf (y) för alla x och y i avbildningens definitionsmängd (ett vektorrum eller ett linjärt rum, vilket är synonymer) och alla skalärer (tal) α och β Elementen i vektorrummet kan vara vanliga tal, men de kan också vara vektorer i R n, funktioner, eller andra objekt Fundera: Är den funktion f(x) = 2x + 3 linjär? Hur ser dess graf ut? 2 Grafiska transformationer 21 Kontraktion/expansion (contraction/dilation) Den matris som svarar mot kontraktionsavbildningen kan skrivas a 0, 0 b med 0 < a < 1 och 0 < b < 1 Notera hur determinanten ger areaförändringen Om värdet på någon av parametrarna är > 1 talar vi istället om expansion i motsvarande riktning Vad händer om exempelvis a < 0 eller om b = 0? Vad har avbildningen för egenvärden och egenvektorer för olika kombinationer av a och b? 22 Skjuvning (shearing): Den matris som svarar mot skjuvningsavbildningen kan skrivas 1 a, 0 1 Linköpings universitet, ITN, Berkant Savas 1

2 om det handlar om skjuvning parallellt med x-axeln Hur ser matrisen ut som svarar mot skjuvning parallellt med y-axeln? Vad beskriver determinanten av matrisen? Vilka egenvektorer finns och varför? Vad blir inversen av matrisen? 23 Rotation (rotation): Den matris som svarar mot rotationsavbildningen kan skrivas cos v sin v R = sin v cos v Åt vilket håll vrider den en punkt? Varför? Vad blir R 2? Vad är R? Vad är det(r)? Hur inser man att egenvektorer endast finns för vissa speciella v (vilka)? Hur inser man enkelt vad inversen blir? Vad gäller för nollrummet? Värderummet är hela R 2, hur inser man det? 24 Projektion (projection): Den matris som svarar mot projektionsavbildningen kan skrivas cos P = 2 v sin v cos v sin v cos v sin 2 v Vad är här v? Vad blir P 2? Vad blir P 100? Vad är det(p )? Hur ser man egenvärden och egenvektorer direkt här? Vad kan sägas om matrisinversen? Nollrum? Värderum? 25 Spegling (reflection): Den matris som svarar mot speglingsavbildningen kan skrivas cos 2v sin 2v S = sin 2v cos 2v Vad är här v? Vad blir S 2? Vad är det(s)? Hur ser man egenvärden och egenvektorer direkt här? Hur inser man att S 1 = S? Nollrum? Värderum? 26 Translation (translation) Om vi skall ha full kontroll på ett objekt måste vi även kunna flytta det utan att ändra dess orientering eller form Den rörelsen kallas translation, och hanteras matematiskt med hjälp av sk affina avbildningar (vilka bara är nästan linjära) Ett standardsätt att göra det möjligt att hantera även dessa affina avbildningar inom ramen för den linjära teorin är att utöka objekten med ytterligare en komponent Exempelvis kan den räta linjen y = kx+m hanteras inom ramen för linjär teori genom att man utökar x till kolonnvektorn (x 1) T och skriver ekvationen för den räta linjen enligt x y = (k m) 1 Linköpings universitet, ITN, Berkant Savas 2

3 Mer allmänt, om vi har en punkt (x, y) som vi önskar avbilda till en ny punkt (x, y ) enligt x = x + a, y = y + b, låter vi den ursprungliga punkten representeras av (x y 1) T (som inte är en vektor!) och avbildningen till de primmade koordinaterna blir x 1 0 a x y = 0 1 b y 1 1 Tekniken att på detta sätt utöka med en etta kallas för homogena koordinater Notera att (x y 1) T inte är en vektor, då vi inte kan addera eller multiplicera med en konstant, och ändå vara kvar i samma linjära rum Matriserna ovan för kontraktion/expansion, skjuvning, rotation, projektion samt spegling blir nu: a 0 0 kontraktion/expansion 0 b 0 1 a 0 skjuvning cos v sin v 0 rotation sin v cos v 0 cos 2 v sin v cos v 0 projektion sin v cos v sin 2 v 0 cos 2v sin 2v 0 spegling sin 2v cos 2v 0 Aktsamhet måste iaktas avseende tolkningen, då det tredimensionella rum som matriserna verkar på inte längre är ett linjärt rum (vektorrum) 27 Sammansatta avbildningar En orsak till att man önskar bekriva transformationerna som linjära avbildningar är att man ofta är intresserad av sammansatta avbildningar Det kan tex handla om att först vrida och sedan translatera ett objekt Avbildningsmatrisen för en sådan sammansatt operation blir ingenting annat än produkten av motsvarande två matriser, vilken enkelt beräknas en gång för alla Ordningen på matriserna är här högst väsentlig Linköpings universitet, ITN, Berkant Savas 3

4 28 Uppgift Undervisningen i matematiska kurser som linjär algebra är ofta abstrakta och teoretiska Studenterna blir väldigt duktiga på att räkna med matriser, att bestämma egenvärden och egenvektorer, lösa ekvationssystem, beräkna determinanter, mm, mm, men de får aldrig chansen att se hur många av dessa begrepp kan tolkas geometriskt Er uppgift är nu att övertyga en sådan student om nyttan av att tolka begrepp geometriskt och hur detta lägger grunden för tillämpningar inom datorgrafik Dessvärre orkar dessa studenter varken lyssna eller läsa speciellt mycket, och därför tvingas ni att vara mycket kortfattade Er skriftliga lärotext skall innehålla åtminstone tre av avbildningstyperna kontraktion expansion, skjuvning, rotation, projektion, spegling och translation Lärotexten skall också rymma geometrisk tolkning av begreppen: 1 determinant; 2 invers; 3 nollrum; 4 värderum; 5 egenvektor; 6 egenvärde; 7 sammansatt avbildning (klargör i vilken ordning matrismultiplikationen skall ske, dvs vilken matris som skall stå först och vilken som skall stå sist) Alla begrepp behöver inte exemplifieras för varje avbildningstyp, utan det räcker att ta upp ett begrepp med en av avbildningstyperna Använd gärna de öppna frågor som finns i texten ovan, men ha ett fritt förhållningssätt till dem OBS: Alla ovannämnda begreppen MÅSTE vara med! OBS: Alla ovannämnda begreppen MÅSTE beskrivas på ett korrekt sätt! Se till att ni reder ut eventuella oklarheter med hjälp av litteraturen och oss lärare Förslag på arbetsgång: Rita ett lämpligt objekt på rutat papper Objektet kommer ni att transformera med olika avbildningar Ett exempel är bokstaven F som ges av Använd helst inte denna bokstav (eller någon annan) utan skapa något roligt (och enkelt) Skriv en funktion som givet en matris av det slag som anges ovan drar räta linjer mellan dess koordinater Utöka koordinatmatrisen så att det även blir möjligt att translatera objektet Bygg ut funktionen ovan så den även fungerar för den nya typen av koordinatmatris Pröva, lek, tänk, lek, pröva och tänk igen! Linköpings universitet, ITN, Berkant Savas 4

5 29 Redovisning Ni skall redovisa arbetet på max två A4-sidor på engelska, samt muntligt på svenska eller engelska (valfritt) enligt anvisningar i kursinformationen och mer specificerade vid föreläsningarna samt i lathunden på kurshemsidan Konstnärlighet i bilderna är vare sig nödvändigt eller tillräckligt, men en fördel När ni gör presentationen skall ni föreställa er att ni står inför studenterna som ni har skrivit för, och att dessa nog har läst er rapport, men kanske inte helt förstått allt Datum för inlämningar av minirapport och opposition enligt undervisningsplanen Oppositionen kan skrivas på antingen svenska eller engelska, men genomförs muntligt på svenska Ni bedömer rapport och presentation som fackgranskare, dvs ni avgör från er expertkunskap vad som är lämpligt för de stackars studenter som läst ovannämnda egendomliga kurs i linjär algebra Litteraturlista (ej referenslista) För att klara den engelska nomenklaturen uppmanas ni uppsöka biblioteket och låna godtycklig lärobok med titeln Linear algebra (finns alltid åtminstone referensexemplar) På kurshemsidan finns även en engelsk-svensk ordlista för högskolematematik Linjär algebra, TNA002, G Baravdish, kompendium utgivet av Linköpings universitet, ITN, valfri utgåva MATLAB-beräkningar inom teknik och naturvetenskap, tredje utgåvan, P Jönsson, Studentlitteratur, Lund D Computer Graphics, 3rd ed, A Watt, Addison-Wesley, 1999 [Kurslitteratur i kursen Datorgrafik Kapitel 1 innehåller mycket linjär algebra som den nödvändiga grunden för grafiktillämpningar] Linköpings universitet, ITN, Berkant Savas 5

OM PRESENTATIONER OCH OPPOSITIONER. Tillämpad matematik i natur och teknikvetenskap, TNA005 För ED1, KTS1, och MT1 vårterminen 2015

OM PRESENTATIONER OCH OPPOSITIONER. Tillämpad matematik i natur och teknikvetenskap, TNA005 För ED1, KTS1, och MT1 vårterminen 2015 OM PRESENTATIONER OCH OPPOSITIONER Tillämpad matematik i natur och teknikvetenskap, TNA005 För ED1, KTS1, och MT1 vårterminen 2015 1 KURSUPPLÄGG UPG1 (nästan klart) Miniprojekt 1 i grupp, UPG5, UPG8 (engelska),

Läs mer

Miniprojekt 1 (forts): 2D datorgrafik, avbildningar och begrepp

Miniprojekt 1 (forts): 2D datorgrafik, avbildningar och begrepp Miniprojekt 1 (forts): 2D datorgrafik, avbildningar och begrepp TNA005: Tillämpad matematik i teknik och naturvetenskap för ED1, KTS1, och MT1 vårterminen 2018 Berkant Savas Kommunikations- och transportsystem

Läs mer

Introduktion till kursen och MATLAB

Introduktion till kursen och MATLAB Introduktion till kursen och MATLAB TNA005: Tillämpad matematik i teknik och naturvetenskap för ED1, KTS1, och MT1 vårterminen 2018 Berkant Savas Kommunikations- och transportsystem Institutionen för teknik

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

Veckoblad 3, Linjär algebra IT, VT2010

Veckoblad 3, Linjär algebra IT, VT2010 Veckoblad 3, Linjär algebra IT, VT Vi inleder den tredje veckan med att gå igenom begreppen determinant och invers matris som vi inte hann med i vecka, se veckoblad för övningar etc på dessa avsnitt. Därefter

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

Stöd inför omtentamen i Linjär algebra TNA002.

Stöd inför omtentamen i Linjär algebra TNA002. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

TNA005: Tillämpad matematik i teknik och naturvetenskap. Kursinformation VT 2015

TNA005: Tillämpad matematik i teknik och naturvetenskap. Kursinformation VT 2015 TNA005: Tillämpad matematik i teknik och naturvetenskap Kursinformation VT 2015 1 Mål och innehåll I den här kursen är avsikten att du skall få tillämpa dina kunskaper i linjär algebra och begynnande kunskaper

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

8(x 1) 7(y 1) + 2(z + 1) = 0

8(x 1) 7(y 1) + 2(z + 1) = 0 Matematiska Institutionen KTH Lösningsförsök till tentamensskrivningen på kursen Linjär algebra, SF60, den juni 0 kl 08.00-.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och

Läs mer

LYCKA TILL! kl 8 13

LYCKA TILL! kl 8 13 LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade

Läs mer

TMV166 Linjär algebra för M, vt 2016

TMV166 Linjär algebra för M, vt 2016 TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Första föreläsningen Mats Boij Institutionen för matematik KTH 26 oktober, 2009 Översikt Kurspresentation Komplexa tal Kursmålen Efter genomgången kurs ska studenten vara förtrogen

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l. SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

Tentamen i ETE305 Linjär algebra , 8 13.

Tentamen i ETE305 Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk ( p) ( p) ( p) ( p) ( p) ( p) Tentamen i ETE Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Linjär algebra och geometri I

Linjär algebra och geometri I UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Jörgen Östensson Vårterminen 2010 Kurslitteratur Linjär algebra och geometri I för X, geo, frist, lärare H. Anton, C. Rorres, Elementary Linear Algebra (Application

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004 UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara

Läs mer

x 1 x 2 T (X) = T ( x 3 x 4 x 5

x 1 x 2 T (X) = T ( x 3 x 4 x 5 Lördagen 6 Nu vill vi fokusera på linjära avbildningar från vektorrum W Om T : R n R n är en linjär avbildning, och W R n ett vektorrum, då har vi en inducerad avbildning T W : W R m Och denna avbildning

Läs mer

Examination: En skriftlig tentamen den XX mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare.

Examination: En skriftlig tentamen den XX mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare. Kursprogram till Linjär algebra II, SF1604, för D1, vt10. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (mobil: 0730 547 891) e-post: olohed@math.kth.se Övningar: grupp

Läs mer

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3.

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3. Linjära avbildningar Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om F (v +v ) = F (v)+f (v ) och F (cv) = cf (v) för alla v, v V och alla skalärer c. EX. Speglingar, rotationer,

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2009 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2015.

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2015. LINKÖPINGS UNIVERSITET Matematiska Institutionen Vladimir Tkatjev Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2015. Kursperiod: 19 januari 21 maj Examinator och föreläsare: Vladimir Tkatjev: B-huset,

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016.

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016. LINKÖPINGS UNIVERSITET Matematiska Institutionen Vladimir Tkatjev Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016. Kursperiod: 18 januari 18 maj Examinator och föreläsare: Vladimir Tkatjev: B-huset,

Läs mer

2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1

2x + y + 3z = 1 x 2y z = 2 x + y + 2z = 1 ATM-Matematik Sören Hector 7 46686 Mikael Forsberg 734 433 Matematik med datalogi, mfl. Linjär algebra ma4a 3 5 Skrivtid: :-5:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa.

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym

Läs mer

LINJÄRA AVBILDNINGAR

LINJÄRA AVBILDNINGAR LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,

Läs mer

Studiehandledning till linjär algebra Avsnitt 3

Studiehandledning till linjär algebra Avsnitt 3 Svante Ekelin Institutionen för matematik KTH 1995 Studiehandledning till linjär algebra Avsnitt 3 Kapitel 4, 9.2 och 5 i Anton/Rorres: Elementary Linear Algebra: Applications version (7:e uppl.) Välkommen

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

Provräkning 3, Linjär Algebra, vt 2016.

Provräkning 3, Linjär Algebra, vt 2016. LINK OPINGS UNIVERSITET Matematiska Institutionen Provräkning, Linjär Algebra, vt 6. Lämna in lösningar för rättning senast 8. onsdagen den 7 april 6. Lämnas in antigen i mitt fack på MaI eller direkt

Läs mer

16.7. Nollrum, värderum och dimensionssatsen

16.7. Nollrum, värderum och dimensionssatsen 170 16 LINJÄRA AVBILDNINGAR 16.7. Nollrum, värderum och dimensionssatsen Definition 16.33. Låt F : V W vara en linjär avbildning. 1. Nollrummet till F definierar vi som mängden av alla u V, vilkas bild

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

TMV142/186 Linjär algebra Z/TD

TMV142/186 Linjär algebra Z/TD MATEMATIK Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Chalmers tekniska högskola Datum: 2018-08-27 kl 1400 1800 Tentamen Telefonvakt: Anders Hildeman ank 5325 TMV142/186 Linjär algebra Z/TD Skriv

Läs mer

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017 SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 1 Institutionen för matematik KTH 31 oktober 2016 Kurstart för Algebra och geometri Välkomen till kursen, CELTE och CMETE och COPEN!, kursansvarig LFN@KTH.SE Idag ska vi se hur kursen funkar

Läs mer

Linjär algebra och geometri I

Linjär algebra och geometri I UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Anders Johansson Linjär algebra och geometri I för Energi, Ma-kand., Frist. Höstterminen 2010 Kurslitteratur H. Anton, C. Rorres, Elementary Linear Algebra

Läs mer

Mer om geometriska transformationer

Mer om geometriska transformationer CTH/GU LABORATION 4 TMV141-1/13 Matematiska vetenskaper 1 Inledning Mer om geometriska transformationer Vi fortsätter med geometriska transformationer och ser på ortogonal (vinkelrät) projektion samt spegling.

Läs mer

Tillämpningar i mekanik

Tillämpningar i mekanik UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN M. Melgaard R. Rubinsztein 2008-04-29 LINJÄR ALGEBRA och GEOMETRI I för F1, Q1 Höstterminen 2008 Tillämpningar i mekanik Kursen Linjär algebra och geometri

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4.

Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 8-- kl 4-9 a) Triangelns area är en halv av parallellograms area som spänns upp av tex P P (,, ) och P P (,, ), således area av P P P (,, ) (,,

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

Examination: En skriftlig tentamen den 15 mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare.

Examination: En skriftlig tentamen den 15 mars samt möjlighet till en omtentamen. Tider och lokaler meddelas senare. Kursprogram till Linjär algebra II, SF1604, för D1, vt12. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (mobil: 0730 547 891) e-post: olohed@math.kth.se Övningar: grupp

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 29 augusti 2018

LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 29 augusti 2018 LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen 29 augusti 2018 Kursinformation Linjär Algebra för I1 och Ii1. Examinator: Kurshemsida: http://courses.mai.liu.se/gu/tata31/ Kurslitteratur: Janfalk,

Läs mer

Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00.

Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00. Kursprogram till kursen Linjär algebra II, 5B1109, för F1, ht00. Kursledare och föreläsare: Olof Heden Lindstedtsvägen 25 rum 3641 Tel:790 62 96 (hem: 08-716 80 34) e-post: olohed@math.kth.se Mottagningstid:

Läs mer

TNA005 Kursinformation VT 2013

TNA005 Kursinformation VT 2013 Institutionen för teknik och naturvetenskap Michael Hörnquist, 7 januari 2013 TNA005 Kursinformation VT 2013 Tillämpad matematik i teknik och naturvetenskap TNA005 Mål och innehåll I den här kursen är

Läs mer

Kursplanering för Linjär algebra, HT 2003

Kursplanering för Linjär algebra, HT 2003 Kursplanering för Linjär algebra, HT 2003 Mikael Forsberg 12 augusti 2003 Innehåll 1 Kursbok 2 2 Kursinnehåll 2 2.1 Kursens uppläggning......................... 2 2.2 Målsättning..............................

Läs mer

16.7. Nollrum, värderum och dimensionssatsen

16.7. Nollrum, värderum och dimensionssatsen 86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,

Läs mer

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar

Läs mer

Linjär algebra F1, Q1, W1. Kurslitteratur

Linjär algebra F1, Q1, W1. Kurslitteratur UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra för F1, Q1, W1 Kurslitteratur Höstterminen 2006 Eriksson Lind Persson Tengstrand, Algebra för universitet och högskolor, Band II (Linjär Algebra),

Läs mer

Linjär algebra och geometri 1

Linjär algebra och geometri 1 UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Ryszard Rubinsztein Oswald Fogelklou Linjär algebra och geometri 1 för K1, W1, KandKe1 Höstterminen 2008 Kurslitteratur H.Anton, C.Rorres, Elementary Linear

Läs mer

Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n

Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n Linjära avbildningar Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. R n = { x = x x. x n } x, x,..., x n R. Vi räknar med vektorer x, y likandant som i planet och i rymden. vektorsumma:

Läs mer

2x + y + 3z = 4 x + y = 1 x 2y z = 3

2x + y + 3z = 4 x + y = 1 x 2y z = 3 ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 18 september 2014

LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen Ulf Janfalk 18 september 2014 LINKÖPINGS TEKNISKA HÖGSKOLA Matematiska institutionen 18 september 2014 Kursinformation Linjär Algebra för I1 och Ii1. Examinator: Kurslitteratur: Janfalk, Ulf: Linjär algebra, 2014 Examination: Efter

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0.

(d) Mängden av alla x som uppfyller x = s u + t v + (1, 0, 0), där s, t R. (e) Mängden av alla x som uppfyller x = s u där s är ickenegativ, s 0. TM-Matematik Mikael Forsberg, 734-4 3 3 Rolf Källström, 7-6 93 9 För Campus och Distans Linjär algebra mag4 och ma4a 6 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016 Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1

Läs mer

kvivalenta. Ange rangen för A samt en bas för kolonnrummet för A. och U =

kvivalenta. Ange rangen för A samt en bas för kolonnrummet för A. och U = MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: 9-- kl 8 Tentamen Telefonvakt: Aron Lagerberg tel 76-786 Linjär Algebra Z (tmv4) Skriv tentamenskod tydligt på samtliga

Läs mer

KURSUPPLÄGG OM PRESENTATIONER OCH OPPOSITIONER SYFTE MED RAPPORTER OCH OPPOSITIONER DAGENS PROGRAM. UPG1 (klart)!

KURSUPPLÄGG OM PRESENTATIONER OCH OPPOSITIONER SYFTE MED RAPPORTER OCH OPPOSITIONER DAGENS PROGRAM. UPG1 (klart)! KURSUPPLÄGG OM PRESENTATIONER OCH OPPOSITIONER Tillämpad matematik i natur och teknikvetenskap, TNA005! För ED1, KTS1, och MT1 vårterminen 2014 UPG1 (klart)! Miniprojekt 1 i grupp, UPG5, UPG8 (engelska),

Läs mer

Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik

Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Kursinformation, ETE499 8 hp MATEMATIK H Högskoleförberedande matematik Fristående matematikkurs vid ITN (Institutionen för Teknik och Naturvetenskap i Norrköping) en förberedande matematikkurs inför kurser

Läs mer

MVE022 Urval av bevis (på svenska)

MVE022 Urval av bevis (på svenska) MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller

Läs mer

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2 SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.

Läs mer

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet

Läs mer

Lösningar till MVE021 Linjär algebra för I

Lösningar till MVE021 Linjär algebra för I Lösningar till MVE Linjär algebra för I 7-8-9 (a Vektorer är ortogonala precis när deras skalärprodukt är Vi har u v 8 5h + h h 5h + 6 (h (h När h och när h (b Låt B beteckna basen {v, v } Om vi sätter

Läs mer

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet

1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet 1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:

Läs mer

MATRISTEORI, 6 hp, vt 2010, Kurskod FMA120. MATRISTEORI Projektkurs, 3 hp, Kurskod FMA125. och

MATRISTEORI, 6 hp, vt 2010, Kurskod FMA120. MATRISTEORI Projektkurs, 3 hp, Kurskod FMA125. och MATRISTEORI, 6 hp, vt 2010, Kurskod FMA120 och MATRISTEORI Projektkurs, 3 hp, Kurskod FMA125 Kursansvarig Sergei Silvestrov, Matematik LTH, rum MH562B, tel. 046-222885 Kurshemsidan http://www.maths.lth.se/matematiklth/vitahyllan/kursprogram/matristeori/

Läs mer

TMV166 Linjär Algebra för M. Tentamen

TMV166 Linjär Algebra för M. Tentamen MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn

Läs mer

Hemuppgift 1, SF1861 Optimeringslära för T

Hemuppgift 1, SF1861 Optimeringslära för T Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) , 8 13.

Tentamen i Linjär algebra (TATA31/TEN1) , 8 13. Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN (p) (p) (p) Tentamen i Linjär algebra (TATA/TEN) 8 4, 8. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med

Läs mer

Linjär algebra Föreläsning 10

Linjär algebra Föreläsning 10 Linjär algebra Föreläsning 10 IT-programmet, Chalmers 2006 Samuel Bengmark Repetition Handlade om kvadratiska matriser. Kvadratiska ekvationssystem har: Unik lösning omm Det(A) 0. Har oändligt antal lösningar

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF604, den 5 mars 202 kl 08.00-3.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer