Ekonomisk statistik 2 Economic statistics 2. Imputering
|
|
- Georg Sundqvist
- för 6 år sedan
- Visningar:
Transkript
1 Ekonomisk statistik 2 Economic statistics 2 Imputering Masterkurs Daniel Thorburn Höstterminen 2008 Stockholms Universitet Ekonomisk statistik Höstterminen 2008 Stockholms Universitet Saknade värden Totalt bortfall dvs inga uppgifter för enheten Partiellt bortfall Man har vissa uppgifter för enheten Det Det kan vara det vanliga att enheten inte svarar på vissa frågor Men lika gärna att man har vissa uppgifter som samlats in från register eller att man inte frågat om den Strukturellt saknade värden Variabler som logiskt sett inte kan finns Om ett företag inte har egna byggnader kan man inte svara på frågan om arean eller uppvärmningssätt Mörkertal Man vet inte ens att enheten finns Kallas ramfel om registret används för dragning Men mörkertal om antalet företag i Sverige Rubins indelning Se Little RJA and Rubin DB (2002) Statistical Analysis with Missing Data, 2nd edition New York : John Wiley MCAR, Missing Completely at Random Att ett värde eller en enhet saknas är helt slumpmässigt och säger inget om företaget Formellt B och Y är oberoende där B är bortfallsmekanismen och Y den studerade variabeln MAR, Missing at Random Att ett värde eller en enhet saknas beror bara på förhållanden som vi redan vet och säger inget ytterligare om företaget Formellt B och Y är oberoende givet X där X är kända hjälpvariabler Bortfallssannolikheten kan tex variera mellan olika branscher eller antal anställda, men branschen och antal anställda känner vi redan från ramen NMAR, Not Missing at Random, Bortfallet beror på det vi studerar Man tror t ex att expansiva enmansföretag svarar mindre eftersom företagaren inte har tid att svara
2 Sätt att hantera missing data Glöm bort dem! Om man dragit ett stickprov med 100 företag och man får kompletta uppgifter från 90, låtsas man att man bara tänkt undersöka 90 Urvalssannolikheterna/uppräkningsfaktorerna måste givetvis justeras ändras, tex genom efterstratifiering eller kalibrering, så att totalantalet och kanske andra kända proportioner blir rätt, tex antalet i olika branscher (med klok ändring av vikter kan man åstadkomma mycket, men osäkerhetsberäkningar blir lätt fel) Detta går inte att göra vid räkningar/totalundersökningar Detta är dumt vid partiellt bortfall eftersom man inte utnyttjar de uppgifter man har Om detta skall funger måste man anta MAR/MCAR Imputera! Dvs sätt in rimliga värden istället för de saknade! Imputera Även här antar man att man har MAR eller MCAR (annars kommer det inte att fungera) Man använder den information man har för att välja vilka rimliga värden man skall sätta in (eller hur vikterna skall ändras) Beror värdet av förhållanden som man inte känner till blir det sällan bra Då måste man göra specialstudier av bortfallet De metoder vi kommer att prata om nedan fungerar bra om man har nästan MCAR Dokumentera Ofta gjordes (görs?) imputeringen av kunniga personer som valde mycket rimliga värden Det leder ofta till att varje företag får rimliga värden, men det leder till att ingen vet riktigt vad som görs och om det i slutändan blev bra Det är viktigt att all imputering (och granskning) görs på ett väl dokumenterat och objektivt sätt så att kvaliteten på statistiken kan bedömas Individstatistik Bland SCBs metodstatistiker fanns tidigare än stor misstro mot imputering Det finns en lag som säger att man inte får lägga in felaktiga värden i en individdatabas Men man får lägga in en kolumn med ett annat namn t ex modellvärde Inom företagstatistiken har man alltid imputerat, men statistikerna ägnade sig inte åt det problemet Det var inte fint och blev därför mycket ad hoc Nu tittar även metodstatistikerna på hur imputeringen görs, men fortfarande är SCB dåliga på imputering, teoretiskt sett (Praktiskt görs en del bra) Det som följer är mer en genomgång av den internationella forskningens nivå än vad som görs i Sverige
3 Imputering Det finns några olika sätt att dela in metoderna En vanlig indelning är Real donor eller Model donor Real donor - värdet som sätts in hämtas från en existerande enhet Model donor - värdet som sätts in konstrueras med hjälp av en modell Men det finns mellanlägen Real eller model donor - exempel Data Nr var Kön Inkomst Real donor Nr var Kön Inkomst Nearest Neighbour Model donor Nr var Kön Inkomst , Medelvärdesimputering Real donor - några exempel Hot - Cold deck? Hot deck - imputering Värdet hämtas från den aktuella datamängden Cold deck - imputering Värdet hämtas från ett annat dataset (t ex förra årets värde på antal anställda Denna typ är vanlig vid företagsdata) Var hämta värdet vid hot deck? Från den enhet som mest liknar denna på relevanta variabler Hur välja avstånd? Psykologer väljer gärna euklidiskt avstånd efter att ha standardiserat till variansen 1 I ekonomiska studier är dock vanligen vissa variabler viktigare än andra och man kan använda olika pattern recognition metoder Även neurala nätverk har föreslagits och fungerar hyfsat om Från någon av de 10 mest liknande (slumpmässig imputering) Frän föregående i löpnummer Model Donor - exempel X Y Medelvärde 247 standardavvikelse 100 konfidensintervall 287 +/- 92 enligt standardrutiner baserat på sju värden Medelvärdesimputering Y Medelvärde 247 standardavvikelse 83 konfidensintervall 247 +/- 52 Ger bra skattningar av medelvärden/totaler men för liten varians Regressionsimputering Y Medelvärde 253 standardavvikelse 89 konfidensintervall 253 +/- 56 Det blir alltså för lite variation i datamängden och vanliga analysprogram tror att vi har fler observationer än vad vi ha Även korrelationer och samband kommer att bli starkare eller mer signifikanta med denna imputeringsteknik
4 Model Donor - exempel X Y Medelvärde 247 standardavvikelse 100 konfidensintervall 287 +/- 92 Regressionsimputering Y Medelvärde 253 standardavvikelse 89 konfidensintervall 253 +/- 56 Det blir alltså för lite variation i datamängden och vanliga analysprogram tror att vi har fler observationer än vad vi har Regression plus slump Y Medelvärde 261 standardavvikelse 92 konfidensintervall 260 +/- 58 Om det görs rätt blir det väntevärdesriktiga skattning av medelvärde och varians men resultatet blir mycket slumpmässigt och kan inte upprepas (om MAR/MCAR) Rätt sätt är multipel imputering enligt Rubin Ett annat sätt att få mer slump än regressionsimputering är att använda real donor med lämpligt avståndsmått Men fortfarande hade precisionsskattningarna blivit för bra Multipel imputering För att lösa problemet med att det tillkommer slump har Rubin föreslagit multipel imputering Gör om imputeringen många (B) gånger så att man får många skattningar T 1, T 2,, T B, med uppskattade varianser S 12, S 22,, S B 2 medelvärdet uppskattas med medelvärdet av medelvärdena Σ T i /B variansen med medelvärdet av varianserna + variansen av medelvärdena Σ S 1 2 /B + Σ (Τ 1 - Σ Τ 1 /B) 2 / (B-1) Stora talens lag garanterar att det fungerar Men i praktiken räcker det i allmänhet med ca tio upprepningar (vid stora bortfall krävs fler) Den multipla imputeringen måste göras rätt Det finns alldeles för många som försöker, men inte klarar att modellera slumpen rätt Tänk t ex på att även osäkerheten i skattningen av regressionslinjen skall med När man bara är ute efter medelvärden eller totaler kan man använda normalmodell även om modellen data inte är (bivariat) normalfördelade men inte annars Modellimputering Vid regressionsimputeringen användes linjär regression Logistisk regression skulle fungerat bra om den studerade variabeln var dikotom Vid slump-imputeringen kan man välja metod så att de imputerade värdena blir realistiska Om man inte gör multipel (eller slumpmässig) imputering finns dock en stor risk för systematiska fel Om t ex P(man kända värden) = 0,7 och man väljer att imputera mest sannolika värde blir alla med imputerat värde män (Istället för 70 %) Det finns användbara modeller för multivariat logistiska fördelningar vid flera klasser
5 Vid företagsdata har man ofta tillgång till föregående års uppgifter Dessa kan alltså användas som hjälpvariabler vid imputering Mycket vanligt är att använd föregående års värden plus uppräkning med inflation Dessutom imputerar man ofta saknade värden som går att räkna ut logiskt (Ibland skall vissa summor gå ihop, men ofta kontrollringer man även på sådan uppgifter) Imputering med extra slump används vad jag vet inte inom SCBs företagstatistik Det är en alltför ny metod för att ha nått ut För många användare är osäkerhetsintervallen helt ointressanta och det gör att imputering med mest troligt värde ofta ger bra resultat Länkning Ekonomisk statistik Höstterminen 2008 Stockholms Universitet Länkning När statistiken läggs om uppstår ofta språng T ex när näringsgrensindelningen moderniseras eller när man byter insamlingssystem från disketter till internet eller ändrar en cutoffgräns Vid länkning försöker man räkna om serien bakåt som om det nya insamlingssystemet hade gällt Bra för personer som arbetar med tidsserier Samma problem vid ändringar i samhället Följ sjuklighetens utveckling i samhället, när antalet karensdagar ändras Detta brukar ses som en uppgift för dem som analyserar tidsserier Medan länkning är något för statistikproducenten Vid omläggningar bör statistikern planera för länkning Vid reformer i samhället bör politikerna planera så att reformen kan utvärderas Länkning? Tänk er att man har en serie som ser ut så här (Andel positiva till statliga investeringsgarantier % ) År År 8 lades undersökningen om och frågan formulerades om Om man vill analysera utvecklingen vill man ha en serie utan språng Hur skall man göra?
6 Svar 1 o 2: Enklast är att sätta värdena år 7 och 8 lika År och ändra värdena innan motsvarande (additivt resp multiplikativt) Problem: Detta säger inget om skillnaden mellan år 7 och 8 Svar 3: (För enkelhets skull ges lösningen bara additivt) Mer avancerat gör regression y t = a + b*i(t<8)+c*t och justera med b Andra modeller kan användas Regression mot en logistisk linje hade förmodligen varit ännu bättre, men görs aldrig vad jag vet Problem: Man vill kunna göra länkningen redan första året efter tidsseriebrottet (dvs år 8) Svar 4: Använd samma modell redan år 8 och håll sedan modellen fix Ger lite större osäkerhet än svar 3 Detta var mekaniska länkningsmetoder för en enda serie där det antogs att man inte hade mer information En vanlig rekommendation är att om det är möjligt göra undersökningen på båda sätten parallellt vid ett tillfälle eller göra andr andra metodstudier (När ULF (undersökningen om levnadsförhållanden gick över från besök till telefonundersökning som bas gjorde man under övergångsåret halva urvalet besök och halva per telefon Slumpmässiga halvor När större omläggningar görs t ex av SNI-kod försöker man koda uppgifterna på båda sätten under en period eller gå igenom gamla statistikunderlag (blanketter) och koda om företagen enligt den nya mallen Ibland har man annan information T ex när Dator och ITkonsulter bröts ur kategorin annan konsultverksamhet Då visste man att den inte under de senaste tio åren haft samma andel av dne större kategorin Då får man lägga in en subjektiv gissning T ex andel 0 tio år tidigare och sedan en linjär ökning av andelen till den första observerade nivån Om man länkat en dataserie, skall den som använder serien alltid kunna se vad som hänt Orsaken till språnget och hur det eliminerats Dokumentera vad du gör
4.1 Datainsamling, svarsprocessen. Ekonomisk statistik Höstterminen 2009 Stockholms Universitet
4.1 Datainsamling, svarsprocessen Ekonomisk statistik Höstterminen 2009 Stockholms Universitet Svarsprocessen Teorin för hur företagens uppgiftslämnande går till är inte lika väl utvecklad som för insamling
Ekonomisk statistik 3 Economic statistics 3. Länkning. Länkning? Länkning. Ekonomisk statistik Höstterminen 2008 Stockholms Universitet
Ekonomisk statistik 3 Economic statistics 3 Länkning Masterkurs Daniel Thorburn Höstterminen 2008 Stockholms Universitet Ekonomisk statistik Höstterminen 2008 Stockholms Universitet Länkning När statistiken
Bortfallsproblematik ur ett metodperspektiv
Bortfallsproblematik ur ett metodperspektiv Daniel Thorburn Surveyföreningen 2011-05-27 Olika metodaspekter Bortfall versus andra fel Psykologi varför svarar man? (inte?) Åtgärder vid insamling (förebygg!)
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data
MULTIPEL IMPUTATION - Ett sätt att hantera problemet med missing data Pär-Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par-Ola.Bendahl@med.lu.se Översikt Introduktion till problemet Enkla
MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial?
MULTIPEL IMPUTATION Ett sätt att fylla i hålen i ditt datamaterial? Pär Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par Ola.Bendahl@med.lu.se Översikt 1. Introduktion till problemet 2.
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21
Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21 Inledning Saknat data finns alltid, åtminstone i stora registerstudier. Ett problem som måste hanteras på något sätt.
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Föreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012
Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig
Föreläsning 4. Kapitel 5, sid Stickprovsteori
Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
OBS! Vi har nya rutiner.
KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare
I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser
Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov
Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och
F19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland
Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera
Obligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap )
F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Urval Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta inte möjlig För dyrt Tar
InStat Exempel 4 Korrelation och Regression
InStat Exempel 4 Korrelation och Regression Vi ska analysera ett datamaterial som innehåller information om kön, längd och vikt för 2000 personer. Materialet är jämnt fördelat mellan könen (1000 män och
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Statistiska Institutionen Gebrenegus Ghilagaber (docent)
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas
Linjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Diskussionsproblem för Statistik för ingenjörer
Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka
Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval
Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta
732G71 Statistik B. Föreläsning 4. Bertil Wegmann. November 11, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 4 Bertil Wegmann IDA, Linköpings universitet November 11, 2016 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 11, 2016 1 / 34 Kap. 5.1, korrelationsmatris En korrelationsmatris
Regressions- och Tidsserieanalys - F4
Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1
Metoder för urval och estimation speciellt för företagsdata. Ekonomisk statistik 4 Economic statistics 4. Urval ur företagspopulationer.
Ekonomisk statistik 4 Economic statistics 4 Metoder för urval och estimation speciellt för företagsdata Masterkurs Daniel Thorburn Höstterminen 2008 Stockholms Universitet *Indexteori *Nationalräkenskaper
Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Statistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
LABORATION 1. Syfte: Syftet med laborationen är att
LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17
1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,
Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB
Bortfall Konsekvenser Varför det kan vara allvarligt med bortfall. Ann-Marie Flygare Metodstatistiker, SCB Konsekvenser av Bortfall Introduktion Illustration av hur bortfall påverkar resultaten i en statistisk
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin
Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.
UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två
Bayesiansk statistik, 732g43, 7.5 hp
Bayesiansk statistik, 732g43, 7.5 hp Moment 2 - Linjär regressionsanalys Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, LiU) Bayesiansk statistik 1 / 29 Översikt moment 2: linjär
Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8
1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,
Grundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 11 & 12 Johan Lindström 5 & 14 oktober 2015 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F11 1/27 Johan Lindström - johanl@maths.lth.se
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)
Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative
Föreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
F9 Konfidensintervall
1/16 F9 Konfidensintervall Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 18/2 2013 2/16 Kursinformation och repetition Första inlämningsuppgiften rättas nu i veckan. För att
Analytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
DATORÖVNING 2: STATISTISK INFERENS.
DATORÖVNING 2: STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN Enligt
Matematisk statistik, Föreläsning 5
Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering
Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner
Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering
Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet
Mälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-
DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Uppgift a b c d e Vet inte Poäng
TENTAMEN: Dataanalys och statistik för I2, TMS135 Fredagen den 12 mars kl. 8:45-11:45 på V. Jour: Jenny Andersson, ankn 8294 (mobil:070 3597858) Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Hyror i bostadslägenheter (HiB)
Statistiska centralbyrån SCBDOK 3.2 1 (17) Hyror i bostadslägenheter (HiB) 2014 BO0406 Innehåll 0 Allmänna uppgifter... 2 0.1 Ämnesområde... 2 0.2 Statistikområde... 2 0.3 SOS-klassificering... 2 0.4 Statistikansvarig...
Richard Öhrvall, http://richardohrvall.com/ 1
Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering
Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels
Binomialfördelning, två stickprov
Diskreta data Binomialfördelning, två stickprov Hypotesprövning måste inte grunda sig på normalfördelning 1948 visste man inte om streptomycin var effektivt mot tuberkulos, men man misstänkte det. För
Tentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Elevrådet har gjort en undersökning på skolan kring hur lång tid varje elev på skolan dagligen ägnar åt att plugga.
Statistik Namn: 1. Elevrådet har gjort en undersökning på skolan kring hur lång tid varje elev på skolan dagligen ägnar åt att plugga. Elevrådsordföranden vill påvisa att lärarna ger eleverna alldeles
Stokastiska processer med diskret tid
Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna
TENTAMEN I STATISTIKENS GRUNDER 2
STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-01 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:
Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour: