På hur många olika sätt kan man kombinera tre smaker i en kulglass? På
|
|
- Berit Lundberg
- för 6 år sedan
- Visningar:
Transkript
1 Jorryt van Bommel & Hanna Palmér Matematik i soffan kombinatorik i förskoleklass Intressanta elevsamtal uppstår när olikfärgade björnar ska kombineras. Ett systematiskt utforskande i en välkänd kontext leder till resonemang och argumentation i arbetet. Elevernas egna dokumentationer visar att de både använder och går mellan olika representationsformer. På hur många olika sätt kan man kombinera tre smaker i en kulglass? På hur många olika sätt kan man kombinera två par byxor med tre tröjor? Frågorna utgår från två relativ vanliga kontexter för formell introduktion i kombinatorik. I den här artikeln vill vi dela med oss av erfarenheter från projektet Problemlösning i förskoleklass. En av de genomförda problemlösningsuppgifterna med matematikinnehållet kombinatorik var följande: På hur många olika sätt kan tre björnar sitta i en soffa? Totalt arbetade vi med åtta förskoleklasser och cirka 145 elever. Just denna uppgift genomfördes av 87 elever. Vi berättar här om genomförandet, analys av elevlösningar samt om en digital vidareutveckling av uppgiften. Kontextens betydelse Problemuppgiften introducerades genom att vi berättade om tre björnar som ville sitta i en soffa med tre platser. Kontexten blev således en välkänd situation vilket Geetha Ramani och Celia Brownell har visat påverkar elever positivt när det gäller engagemang, lärande och samarbete. I ett tidigare projekt i förskoleklass använde Hanna Palmér och Andreas Ebbelind en kombinatorikuppgift kopplad till tre olikfärgade bilar som skulle ställas bredvid varandra i ett garage. Tre elever fick då agerade bilar som parkerade sig i garaget, vilket bestod av tre stolar. På en interaktiv skrivtavla fick de bokföra genom att parkera sin bil på motsvarande ställe där de själva hade suttit. Engagemanget var stort men vid genomförandet verkade eleverna som agerade bil inte ha samma överblick över möjliga lösningar som de elever som var publik. Eleverna som agerade bilar utgick oftast enbart ifrån sig själva och om de hade suttit på de tre olika stolarna så var de nöjda. Det resulterade i att de många gånger ansåg sig klara med uppgiften efter att ha hittat tre av de sex olika möjligheterna, så som bilarna på bilderna här nedan. NÄMNAREN NR
2 När fler sätt efterfrågades kunde eleverna ge förslag som att sätta sig under stolen, att parkera baklänges eller sidledes. Kanske var det upplägget, kanske kontexten som försvårade för elever att veta vad de skulle fokusera på, vilket även Niklas Pramling och Ingrid Pramling Samuelsson kom fram till när de analyserade förskolebarnens illustrationer till (räkne)sagor. Vad betyder det att parkera en bil på olika sätt? Glassexemplet i inledningen kan ge liknande kontextberoende problem. Är en glass med en kula citronglass och en kula jordgubbsglass samma glass som en glass med en kula jordgubbsglass och en kula citronglass, eller är det två olika glassar? Kontexten med björnar i en soffa valde vi för att den förhoppningsvis skulle vara mer bekant för eleverna än att parkera bilar och för att undvika de kontextproblem vi hade upplevt tidigare. På hur många sätt kan tre björnar sitta i en soffa? Problemuppgiften introducerades för eleverna och illustrerades med hjälp av tre plastbjörnar i tre olika färger. Eleverna fick varsitt papper för att dokumentera sina lösningar. Eleverna jobbade först enskilt, sedan parades de ihop för att jämföra sina lösningar. Under både det enskilda arbetet och pararbetet pågick många intressanta elevsamtal. Ett exempel är en elev som satt för sig själv och pratade intensivt med björnarna: Nej nu är det din tur att sitta i mitten och du får blåis och gulis som kompisar bredvid dig. Så, det var roligt, nu är det blåis tur att sitta här Ett annat exempel är två elever som jämförde sina lösningar och upptäckte att lösningarna var olika, fast om vi vänder på mitt blad är de lika. Slutligen genomfördes en helklassdiskussion med fokus på två delar: 1. lösningar och det matematiska innehållet 2. olika sätt att dokumentera sin lösning. Hur många lösningar hittade eleverna? Uppgiften var svår för eleverna och i det enskilda arbetet var det enbart två elever som hittade samtliga sex kombinationer. Hur går man tillväga när man vill prata med dessa unga elever om det matematiska innehållet? Kan elever i förskoleklass hantera ett matematiskt innehåll som vanligtvis ligger några årskurser högre? Vi valde att strukturerat gå igenom de möjliga lösningarna med eleverna utifrån deras dokumentationer. Först ställde vi fram björnar som visade en lösning utifrån en elevs förslag. 16 NÄMNAREN NR
3 Eleverna fick sedan föreslå en ny lösning, med en annan björn i mitten. Sedan en till med ytterligare en ny björn i mitten. På följdfrågan om det fanns fler björnar som kunde sitta i mitten kunde eleverna motivera varför det inte var möjligt. Det resonemanget kunde de använda igen, lite senare. När dessa tre kombinationer var framställda fick eleverna frågan om de kunde hitta ännu ett nytt sätt att ställa björnarna på. Beroende på vilket förslag eleven gav ställdes det framför den kombination som hade en björn av samma färg i mitten. Framför den första lösningen med en blå björn i mitten ställs en ny lösning med en blå björn i mitten. Att tydliggöra en struktur för elever gör att några av dem direkt kan komma med förslag på ytterligare en kombination, och en till Med sex olika kombinationer framför sig uppstår den spännande frågan: finns det fler sätt? Resonemang, liknande det som användes för att förklara varför inte fler olika björnar kunde sitta i mitten, framfördes nu för att motivera varför det inte kan finnas fler kombinationer. Målet med den här delen av lektionen var inte att förklara att man kan räkna ut antal kombinationer genom att använda sig av fakultetsräkning (3 2 1 = 3!) utan att ge eleverna erfarenhet av systematiskt utforskande samt att de fick argumentera för att de hade hittat alla kombinationer eller inte. Representationer Elevernas dokumentationer erbjöd möjlighet att dels titta på hur de hade valt att strukturera sina lösningar, dels att titta på abstraktionen i deras representationer. Flera forskare har försökt beskriva och schematisera olika representationsformer: Piaget skriver till exempel om symbols och signs, där symbols är (elevers) egna och signs är konventionella. Heddens är en av dem som tidigare har skrivit om halvkonkret och halvabstrakt medan Hughes delar in i pictographic, iconic och symbolic. I vår artikel Exploring the role of representations when young children solve a combinatorial task har vi beskrivit detta och vi valde att titta på representationerna i termer av konkret halvkonkret halvabstrakt abstrakt. Dokumentationsformen stimulerade eleverna att starta på den halvkonkreta nivån. Vi kunde se att ett fåtal elever växlade mellan halvkonkreta och halvabstrakta representationer och i en pågående följdstudie har vi även sett enstaka fall av abstrakt nivå där elever använder bokstäver fast fortfarande i korresponderande färger. NÄMNAREN NR
4 Konkret Fysiska björnar/ plastbjörnar Halvkonkret Avbilda björnar (rita av/rita egna) Halvabstrakt Prick/streck el dyl i samma färg som björnen Abstrakt Symboler (t ex bokstäver) Inga nya kombinationer Unika kombinationer A Unika kombinationer B Dubbletter Representationer kopplat till lösningar När vi tittade på eventuella samband mellan abstraktionen i representationerna och elevernas lösningar fick vi ett intressant resultat att fundera kring. Det visade sig finnas skillnader om eleverna använde sig av ett halvkonkret eller halvabstrakt sätt att dokumentera. Från de 87 elever där vi har elevdokumentation, såg vi följande: Eleven har enbart ritat kombinationen som visats i introduktionen av läraren Eleven har ritat unika kombinationer, dock inte alla. Eleven har ritat alla 6 unika kombinationer och inga dubbletter. Eleven har ritat flera olika kombinationer där vissa är dubbletter. Halvkonkret Växling halvkonkret-halvabstrakt Halvabstrakt (4) 8 (3) 24 (10) 3 30 (1) Totalt Antalet i parentes anger hur många elever som hade unika kombinationer på så sätt att alla björnar hade suttit på ett ställe en gång. En sådan dokumentation kan, som i Unika kombinationer A, tyda på att eleven tolkat annat sätt som att inget i den nya kombinationen får vara likt de tidigare kombinationerna. Det indikerar även någon form av systematisering. 18 NÄMNAREN NR
5 Vidare kunde vi se att ett antal elever växlade från halvkonkret till halvabstrakt. Det vi fann intressant var att dubbletter förekom i mycket större utsträckning hos elever som använde sig av en halvabstrakt representation. Olika anledningar till detta har vi reflekterat över. En möjlig orsak skulle kunna vara att det går mycket fortare att rita en prick än en björn och därmed skulle det snabbare bli fler möjligheter. En annan möjlighet är att eleverna som ritar björnar, d v s en halvkonkret representation, inte har lämnat kontexten på samma sätt och är närmare problemet, vilket var på hur många olika sätt björnarna kan sitta. För några av de elever som ritar prickar kan uppgiften ha utvecklats till att rita tre prickar av olika färg på rad. Att anpassa problemet Efter projektets första genomförande såg vi behov av att anpassa problemet både för att förenkla och fördjupa. Några sätt att förenkla inom samma kontext var att hålla sig till två björnar på en tresitssoffa, eller tre björnar på en tvåsitssoffa. Sådana anpassningar gör det möjligt att återkomma till ett liknande problem men där eleverna inte nödvändigtvis direkt ser att det kommer att finnas sex lösningar igen. Två björnar på en tvåsitssoffa blir inte givande eftersom en systematisering av kombinationerna inte är möjligt. NÄMNAREN NR
6 En fördjupning av problemet är möjligt genom att utvidga antal björnar eller soffplatser. Fyra björnar på en tresitssoffa, eller fyra på en fyrsitssoffa. Men även fyra björnar på en tvåsitssoffa! En digital variant Under våren 2016 hade vi möjlighet att göra en digital variant av uppgiften, där dessa möjligheter till förenkling och fördjupning av problemet finns inbyggda i applikationen CombiBears, www2.kau.se/jorrbomm. Lärare och elever kan nu välja hur många platser som ska finnas i soffan och hur många björnar som ska sitta där. Efter varje genomförd kombination kan eleverna spara sina lösningar genom att ta kort och slutligen jämföra korten systematiskt för att se om de har hittat alla kombinationer eller inte. I projektet är nästa steg att studera om den systematiska delen av att hitta kombinationer kan utmanas mer effektivt genom den digitala versionen. Den halvkonkreta situationen i applikationen ska testas och vi vill veta om elever kommer att kunna ta steget till ett systematiskt sätt att hitta kombinationerna. Att sedan kunna gå till nästa nivå halvabstrakt, verkar vara ett logiskt steg, men inte förrän systematiken först har fått stå i fokus. LITTERATUR Palmér, H. & Ebbelind, A. (2012). Matematiklärande. I Herrlin, K., Frank, E. & Ackesjö, H. (red). Förskoleklassens didaktik. Möjligheter och utmaningar. Stockholm: Natur & Kultur. Palmér, H. & van Bommel J. (2016). Exploring the role of representations when young children solve a combinatorial task. Paper presenterat på Madif 10, Karlstad. Pramling, N. & Pramling Samuelsson, I. (2008). Identifying and solving prob-lems: Making sense of basic mathematics through storytelling in the pre-school class. International Journal of Early Childhood, 40(1), Ramani, G.B. & Brownell, C.A. (2014). Preschoolers cooperative problem solving: Integrating play and problem solving. Journal of Early Childhood Research, 12(1), Projektet i sin helhet beskrivs i boken Problemlösning som utgångspunkt Matematikundervisning i förskoleklass, se Vi har läst i detta nummer, sid 59. Konferens: Tänka, resonera och räkna i förskoleklassen 4, 5 & 13 oktober. Än finns det platser kvar. ncm.gu.se 20 NÄMNAREN NR
Att utveckla taluppfattning genom att dela upp tal är mycket vanligt i de
Jorryt van Bommel Räkna med ägg När elever möter matematikinnehåll genom arbete med konkret och laborativt material är det av vikt att steget från konkret arbete till abstrakt och generell matematik inte
genom berikning inom det matematiska område klassen arbetar med. Modellen är verkligen enkel: en äggkartong med plats för ett visst antal ägg.
Jorryt van Bommel Räkna med ägg När elever möter matematikinnehåll genom arbete med konkret och laborativt material är det av vikt att steget från konkret arbete till abstrakt och generell matematik inte
Anpassning av problem
Modul: Problemlösning Del 7: Anpassning av problem Anpassning av problem Kerstin Hagland och Eva Taflin Detta är en något omarbetad text från boken: Hagland, K., Hedrén R., & Taflin, E. (2005). Rika matematiska
Upprepade mönster kan talen bytas ut mot bokstäverna: A B C A B C eller mot formerna: Anna-Lena Ekdahl, Högskolan i Jönköping
Algebra Del 1 Upprepade mönster Anna-Lena Ekdahl, Högskolan i Jönköping Det är välkänt att barn långt innan de börjat skolan utforskar och skapar mönster på olika sätt och med olika material. Ofta skapas
Upprepade mönster (fortsättning från del 1)
Modul: Algebra Del 2: Resonemangsförmåga Upprepade mönster (fortsättning från del 1) Anna-Lena Ekdahl och Robert Gunnarsson, Högskolan i Jönköping Ett viktigt syfte med att arbeta med upprepade mönster
Livet i Mattelandet. ProVLEKTioN: Problemlösning Dela kulor
Livet i Mattelandet I Arbetsboken till Livet i Mattelandet F-klass får eleverna bland annat arbeta med öppna problemlösningsuppgifter. Problemen har alltså flera olika lösningar som uppmuntrar eleverna
Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning
Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska
Verktygsbanken. Grundskola åk 7 9, modul: Problemlösning. Maria Larsson, Mälardalens högskola och Andreas Bergwall, Örebro universitet
Verktygsbanken Grundskola åk 7 9, modul: Problemlösning Maria Larsson, Mälardalens högskola och Andreas Bergwall, Örebro universitet Grundskola åk 7-9 Del: 1-8 Verktygsbanken Maria Larsson, Mälardalens
PRIM-gruppen har på uppdrag av Skolverket utarbetat ett webbaserat
Katarina Kjellström Ett bedömningsstöd för grundskolans matematiklärare På Skolverkets webbplats finns nu ett fritt tillgängligt bedömnings stöd. Artikel författaren har deltagit i arbetet med att ta fram
Pedagogiskt café. Problemlösning
Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt
Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under
Christina Skodras Muffles truffles Undervisning i multiplikation med systematiskt varierade exempel I Nämnaren 2015:4 beskrivs ROMB-projektet övergripande i Unga matematiker i arbete. Här redovisas och
Det finns mycket kritik som förs fram om skolan i allmänhet samtidigt
Joakim Samuelsson Expert i matematikklassrummet Vad är det som kännetecknar skickliga matematiklärare? Artikelförfattaren har följt en erkänt duktig matematiklärare och sett hur han bedriver sin undervisning.
Undervisa i matematik genom problemlösning
Modul: Problemlösning Del 1: Matematikundervisning genom problemlösning Undervisa i matematik genom problemlösning Maria Larsson, Mälardalens högskola Att hjälpa barn att bli bättre problemlösare är inte
I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.
Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden
Figur 1: Påverkan som processer. Vad tycker elever om matematik och matematikundervisning?
Modul: Problemlösning Del 1: Matematiska problem Känsla för problem Lovisa Sumpter När vi arbetar med matematik är det många faktorer som påverkar det vi gör. Det är inte bara våra kunskaper i ämnet som
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Alla dessa möjligheter
Karin Landtblom Alla dessa möjligheter kombinatorik och resonemang I denna artikel diskuteras övningar i kombinatorik. Vilka tankegångar kan väckas vid arbete med dem och hur kan eleverna resonera? Idéer
Matematikutveckling i förskoleklassen
Glittmark, Magnusson, Olsson & Terner Matematikutveckling i förskoleklassen Som en konsekvens av att elever som får intensivundervisning i åk 9 visar stora brister i taluppfattning satsar Varbergs kommun
När en Learning study planeras väljs ett område som upplevs som problematiskt
K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn
Vad kan vi i Sverige lära av Singapores matematikundervisning?
Vad kan vi i Sverige lära av Singapores matematikundervisning? Singapore tillhör sedan länge toppnationerna i internationella undersökningar som Pisa och TIMSS. Deras framgångar har gjort att många andra
Matematiklyftet 2013/2014
Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska
Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun
Bilaga 1 Verksam hetsrapport 2015-02-18 Dnr 400-2014:2725 efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid IT-gymnasiet Södertörn i Huddinge kommun 1 (8) Innehåll Inledning Bakgrundsuppgifter
Lärarguiden Tänka, resonera och räkna i förskoleklass
Görel Sterner Tänka, resonera och räkna Tänka, resonera och räkna i förskoleklass Här beskriver artikelförfattaren ett utvecklingsarbete som har resulterat i en guide för lärare som undervisar matematik
Bråkräkning uppfattas av många elever som svårt, särskilt vid beräkningar
Britt Holmberg & Cecilia Kilhamn Addition med bråk på tallinjen I sin tredje artikel om tallinjen beskriver författarna hur den används för att utveckla elevers förståelse för addition med oliknämniga
NOKflex. Smartare matematikundervisning
NOKflex Smartare matematikundervisning Med NOKflex får du tillgång till ett heltäckande interaktivt matematikläromedel som ger stöd både för elevens individuella lärande och för lärarledd undervisning.
Olika proportionella samband, däribland dubbelt och hälften.
Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.
Vad är god matematik- -undervisning?
Vad är god matematik- -undervisning? Mona Røsseland www.fiboline.no Översikt Hur ser vi till att eleverna utvecklar en allsidig kunskap i matematik, där förmågan att tänka får större fokus än förmågan
Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa
Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,
Centralt innehåll som vi arbetar med inom detta område:
BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp
C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen
C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen Det här materialet är riktat till lärare och lärarlag och är ett stöd för skolans nulägesbeskrivning av matematikundervisning. Målet är
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Vårt projekt genomfördes under vårterminen Självreglering
Carlsson, Dalsjö, Ingelshed & Larsson Bjud in eleverna att påverka sin matematikundervisning Fyra lärare beskriver hur deras elever blev inbjudna till att få insikt i och makt över sina egna lärandeprocesser
Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping
Modul: Algebra Del 3: Bedömning för utveckling av undervisningen i algebra Intervju Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping I en undervisning kan olika former
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Den skolan som jag arbetar vid framhåller inkludering som ledord.
Helena Eriksson Taluppfattning i heterogena elevgrupper I denna artikel presenteras en uppgiftsdesign som syftar till att utveckla elevers uppfattning av naturliga och rationella tal. Uppgifterna har använts
För elever i gymnasieskolan är det inte uppenbart hur derivata relaterar
Thomas Lingefjärd, Djamshid Farahani & Güner Ahmet En motorcykels färd kopplad till derivata Gymnasieelevers erfarenhet av upplevda hastighetsförändringar ligger till grund för arbete med begreppet derivata.
Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag
Att utveckla din matematikundervisning Stöd på regional nivå
Att utveckla din matematikundervisning Stöd på regional nivå Nätverk/kompetensutveckling Elevers lärande i matematik Samarbetsprojekt mellan: Salem, Huddinge, Botkyrka, Södertälje, Nykvarn, Tyresö, Nynäshamn
Vad är pengarna värda?
strävorna 2A Vad är pengarna värda? begrepp taluppfattning Avsikt och matematikinnehåll Syftet med aktiviteten är att ge exempel på hur pengars värde kan konkretiseras med hjälp av laborativt matematikmaterial.
Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath
maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för
Ger bilder stöd för förståelsen av och förmågan att minnas kunskapskraven?
Ger bilder stöd för förståelsen av och förmågan att minnas kunskapskraven? Inledning Många elever har svårt att förstå och minnas kunskapskraven. I utvärderingar av min undervisning får ofta frågor kopplade
Jag tror att alla lärare introducerar bråk
RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng
Gäller fr.o.m. vt 10 LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng Mathematics for teachers in Primary School, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen
1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.
Modul: Taluppfattning och tals användning. Del 3: Det didaktiska kontraktet Likhetstecknet Ingrid Olsson, fd lärarutbildare Mitthögskolan Läraraktivitet. 1. Skriv = eller i den tomma rutan, så att det
Klara målen i 3:an - ta tillbaka undervisningen! Vad är matematik? Matematiska processer
Klara målen i 3:an - ta tillbaka undervisningen! Dokumentation från Matematikbiennalen 2008, Ingrid Olsson En deltagare påpekade att rubriken kunde misstolkas innan föreläsningen. Av den hoppas jag att
Konkret kombinatorik. Per Berggren och Maria Lindroth
Konkret kombinatorik Per Berggren och Maria Lindroth 2018-01-26 Cars in the Garage En rikt problem med många möjligheter Centralt innhåll Slumpmässiga händelser i experiment och spel. Enkla tabeller och
Vika egna pappersformer
Vika egna pappersformer Förmåga att använda matematik för att undersöka, reflektera över och pröva olika lösningar av egna och andras problemställningar - Matematik, Äldre Syfte Varför? Anledningen till
Matematikundervisning genom problemlösning
Matematikundervisning genom problemlösning En studie om lärares möjligheter att förändra sin undervisning Varför problemlösning i undervisningen? Matematikinlärning har setts traditionell som en successiv
Vi har haft väldigt roligt med våra pappersformer, och sedan ställde vi fram dem i ateljén för att alla skulle kunna använda dem i skapande.
Vika egna former Utvecklar sin förmåga att använda matematik för att undersöka, reflektera över och pröva olika lösningar av egna och andras problemsställningar - Matematik förskola, Förskola Syfte varför?
Tummen upp! Matte ÅK 6
Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är
7E Ma Planering v45-51: Algebra
7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Hur stor är sannolikheten att någon i klassen har en katt? Hur stor är
Karin Landtblom Hur sannolikt är det? Uttrycket Hur sannolikt är det på en skala? använder många till vardags, ofta med viss ironi. I denna artikel om grunder för begreppet sannolikhet åskådliggör författaren
MATEMATIK 5.5 MATEMATIK
5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Skapa ett MatteEldorado i ÅK 1 3
MatTE Skapa ett MatteEldorado i ÅK 1 3 Hej, Ingrid Margareta Vi vill nu berätta för dig om Eldorado läromedlet för FK-6 som vi hoppas ska bli ett tryggt och inspirerande verktyg för dig som pedagog, och
En typisk medianmorot
Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt
Lära matematik med datorn
Lära matematik med datorn Ulrika Ryan Matematik för den digitala generationen Malmö högskola, Lunds Universitet, Göteborgs Universitet och NCM 3 gymnasieskolor och 2 grundskolor i Lunds kommun Matematik
Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth
Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att
Regression, progression eller något mittemellan?
Självständigt arbete II, 15 hp Regression, progression eller något mittemellan? Elevers val av problemlösningsstrategier i förskoleklass och årskurs 3 Författare: Malin Carlsson och Malin Brenning Handledare:
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap
Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik
De nationella proven i matematik i årskurs 3 utgår främst från kunskapskravet
Erica Aldenius, Yvonne Franzon & Jonas Johansson Elevers skriftliga räknemetoder i addition och subtraktion I de insamlingar av elevlösningar och resultat på nationella prov som PRIMgruppen regelbundet
Just nu pågår flera satsningar för att förbättra svenska elevers måluppfyllelse
Andersson, Losand & Bergman Ärlebäck Att uppleva räta linjer och grafer erfarenheter från ett forskningsprojekt Författarna beskriver en undervisningsform där diskussioner och undersökande arbetssätt utgör
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel
Temat för föreläsningen Ny läroplan, nya utmaningar! Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Mona Røsseland Författare till Pixel Hur lyfter PIXEL matematiken? Läraren
ämnesområden. Funktioner och räta linjens ekvation. Hur funktioner kan användas för att undersöka förändring, förändringstakt och andra samband.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lärarhandledning Aktivitet Lekparken
Lärarhandledning Innehåll Aktivitet.... 2 Bakgrund.... 5 Elevexempel... 6 Bildunderlag.... 7 Kartläggningsunderlag....12 1 HITTA MATEMATIKEN NATIONELLT KARTLÄGGNINGSMATERIAL I MATEMATISKT TÄNKANDE I FÖRSKOLEKLASS.
ALGORITMER, OPTIMERING OCH LABYRINTER
ALGORITMER, OPTIMERING OCH LABYRINTER Text: Marie Andersson, Learncode AB Illustrationer: Li Rosén Foton: Shutterstock Har du någonsin lagat mat efter recept eller monterat ihop en möbel från IKEA? Då
Matematik är en kreativ, reflekterande och problemlösande aktivitet (Lgr 11). Det är utgångspunkten för Uppdrag Matte.
Problemlösning i fokus Matematik är en kreativ, reflekterande och problemlösande aktivitet (Lgr 11). Det är utgångspunkten för Uppdrag Matte. Matematik ska vara spännande och roligt! Undervisningen i matematik
Sammanställning av studentutvärdering samt utvärdering kurs vid institutionen för naturvetenskapernas och matematikens didaktik
Sid 1 (7) studentutvärdering samt utvärdering kurs vid institutionen för naturvetenskapernas och matematikens didaktik Kurskod ( er): 6MN045 Ifall kursen i allt väsentligt samläses med andra kurser kan
Handlingsplan Matematik F - Gy
Utveckling av matematiska förmågor 2013 Handlingsplan Matematik F - Gy Svedala kommun 2013-01-25 Utveckling av matematiska förmågor Handlingsplan Matematik F GY Att kunna matematik Undervisningen ska bidra
Systematisk problemlösning enligt EPA-modellen
Systematisk problemlösning enligt EPA-modellen - MÖJLIGHETER OCH UTMANINGAR EPA-modellen Total tidsutgång 8o min och uppåt Enskilt Par Alla Planera och organisera. Kollegialt samarbete Välja ut ett lärandemål/centralt
Göra lika i båda leden
Modul: Algebra Del 6: Sociomatematiska normer Göra lika i båda leden Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Ordet algebra kommer från det arabiska ordet al-djabr
Kompetenser och matematik
ola helenius Kompetenser och matematik Att försöka skapa strukturer i vad det innebär att kunna matematik är en mångårig internationell trend. Denna artikel anknyter till Vad är kunskap i matematik i förra
Centralt innehåll. I årskurs 1.3
3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Planering Matematik åk 8 Samband, vecka
Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
MATEMATIK 3.5 MATEMATIK
TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.
Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en
Kerstin Larsson Subtraktion Vad är egentligen subtraktion? Vad behöver en lärare veta om subtraktion och subtraktionsundervisning? Om elevers förståelse av subtraktion och om elevers vanliga missuppfattningar?
Välkomna till Jämföra, sortera tillsammans reflektera!
Välkomna till Jämföra, sortera tillsammans reflektera! Matematik som språk Matematiska begrepp Samtala kring matematik Barns dokumentationer Anna Kärre, förskollärare, arbetar med barn i åldrarna 1-5-år
Att arbeta med öppna uppgifter
Modul: Samband och förändring Del 1: Öppna uppgifter Att arbeta med öppna uppgifter Ingemar Holgersson, Högskolan Kristianstad Kursplanen i matematik betonar att undervisningen ska leda till att eleverna
8F Ma Planering v45-51: Algebra
8F Ma Planering v45-51: Algebra Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar
Samhället och skolan förändras och matematikundervisningen som den
Saman Abdoka Elevens bakgrund en resurs De senaste tjugo åren har inneburit stora förändringar för såväl samhälle som skolmatematik. Ur en lång erfarenhet av att undervisa i mångkulturella klassrum ger
Skolverkets förslag till kursplan i matematik i grundskolan. Matematik
Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet
Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik
Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs
Kursplanen i matematik 2011 - grundskolan
Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust
Skolverkets nya stödmaterial för förskoleklassen
Skolverkets nya stödmaterial för förskoleklassen Varför stödmaterial för förskoleklassen? Ny skollag och ny läroplan Förbättra likvärdigheten Tydliggöra rektorns ansvar Bidra till kompetensutveckling diskussionsfrågor
Introduktion och Praxisseminarium LG10MA och L910MA VFU1
Introduktion och Praxisseminarium LG10MA och L910MA VFU1 Lärare åk 7-9 och Gy i matematik, 4,5 högskolepoäng Lärare: Bengt Andersson, Eva Taflin Introduktion: 19 November -13 VFU1 koppling till tidigare
30-40 år år år. > 60 år år år. > 15 år
1 av 14 2010-11-02 16:21 Namn: Skola: Epostadress: 1. Kön Kvinna Man 2. Ålder < 30 år 30-40 år 41-50 år 51-60 år > 60 år 3. Har varit verksam som lärare i: < 5 år 6-10 år 11-15 år > 15 år 4. Har du en
Verksamhetsrapport. Skoitnst.. 7.1,ktion.en
Skoitnst.. 7.1,ktion.en Bilaga 1 Verksamhetsrapport Verksamhetsrapport efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid den fristående gymnasieskolan JENSEN gymnasium Uppsala i Uppsala
Handledarutbildning inom Matematiklyftet. Catarina Wästerlid Utbildningstillfälle 1 17 oktober-2016
Handledarutbildning inom Matematiklyftet Catarina Wästerlid Utbildningstillfälle 1 17 oktober-2016 1. Efter genomgången utbildning ska matematikhandledaren ha goda kunskaper om Matematiklyftets bakgrund
Riktlinjer fo r VFU verksamhetsfo rlagd utbildning
LHS Akademin för Lärande, Humaniora och Samhälle Riktlinjer fo r VFU verksamhetsfo rlagd utbildning Poäng: 4,5 hp VFU inom ramen för 30hp Kurs: Matematik för grundlärare åk F-3 Kursplan: MA3005 VFU-period:
Under hösten 2008 deltog jag i en kurs som hette Matematikundervisning
Astrid Karlsson Mönsterproblem i dubbel bemärkelse Med utgångspunkt i det rika problemet Stenplattor synliggörs skillnader i elevers lösningar och hur problem som behandlar mönster kan leda in eleverna
Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten
Digitala verktyg i matematik- och fysikundervisningen ett medel för lärande möten Ulrika Ryan Hur bygger jag den vetenskapliga grunden för min undervisning? Styrdokument Forskning Beprövad erfarenhet Matematik
Rådgivning, Kom igång och Fortbildning ingår alltid vid test och användning av våra digitala läromedel.
Rådgivning, Kom igång och Fortbildning ingår alltid vid test och användning av våra digitala läromedel. Så jobbar du med NOKflex i tre steg är ett digitalt läromedel som ger läraren stöd att undervisa
Alla elever bör få möta en variation av arbetssätt i matematikundervisningen,
lena trygg Undervisning med laborativa material Att använda laborativa material i matematikundervisningen är på intet sätt något nytt. Det mest väsentliga för att material ska komma till verklig nytta
Planering Matematik åk 8 Algebra, vecka Centralt innehåll
Planering Matematik åk 8 Algebra, vecka 49 2015 Centralt innehåll Innebörden av variabelbegreppet och dess användning i algebraiska uttryck, formler och ekvationer. Algebraiska uttryck, formler och ekvationer