Projekt i Matematisk kommunikation: Projektförslag 2017

Storlek: px
Starta visningen från sidan:

Download "Projekt i Matematisk kommunikation: Projektförslag 2017"

Transkript

1 Projekt i Matematisk kommunikation: Projektförslag mars 2017 Inledning Projekten utförs i grupper om fyra personer. Projektförslagen presenteras på föreläsningen onsdag den 1 mars kl i MH:362D varpå man antecknar sig till det projekt man önskar på listar på Matematik LTHs anslagstavla. Den slutgiltiga gruppindelningen sker på övningen måndagen den 20 mars i MH:309A. Har man inte möjlighet att närvara vid dessa tillfällen bör man omedelbart ta kontakt med mej. I samband med gruppindelningen tilldelas varje grupp en handledare. Projektarbetet utförs under andra läsperioden vt 2017 och varje grupp skall kontakta sin handledaren under första läsveckan. Projekten ska presenteras skriftligt i rapporter, men också muntligt på ett seminarium med obligatorisk närvaro torsdag den 18 maj i KC:C (preliminärt). Alla i gruppen ska då aktivt delta i presentationen. Alla grupper ska också vid detta tillfälle opponera på en annan grupps arbete. För att det ska möjligt att läsa in en annan grupps arbete måste de skriftliga rapporterna vara färdiga senast måndag den 8 maj. Efter presentationen sammanställs en slutlig version av rapporten där påpekanden som framkommit i samband med presentationen åtgärdats. Denna slutversion måste lämnas in till mej senast onsdag den 24 maj. Rapporterna kommer därefter att sammanställas och tryckas i ett häfte. 1

2 Handledarkollegiet SMS MVÖ FW MPS TP VU MA PP Sara Maad Sasane Marcus Waltonen-Örnhag Frank Wikström Mikael Sundqvist Tomas Persson Victor Ufnarovski Magnus Aspenberg Pelle Pettersson Projektförslag 1. LLL - Lenstra-Lenstra-Lovász (Ny!) Talet är en god decimalapproximation ett rationellt tal, och det är inte så svårt att hitta det talet (1/13). Lite besvärligare är att hitta bra rationella approximationer till , men det finns förhållandevis enkla metoder för att hitta t.ex. 22/7, 355/113 eller / Ytterligare lite svårare är att identifiera med (1+sqrt(7))/3. På talet upptäckes effektiva algoritmer för så kallad?gitterbasreduktion?, som kan användas för att lösa alla de ovanstående problemen, och många andra. Algoritmen ligger till exempel till grund för websidan?inverse Symbolic Calculator? ( ) där man kan knappa in ett decimaltal och få olika förslag på vad det kan vara för ett tal. Testa till exempel att knappa in Projektet går ut på att förstå och implementera denna algoritm och att undersöka intressanta tillämpningar av den. Handledare: Frank Wikström (FW) Epost: frankw@maths.lth.se 2. The oscillating pendulum, the rotating gyroscope and fast computation of elliptic integrals The equations of motion of mechanical systems are ordinary differential equations, which cannot be solved exactly in most cases. But for some very particular, conservative systems like the mathematical pendulum or a rotating unsymmetric gyroscope one can express the solution of these equations by so-called elliptic functions (sn, cn,...). They are related to elliptic integrals of the second kind F (ϕ k 2 ) = ϕ 0 dθ 1 k2 sin 2 θ In this project we will experiment with extremely fast and easy-to-implement itera-

3 tions to compute these integrals. We will make numerical studies of these mechanical systems and demonstrate the solution graphically. Handledare: Claus Führer (CF) 3. Matematiska sagor (Favorit i repris!) Ofta är det svårt att presentera en intressant matematisk frågeställning på ett sätt som väcker åhörarens intresse. En möjlighet är att man väver in problemet i en trevlig historia som väcker nyfikenheten på hur ett problem ska lösas. Här ges det möjlighet att kombinera den matematiska och språkliga begåvningen. Handledare: Viktor Ufnarovski (VU) Epost: ufn@maths.lth.se 4. Bertrands postulat (Ny!) Chebyshev said it and I say it again, there is always a prime between n and 2n. Året 1850 gav Tschebyscheff ett ganska komplicerat bevis för att det för varje heltal n > 1, finns ett primtal p sådant att n < p < 2n. Erdős fann 1932 ett enkelt bevis för denna sats, varom dikten ovan berättar. Det är välkänt att det finns hur många primtal som helst, vilket bland annat följer av ovan nämnda sats. Den berömda primtalssatsen ger mer detaljerad information: Antalet primtal mellan 0 och n är ungefär n ln n. Denna sats har visats många gånger, först av Hadamard och de la Vallée-Poussin. I detta projekt bekantar vi oss närmare med dessa och andra liknande satser. Handledare: Tomas Persson (TP). Epost: tomasp@maths.lth.se 5. Automatisk detektion av smuts på en kameralins? (Ny!) Inom digitalkameraindustrin ställs man inför problemet att montera en sensor och tillhörande lins. Ofta limmas dessa komponenter tillsammans för hållbarhetens skull, men detta medför vanligtvis att någon eller båda komponenterna måste skrotas om något går fel. Ett fel skulle kunna vara att där kommer in damm eller annan smuts på sensorn som inte går att få bort efter limningsprocessen. Det är därför önskvärt att ha en automatiserad process som detekterar smuts innan komponenterna limmas samman, så att man kan avbryta och rengöra komponenterna. En vanligt förekommande metod är att ta en bild på ett ljusbord med jämn belysning och analysera bilden efter smuts. Idealt kommer smuts att vara mörkare än de vita områdena, men på grund av optiska fenomen såsom vignettering, gäller inte detta globalt i bilden.

4 Projektförslag 2016 Figure 1: Fläck! I detta projekt får ni tillgång till bilder med och utan smuts tagna på ett ljusbord från en verklig produktionssajt. Er uppgift är att skapa ett script som kan urskilja de smutsiga bilderna från de rena. Projektet lämpar sig för de som är intresserade av programmering. Handledare: Marcus Valtonen Örnhag (MVÖ) Epost: marcus.valtonen ornhag@math.lth.se. 6. Några (geometriska) minimeringsproblem (Ny!) Vi studerar problem av typen "Låt A, B och C vara hörn i en triangel i planet. Bestäm punkten X så att summan av avstånden X A + X B + X C blir så liten som möjligt". Problemet kan lösas med analys, men det kan även diskuteras geometriskt och fysikaliskt (experiment kan utföras!). Vi diskuterar även problemet då vi låter avstånden vara kvadrerade. Blir det lättare eller svårare att lösa problemet? Hur blir det om vi har fler än tre punkter? Kan vi lösa motsvarande problem då? Handledare: Mikael Persson Sundqvist (MPS) Epost: mickep@maths.lth.se 7. Eulers polyedersats och platoniska kroppar (Ny!) En polyeder där samtliga sidor består av regelbundna m-hörningar för ett visst m kallas en platonsk kropp. Man kan visa att det bara finns fem platonska kroppar: tetraeder, kub, oktaeder, dodekaeder och ikosaeder. Detta kan bevisas på ett förvånansvärt enkelt sätt med hjälp av något som kallas Eulers polyedersats. I detta projekt skall vi beskriva Eulers polyedersats och hur den kan användas för att finna alla platonska kroppar. Beroende på vad ni är intresserade av kan vi också knyta an till matematikhistoria (de platonska kropparna var kända redan av Euklides för 2300 år sedan), filosofi (i Platons filosofi var de olika elementen uppbyggda av olika platonska kroppar) eller konst (de platonska kropparna har inspirerat en mängd konstnärer genom historien). Handledare: Pelle Pettersson (PP) Epost: pelle@maths.lth.se

5 8. Banach Tarskis paradox Låt oss säga att du har en apelsin. Föreställ dig att du har en speciell kniv som låter dig skära och dela upp apelsinskalet i mycket tunna bitar. Kan du skära upp apelsinskalet på ett sådant sätt att du får tillräckligt med skalmaterial för att bygga ihop två nya apelsiner? Detta är en förenklad förklaring av vad Banach-Tarskis paradox handlar om. Figure 2: Paradox? Målet med detta projekt är att ge en matematisk beskrivning av Banach-Tarskis paradox (Banach-Tarskis sats). Handledare: Magnus Aspenberg (MA) Epost: magnus.aspenberg@math.lth.se 9. Rumtidsgeometrin och Einsteins speciella relativitetsteori (Ny!) Utforska Minkowskigeometri med hjälp av euklidisk geometri, förstå egentid (proper time), och använd detta för att förklara några fenomen i relativitetsteori, t.ex. tidsdilation och tvillingparadoxen. Handledare: Sara Maad Sasane (SMS) Epost: sara.maad_sasane@math.lth.se 10. Klassisk geometri presenterad med komplexa tal (Ny!) Vi härledar klassiska geometriska satser med hjälp av beräkningar i komplexa talplanet. Handledare: Viktor Ufnarovski (VU) Epost: ufn@maths.lth.se

Projekt i Matematisk kommunikation: Projektförslag 2015

Projekt i Matematisk kommunikation: Projektförslag 2015 Projekt i Matematisk kommunikation: Projektförslag 205 27 februari 205 Inledning Projekten utförs i grupper om fyra personer. Projektförslagen presenteras på föreläsningen onsdag den 4 mars kl 0-2 i E:335

Läs mer

Eulers polyederformel och de platonska kropparna

Eulers polyederformel och de platonska kropparna Eulers polyederformel och de platonska kropparna En polyeder är en kropp i rummet som begränsas av sidoytor som alla är polygoner. Exempel är tetraedern och kuben, men klotet och konen är inte polyedrar.

Läs mer

Om plana och planära grafer

Om plana och planära grafer KTH Matematik Bengt Ek April 2006 Material till kursen 5B1118 Diskret matematik för CL3: Om plana och planära grafer I många sammanhang (t.ex. vid konstruktion av elektriska kretsar) är det intressant

Läs mer

Om plana och planära grafer

Om plana och planära grafer Matematik, KTH Bengt Ek november 2017 Material till kurserna SF1679 och SF1688, Diskret matematik: Om plana och planära grafer I många sammanhang (t.ex. vid konstruktion av elektriska kretsar) är det intressant

Läs mer

Explorativ övning 11 GEOMETRI

Explorativ övning 11 GEOMETRI Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Banach-Tarskis paradox

Banach-Tarskis paradox Banach-Tarskis paradox Tony Johansson 1MA239: Specialkurs i Matematik II Uppsala Universitet VT 2018 Banach-Tarskis paradox, bevisad 1924 och döpt efter Stefan Banach och Alfred Tarski, är en sats inom

Läs mer

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2015

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2015 Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2015 Kurschef: Niels Chr. Overgaard (NCO), tel. 046-222 85 32, epost nco@maths.lth.se, rum MH:551B. Föreläsningar: NCO Fr 13 15 E:1406 läsvecka 1,

Läs mer

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2013

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2013 Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2013 Kurschef: (NCO), tel. 046-222 85 32, epost nco@maths.lth.se, rum MH:551B. Föreläsningar: NCO On 8 10 E:C läsvecka 1, 2, 3. Övningar: Kerstin

Läs mer

4-10 Rymdgeometri fördjupning Namn:..

4-10 Rymdgeometri fördjupning Namn:.. 4-10 Rymdgeometri fördjupning Namn:.. Inledning I kapitlet om rymdgeometri lärde du dig känna igen de vanligaste tredimensionella kropparna, och hur man beräknar deras yta och volym. I detta kapitel skall

Läs mer

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p) UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant

Läs mer

Tentamen i Matematik 2: M0030M.

Tentamen i Matematik 2: M0030M. Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING II. Föreläsning II. Mikael P. Sundqvist Föreläsning II Mikael P. Sundqvist Att bygga matematisk teori Odefinierade begrepp Axiom påstående som ej behöver bevisas Definition namn på begrepp Sats påstående som måste bevisas Lemma hjälpsats Proposition

Läs mer

Matematisk kommunikation (FMAA30 4,5hp) Läsperiod 2, HT 2018 Kursprogram + Inlämningsuppgift 2 + gruppindelning

Matematisk kommunikation (FMAA30 4,5hp) Läsperiod 2, HT 2018 Kursprogram + Inlämningsuppgift 2 + gruppindelning Matematisk kommunikation (FMAA30 4,5hp) Läsperiod 2, HT 2018 Kursprogram + Inlämningsuppgift 2 + gruppindelning Kurschef: (NCO), tel. 046-222 85 32, epost nco@maths.lth.se, rum MH:551B. Föreläsningar:

Läs mer

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2014

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2014 Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2014 Kurschef: Niels Chr. Overgaard (NCO), tel. 046-222 85 32, epost nco@maths.lth.se, rum MH:551B. Föreläsningar: NCO On 8 10 E:1406 läsvecka 1,

Läs mer

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2017

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2017 Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2017 Kurschef: Niels Chr. Overgaard (NCO), tel. 046-222 85 32, epost nco@maths.lth.se, rum MH:551B. Föreläsningar: NCO Må 8 10 E:C läsvecka 1, 2,

Läs mer

Platonska kroppar med Matlab

Platonska kroppar med Matlab CTH/GU LABORATION 1 MVE400-2014/2015 Matematiska vetenskaper Platonska kroppar med Matlab Inledning Platonska kroppar är tre-dimensionella konvexa polyedrar som har likformiga polygoner som sidor. Lika

Läs mer

KUNSKAP OCH KOMMUNIKATION

KUNSKAP OCH KOMMUNIKATION KUNSKAP OCH KOMMUNIKATION SIFFERDJÄVULENS PERSPEKTIV JULIUSZ BRZEZINSKI MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA OCH GÖTEBORGS UNIVERSITET KOMMUNIKATION FORMELL : YRKESROLL, LÄRARROLL, MED- VERKAN

Läs mer

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and

Läs mer

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2016

Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2016 Matematisk kommunikation (FMA085 4,5hp) Läsperiod 2, HT 2016 Kurschef: Niels Chr. Overgaard (NCO), tel. 046-222 85 32, epost nco@maths.lth.se, rum MH:551B. Föreläsningar: NCO Må 8 10 E:1406 läsvecka 1,

Läs mer

Några satser ur talteorin

Några satser ur talteorin Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:

9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: 9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera

Läs mer

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.

Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri. Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Att skriva en matematisk uppsats

Att skriva en matematisk uppsats Att skriva en matematisk uppsats Del av kommunikationsspåret på matematikprogrammet. Tidigare har ni skrivit och presenterat kortare texter, nu ska vi fokusera på längre texter. Varför? Det räcker inte

Läs mer

RSA-kryptering och primalitetstest

RSA-kryptering och primalitetstest Matematik, KTH Bengt Ek augusti 2016 Material till kurserna SF1630 och SF1679, Diskret matematik: RSA-kryptering och primalitetstest Hemliga koder (dvs koder som används för att göra meddelanden oläsbara

Läs mer

, S(6, 2). = = = =

, S(6, 2). = = = = 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Med anledning av de nya kursplanerna har Strävorna reviderats. Formen, en matris med rutor, är densamma men istället för att som tidigare anknyta till mål att sträva

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om restklassaritmetik Mikael Hindgren 19 september 2018 Exempel 1 Klockan är nu 8.00 Vad är klockan om 78 timmar? Vad var klockan för 53 timmar sedan? 8 + 78

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel

Läs mer

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd

Läs mer

Hur man skriver matematik

Hur man skriver matematik Hur man skriver matematik Niels Chr. Overgaard 2018-10-01 N. Chr. Overgaard Skriva matematik 2018-10-01 1 / 12 Information: Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man

Läs mer

Tentamen MMG610 Diskret Matematik, GU

Tentamen MMG610 Diskret Matematik, GU Tentamen MMG610 Diskret Matematik, GU 2017-01-04 kl. 08.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers/GU Telefonvakt: Peter Hegarty, telefon: 0766 377 873 Hjälpmedel: Inga hjälpmedel,

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri. 9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier

Läs mer

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet

Sats 2.1 (Kinesiska restsatsen) Låt n och m vara relativt prima heltal samt a och b två godtyckliga heltal. Då har ekvationssystemet Avsnitt 2 Tillägg om kongruensräkning Detta avsnitt handlar om två klassiska satser som används för att förenkla kongruensräkning: Kinesiska restsatsen och Fermats lilla sats. Den första satsen används

Läs mer

Area och volym hos Euklides och Hilberts tredje problem

Area och volym hos Euklides och Hilberts tredje problem Area och volym hos Euklides och Hilberts tredje problem Torbjörn Tambour Mullsjö den 20 juni 2018 Inledning Att arean av en triangel ges av formeln A = b h 2, där b är (längden av) basen och h (längden

Läs mer

Extramaterial till Matematik X

Extramaterial till Matematik X LIBER PROGRMMERING OCH DIGITL KOMPETENS Extramaterial till Matematik X NIVÅ TRE Programmering LÄRRE I den här uppgiften får du och dina elever en introduktion till programmering. Uppgiften vänder sig först

Läs mer

Arbetsblad 2:1. 1 a) Figuren ska vikas till en kub. Vilken av kuberna blir det? 2 Vilka av figurerna kan du vika till en kub?

Arbetsblad 2:1. 1 a) Figuren ska vikas till en kub. Vilken av kuberna blir det? 2 Vilka av figurerna kan du vika till en kub? Arbetsblad 2:1 Vika kuber 1 a) Figuren ska ikas till en kub. Vilken a kuberna blir det? Grundbok: grundkurs s. 59, blå kurs s. 81 b) Vilken a figurerna kan ikas till den här kuben? A B A B C D C D 2 Vilka

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Föreläsning 5: Geometri

Föreläsning 5: Geometri Föreläsning 5: Geometri Geometri i skolan Grundläggande begrepp Former i omvärlden Plangeometriska figurer Symmetri och tessellering Tredimensionell geometri och geometriska kroppar Omkrets, area, volym

Läs mer

Några geometriska konstruktioner i R 3

Några geometriska konstruktioner i R 3 Linjär algebra, AT / Matematiska vetenskaper Några geometriska konstruktioner i R Inledning Vi skall se på några Platonska kroppar. Dessa är konvexa tre-dimensionella polyedrar som har likformiga polygoner

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

M=matte - Handledning

M=matte - Handledning Fingris Fingerräkning Grunden för matematik är taluppfattning. I detta spel parar du ihop tal med fingrarnas antal. Finns det fler fingrar än talet anger? Eller färre? Lika många? Det finns många frågor

Läs mer

ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP

ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN ENDIMENSIONELL ANALYS FÖR C, D OCH BI HT 2015, DELKURS B1, 8 HP Kurskod: FMAA05 Kurschef:, rum 545 Matematiska Institutionen. Tel. 046-222 0553. Email: magnusa@maths.lth.se

Läs mer

Module 6: Integrals and applications

Module 6: Integrals and applications Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

Wittgenstein for dummies Eller hur vi gör det obegripliga begripligt. Västerås 15 februari 2017

Wittgenstein for dummies Eller hur vi gör det obegripliga begripligt. Västerås 15 februari 2017 Wittgenstein for dummies Eller hur vi gör det obegripliga begripligt Västerås 15 februari 2017 En värld är varje människa, befolkad av blinda varelser i dunkelt uppror mot jaget konungen som härskar över

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 19 SF1626 Flervariabelanalys Föreläsning 1 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 218, Period 3 2 / 19 SF1626 Flervariabelanalys agens Lektion ubbelintegraler: Avsnitt 14.1-14.2

Läs mer

NÅGOT OM KRYPTERING. Kapitel 1

NÅGOT OM KRYPTERING. Kapitel 1 Kapitel 1 NÅGOT OM KRYPTERING Behovet av att skydda information har funnits mycket länge, men först i samband med utvecklingen av datatekniken har det blivit ett allmänt problem för alla moderna samhällen.

Läs mer

Mekanik FMEA30 Project Vibration Damping

Mekanik FMEA30 Project Vibration Damping Mekanik FMEA30 Project Vibration Damping 1 Projektarbete INDELNING I PROJEKTGRUPPER Varje Projektgrupp skall bestå av en eller två studenter. Indelningen i grupper genomförs under Lp1 2018, Läsvecka 7-8.

Läs mer

Mekanik FMEA30 Project Vibration Damping

Mekanik FMEA30 Project Vibration Damping Mekanik FMEA30 Project Vibration Damping 1 Projektarbete INDELNING I PROJEKTGRUPPER Varje Projektgrupp skall bestå av en eller två studenter. Indelningen i grupper genomförs under Lp1 2017, Läsvecka 7-8.

Läs mer

Endimensionell analys B2 BiLV

Endimensionell analys B2 BiLV - Hem Hem Om kursen Kurs URL (för B2-delen) http://ctr.maths.lu.se/matematiklth/courses Kursansvarig: Mario Natiello (http://www.maths.lu.se/staff/mario-natiello/) Övningsassistenter: Mario Natiello (Bi),

Läs mer

Kravspecifikation Fredrik Berntsson Version 1.1

Kravspecifikation Fredrik Berntsson Version 1.1 Kravspecifikation Fredrik Berntsson Version 1.1 Status Granskad FB 2016-02-01 Godkänd FB 2015-02-01 Dokumenthistorik Version Datum Utförda ändringar Utförda av Granskad 1.0 2015-02-01 Första versionen

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

ENDIMENSIONELL ANALYS FÖR C, D OCH N HT 2014, DELKURS A1, 5 HP

ENDIMENSIONELL ANALYS FÖR C, D OCH N HT 2014, DELKURS A1, 5 HP LUNDS UNIVERSITET MATEMATISKA INSTITUTIONEN Magnus Aspenberg ENDIMENSIONELL ANALYS FÖR C, D OCH N HT 2014, DELKURS A1, 5 HP Kurskod: FMAA01 Kurschef: Magnus Aspenberg, rum 343 Matematiska Institutionen.

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

Att man bara kan konstruera fem platonska kroppar hänger samman med vinkelsumman som bildas då sidorna möts i kroppens hörn.

Att man bara kan konstruera fem platonska kroppar hänger samman med vinkelsumman som bildas då sidorna möts i kroppens hörn. Geometri Mål När eleverna har studerat det här kapitlet ska de: förstå vad volym är för något kunna ge namn på och känna igen olika rymdgeometriska kroppar såsom rätblock, kub, cylinder, prisma, klot,

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

GESTALTANDE UNDERSÖKNING

GESTALTANDE UNDERSÖKNING GESTALTANDE UNDERSÖKNING Min gestaltande undersökning behandlar vad som händer när konst och matematik möts och interagerar. Jag har arbetat utifrån frågeställningen: Vilka möjligheter och fördelar finns

Läs mer

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.

8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri. 8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier

Läs mer

POLYNOM OCH POLYNOMEKVATIONER

POLYNOM OCH POLYNOMEKVATIONER Explorativ övning 8 POLYNOM OCH POLYNOMEKVATIONER Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med en del nya egenskaper hos polynom.

Läs mer

Kapitel 2: De hela talen

Kapitel 2: De hela talen Kapitel 2: De hela talen Divisionsalgoritmen ( a a Z, d Z\{0} q, r Z : d = q + r ) d, 0 r d c 2005 Eric Järpe Högskolan i Halmstad där q kallas kvoten och r kallas principala resten vid heltalsdivision.

Läs mer

Mathematical Cryptology (6hp)

Mathematical Cryptology (6hp) Time to sign up for the continuation course Mathematical Cryptology (6hp) 12 lectures (2 hours) + 2 small projects Exercises are done on your own and discussed in class (6*2 hours). Contents: Elliptic

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag

SF1661 Perspektiv på matematik Tentamen 20 oktober 2011 kl Svar och lösningsförslag Hans Thunberg KTH Matematik SF66 Perspektiv på matematik Tentamen 0 oktober 0 kl 08.00.00 Svar och lösningsförslag () Bestäm ekvationen för den cirkel som passerar genom punkten (, 4) och har sin medelpunkt

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 6, 977 Årgång 6, 977 Första häftet 36. Lös ekvationssystemet { x y = 8 y log x + x log y = 2 (Svar: x = y = 8) 36. lös ekvationen 6sin x 6sin2x + 5sin3x =. (Svar: x = n 8, 84,26 + n 36,

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om heltal Mikael Hindgren 17 september 2018 Delbarhet Exempel 1 42 = 6 7 Vi säger: 7 är en faktor i 42 eller 7 delar 42 Vi skriver: 7 42 Definition 1 Om a, b

Läs mer

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband.

Ma7-Per: Algebra. Det andra arbetsområdet handlar om algebra och samband. Ma7-Per: Algebra Det andra arbetsområdet handlar om algebra och samband. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Kongruens och likformighet

Kongruens och likformighet Kongruens och likformighet Torbjörn Tambour 23 mars 2015 I kompendiet har jag tagit kongruens- och likformighetsfallen mer eller mindre som axiom, vilket jag nu tycker är olyckligt, och de här sidorna

Läs mer

Svarta håls existens är en förutsägelse av Einsteins allmänna relativitetsteori (Einsteinsk mekanik med gravitation), som generaliserar Newtonsk

Svarta håls existens är en förutsägelse av Einsteins allmänna relativitetsteori (Einsteinsk mekanik med gravitation), som generaliserar Newtonsk Svarta hål Svarta håls existens är en förutsägelse av Einsteins allmänna relativitetsteori (Einsteinsk mekanik med gravitation), som generaliserar Newtonsk mekanik (med gravitation). För att förstå svarta

Läs mer

Hur man skriver matematik

Hur man skriver matematik Hur man skriver matematik Niels Chr. Overgaard 2015-09-28 1 / 8 Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man granskar och opponerar på en annan kursdeltagares lösning.

Läs mer

Extramaterial till Matematik X

Extramaterial till Matematik X LIBR PROGRMMRING OH DIGITL KOMPTNS xtramaterial till Matematik X NIVÅ TT NIVÅ TVÅ NIVÅ TR Geometri LÄRR I den här uppgiften får du och dina elever bekanta er med det digitala verktyget Geoboard. leverna

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Planering Geometri a r 9

Planering Geometri a r 9 Planering Geometri a r 9 Mål När du har arbetat med det här kapitlet ska du kunna: förstå vad volym är för något ge namn och känna igen olika rymdgeometriska kroppar, till exempel rätblock, kub, cylinder,

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

COMPUTABILITY BERÄKNINGSBARHET. Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall

COMPUTABILITY BERÄKNINGSBARHET. Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall COMPUTABILITY BERÄKNINGSBARHET Källa: Goldschlager, Lister: Computer Science A Modern Introduction 2. upplaga 1988, Prentice Hall Den centrala frågan: givet ett problem, kan det ha en algoritmisk lösning?

Läs mer

Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av. Fastställandedatum. Styrelsen för utbildningsvetenskap

Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av. Fastställandedatum. Styrelsen för utbildningsvetenskap DNR LIU-2009-00464 1(5) Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av Styrelsen för utbildningsvetenskap Fastställandedatum 2012-01-09 2(5) Huvudområde Matematik

Läs mer

Explorativ övning Geometri

Explorativ övning Geometri Explorativ övning Geometri Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Tentamen i Matematik 2: M0030M.

Tentamen i Matematik 2: M0030M. Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p

Läs mer

Hur kan forskningen bidra till utvecklingen av matematikundervisningen?

Hur kan forskningen bidra till utvecklingen av matematikundervisningen? Hur kan forskningen bidra till utvecklingen av matematikundervisningen? Johan Lithner Johan.Lithner@math.umu.se Umeå Forskningscentrum För Matematikdidaktik www.ufm.org.umu.se 1 Frågor att fundera över

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 10 januari 2011 kl

Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 10 januari 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF131 och SF130, den 10 januari 2011 kl 14.00-19.00. Examinator: Olof Heden, tel. 0730547891.

Läs mer

9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att:

9D Ma VT Syftet med undervisningen är att du ska utveckla din förmåga att: 9D Ma VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F

Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F På jakt efter förmågor i undervisningen Problemlösning, utveckla förmågan att kommunicera matematik och använda matematikens uttrycksformer 5 F Aktivitetens namn: Triangelmatte Syfte Undervisningen ska

Läs mer

12.6 Heat equation, Wave equation

12.6 Heat equation, Wave equation 12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2

Läs mer

Isometries of the plane

Isometries of the plane Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i

Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen

Läs mer