Lycka till!

Storlek: px
Starta visningen från sidan:

Download "Lycka till!"

Transkript

1 VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B1555 DATORINTENSIVA METODER ONSDAGEN DEN 24 MAJ 2006 KL Examinator: Gunnar Englund, tel gunnare@math.kth.se Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik. Räknare. Införda beteckningar skall förklaras och definieras. Resonemang och uträkningar skall vara så utförliga att de är lätta att följa. Numeriska svar skall anges med minst två siffrors noggrannhet. Resultatet anslås senast onsdagen den 15 juni 2006 på Matematisk statistiks anslagstavla i entréplanet, Lindstedtsvägen 25, rakt fram innanför porten. Om Du lämnat -adress får Du meddelande om resultatet via . Lycka till! Uppgift 1 Varför väljs i Metropolis-Hastings algoritm acceptans-sannolikheten αx, y) då förslaget y givits från tillståndet x som ) πy)qy, x) αx, y) = min 1, πx)qx, y) då man försöker simulera fördelningen proportionell mot πx), x E med förslagsfördelningen qx, y), x, y E? Uppgift 2 Låt skattningen vara θ = x när vi fått observationerna x 1, x 2,, x n och θ=väntevärdet i den bakomliggande fördelningen. Observationerna ses som utfall av oberoende likafördelade stokastiska variabler. Vi gör nu icke-parametrisk bootstrap av denna skattning, dvs beräknar θ = X där X = n X i /n och X 1, X 2,, X n är oberoende likafördelade med P X i = x j ) = 1/n för i, j = 1, 2, n. Beräkna E X ) och V X ) uttryckta i x 1, x 2,, x n. Uppgift 3 Vi har n observationer x 1, x 2,, x n lagrade i Matlab-vektorn data. Observationerna ses som utfall av oberoende likafördelade stokastiska variabler. Vi skattar standardavvikelsen σ

2 forts tentamen i 5B med plug-in-skattningen σx 1, x 2,, x n ) = 1 n x i x) 2. Vi har definierat m-filen sigmahat function est=sigmahatx); est=sqrtvarx,1)); som alltså beräknar σ ur ett datamaterial. Funktionen varx,1) beräknar σ 2. I ett material med 10 värden lagrade i vektorn data erhölls som resultat av sigmahatdata). a) Vad gör följande Matlab-kod? boot=bootstrp1000, sigmahat,data); y=meanboot)-sigmahatdata); Hur tolkas värdet y= och hur skulle det kunna användas? b) Vad gör följande Matlab-kod och vad innehåller z? simu=normrnd0,1,10,100000); sigma2=varsimu,1); sigma=sqrtsigma2); z=meansigma)-1; histsigma,100)

3 forts tentamen i 5B där resultatet av histsigma) framgår av figuren Hur tolkas z= ? c) Vad gör följande Matlab-kod boot=bootstrp9999, sigmahat,data) ; boot=boot/sigmahatdata); bootsort=sortboot); r1=sigmahatdata)/bootsort9500); r2=sigmahatdata)/bootsort500); och vad innebär r1= respektive r2=1.9004? d) Vad skulle facit för kvantiteterna i c-delen vara med normalfördelningsantagande? Uppgift 4 Vi har observationerna y 1, y 2,, y n ) som vi ser som utfall av de oberoende variablerna Y 1, Y 2,, Y n som alla har varians σ 2. Vi använder kvadratisk förlustfunktion vid prediktion och låter alltså det teoretiska prediktionsfelet vara Q pred = 1 ) E Y i n Ŷi) 2 där Y i har samma fördelning som Y i och oberoende av Y i och Ŷi är prediktorn av Y i. a) Antag att vi känner EY i ), i = 1, 2,, n och använder dessa som prediktorer. Vad blir Q pred? b) Antag nu att vi använder Y i som prediktor. Vad blir Q pred? c) Antag att Y i, i = 1, 2,, n är likafördelade med EY i ) = θ och använder Ȳ som prediktor. Vad blir Q pred? d) Vid korsvalidering är en skattning av prediktionsfelet för kvadratisk förlustfunktion) Q CV = 1 n y i ŷ i ) 2 där ŷ i är en prediktion skattning) av y i baserad på alla data utom y i. Liksom i c-delen antar vi att Y i är oberoende likafördelade med EY i ) = θ och V Y i ) = σ 2. Skriv ut Q CV så explicit som möjligt samt beräkna E Q CV ). Uppgift 5 Vi har heltalsvärda data x = x 1, x 2,, x m ) där n = x 1 + x x m som anger hur många av n observationer som hamnat i m olika kategorier. Vi ser x som ett utfall av X = X 1, X 2,, X m ) som är en Multn, θ)-fördelad stokastisk variabel. Parametern θ = θ 1, θ 2,, θ m ) anger sannolikheterna för de m olika kategorierna där alltså m 1 θ i = 1 och de är positiva. Alltså gäller att P X = x) = n! x 1!x 2! x m! θx 1 1 θ x 2 2 θm xm

4 forts tentamen i 5B om m 1 x i = n och 0 annars. Vi ser θ som ett utfall av Θ och låter Θ ha a-priori-fördelningen som är en s.k. Dirichletfördelning Dα 1, α 2,, α m ) = Dα) där α i > 0 π Θ θ) = Γα 1 + α 2 + α m ) Γα 1 )Γα 2 ) Γα m ) θα θ α θ αm 1 m, 0 θ i 1, m θ i = 1. i Dα)-fördelningen är alltså en m-dimensionell fördelning även om den bara lägger massa på ett m 1-dimensionellt underrum pga bilvillkoret m 1 θ i = 1. Med viss möda kan man visa att Dirichletα)-fördelningen har väntevärdet väntevärdesvektorn) α/ m 1 α i). a) Bestäm a-posteriori-fördelningen för Θ givet observationen x. b) Vad är Bayes-skattningen av Θ givet observationen x? Vad händer med den då n? Uppgift 6 a) Nämn en nackdel med att bias-korrigera en skattning med hjälp av bootstrap. b) Vad är argumenten för och emot de enkla percentilintervallen respektive de pivot-baserade konfidensintervallen? c) Vad är grundprincipen bakom Gibbs-sampling vid simulering av en flerdimensionell fördelning? d) Beskriv översiktligt metoden med simulated annealing.

5 VK Matematiska institutionen avd matematisk statistik LÖSNING TENTAMEN I 5B1555 DATORINTENSIVA METODER 24/ Uppgift 1 Kort svar: Med denna definition blir den resulterande Markov-kedjan tidsreversibel med avseende på fördelningen πx), x E och får därmed den fördelningen till stationär fördelning. Lite mer utförligt svar: Den resulterande kedjan är uppenbarligen en Markovkedja eftersom nästa tillstånd bara beror av aktuellt tillstånd och inte av de tidigare tillstånden. Vi har resultatet att om πx)p x, y) = πy)p y, x) för alla x och y så gäller att fördelningen beskriven av πx), x E eventuellt normerad) är en stationär fördelning till Markovkedjan med övergångsmatris P. Resultatet inses om man summerar över x eftersom man då erhåller för vänsterledet πx)p x, y) x som är fördelningen efter ett tidssteg i Markovkedjan då man startat den med fördelningen π Jämför p n+1) = p n) P ). För högerledet ger en summering över x πy)p y, x) = πy) P y, x) = πy) x x eftersom P är en övergångsmatris och alltså P y, x) = 1 vilket alltså innebär att π är stationär fördelning till kedjan. Vi har för y x x P x, y) = P att föreslå y start i x)p acceptera förslaget) = qx, y)αx, y) Vi får då att för y x πx)p x, y) = πx)qx, y)αx, y) = πx)qx, y) min = min πy)qy, x), πx)qx, y)) ) πy)qy, x) πx)qx, y), 1 =

6 forts tentamen i 5B och på samma sätt byt x och y) πy)p y, x) = min πx)qx, y), πy)qy, x)) och dessa är lika! Om x = y är å andra sidan villkoret för tidsreversibilitet trivialt uppfyllt! Eftersom kedjan är tidsreversibel med avseende på π så har den också π till stationär fördelning enligt ovan. Uppgift 2 Eftersom P Xi = x j ) = 1/n för i = 1, 2, 3,, n, j = 1, 2,, n som innebär att de är likafördelade så blir E X ) = E 1 n Xi ) = 1 n EXi ) = EX1) = x j P X1 = x j ) = 1 n Eftersom X 1, X 2,,, X n dessutom är oberoende stokastiska variabler får vi x j = x V X ) = V 1 n Xi ) = 1 n 2 V Xi ) = 1 n V X 1) = 1 n E X1 EX1)) 2) = = 1 n E X 1 x) 2) = 1 n x j x) 2 1 n = 1 x n 2 j x) 2 Uppgift 3 a) Vad som beräknas är bootstrap-skattningen av bias systematiskt fel) för skattningen σ. Man skulle kunna bias-korrigera skattningen till ) = b) Vad som görs är att stickprov om vardera 10 utfall av oberoende N0, 1)-fördelade variabler genereras. I sigma lagras skattningarna för alla dessa stickprov och z innehåller det sanna värdet på det systematiska felet för σ. c) Ett tvåsidigt 90%-igt konfidensintervall för σ beräknas på basis av pivot-variabeln T = σx 1, X 2,, X 10 )/σ genom att man simulerar dess bootstrap-fördelning dvs fördelningen för T = σx 1, X 2,, X 10) σx 1, x 2,, x 10 ). Man plockar sen ut 5% respektive 95%-percentilerna i bootstrap-fördelningen som utgör skattningar av motsvarande storheter för T -fördelningen. Om vi kallar dessa för a respektive b gäller ju 0.90 = P σx1, X 2,, X 10 ) = P a a σx 1, X 2,, X 10 ) σ ) b = σ σx 1, X 2,, X 10 ) b )

7 forts tentamen i 5B och utfallen av dessa stokastiska gränser utgör konfidensintervallet. Vi ersätter a och b med motsvarande skattningar ut bootstrap-fördelningen och det är detta som lagras i r1 respektive r2. d) Vi får ur σ = att den traditionella väntevärdeskorrigerade skattningen s med division med 9 i stället för 10) blir /9 = Ett 90%-igt konfidensintervall enligt grundkursmetoder skulle bli ) 9 s χ ), s 9 = χ ) = /16.91, /3.33) = , ). Uppgift 4 a) Eftersom Y i och Y i har samma fördelning och alltså EY i ) = EY i ) får vi Q pred = 1 n E Y i EY i )) 2) = 1 n V Y i ) = σ 2 b) c) Q pred = 1 n E Y i Ŷi) 2 ) = E Y 1 Y 1 ) 2) = = E Y 1 EY 1 )) + Y 1 EY 1 )) 2) = oberoendet = V Y 1) + V Y 1 ) = 2σ 2. Q pred = 1 n E Y i Ȳ )2) = E Y 1 Ȳ )2) = oberoendet = d) Vi har och erhåller alltså ŷ i = 1 n 1 Q CV = 1 n = 1 n = V Y 1) + V Ȳ ) = σ2 + σ2 n = n )σ2 j i ) y j = 1 y j y i = n n 1 n 1ȳ 1 n 1 y i y i ŷ i ) 2 = 1 n n n 1 y i = n 1 n 1 n 1 n ) 2 = n 1ȳ y i n n 1ȳ + 1 ) 2 n 1 y i = n n 1) 2 y i ȳ) 2 = y i ȳ) 2 = n n 1 s2 Eftersom Es 2 ) = σ 2 erhåller vi E Q CV ) = nσ 2 /n 1).

8 forts tentamen i 5B Uppgift 5 Med hjälp av Bayes sats får vi när vi håller reda på beroendet av θ f Θ θ X = x) = P X = x Θ = θ)π Θθ) P X = x) P X = x Θ = θ)π Θ θ) θ α 1+x θ α 2+x θ αm+xm 1 m som vi kan identifiera som Dα 1 + x 1, α 2 + x 2,, α m + x m )-fördelningen. b) Vi har enligt a-delen att Θ X = x är Dα + x)-fördelad och Bayes-skattningen blir alltså dvs för komponent j har vi EΘ X = x) = α + x m 1 α i + m 1 x i EΘ j X = x) = α j + x j m 1 α i + n. = α + x m 1 α i + n Då n gäller att Bayes-skattningen går mot x/n, dvs ML-skattningen. Uppgift 6 a) I allmänhet får den bias-korrigerade skattningen större varians. b) De enkla percentilintervallen blir transformationsinvarianta och dessutom respekterar de gränser för möjliga värden på parametern. De är dessutom mycket enkla att ta fram - man behöver inte fundera över vilken transformation man skall ta till för att få en pivot-variabel. Nackdelen är att de inte alls kan ta hand om skevhet eller bristande väntevärdesriktighet utan förlänger då intervallet åt fel håll. De pivot-baserade intervallen har fördelen att vara mer korrekta om man har en bra pivot-variabel och dessutom uppträder de vettigt om skattningen har bias eller har en skev fördelning. Nackdelen är att det ofta kan vara svårt att konstruera en lämplig approximativ) pivot-variabel. Dessutom är de ej transformationsinvarianta och kan ge konfidensintervall utanför naturliga gränser för parametern. c) Man uppdaterar varje koordinat med den betingade fördelningen för denna givet alla de övriga. d) Man vill minimera funktionen Ex), x χ där χ är en ändlig men stor mängd. För ett fixt β > 0 skapar man en Markovkedja som har stationära fördelningen given av P β x) = e βex) u χ e βeu), x χ och denna simuleras genom att man från punkten x har en förslagsfördelning qx, y) på närmaste grannar till x. Oftast väljs qx, y) så att qx, y) = qy, x) dvs att alla punkter har samma antal grannar. Man accepterar förslaget y med sannolikheten αx, y) = min 1, P ) βy)qy, x) = min 1, expβex) Ey)))) P β x)qx, y)

9 forts tentamen i 5B åtminstone om qx, y) = qy, x). Detta innebär att alltid acceptera förslag y om Ey) Ex) dvs då y är en bättre punkt än x. Om Ey) > Ex), dvs då y är en sämre punkt, så accepteras förslaget med sannoliheten expβex) Ey))) < 1. Detta innebär att algoritmen är ett specialfall av Metropolis-Hastings algoritm och får alltså P β till stationär fördelning. Algoritmen startas med ett litet startvärde β 0 på β och man simulerar tills man tror sig ha uppnått stationära fördelningen. Sedan ökas β till β 1 och man simulerar vidare tills man uppnått stationäritet varefter man upprepar förfarandet tills β är stort. För β stort är nämligen P β nästan helt koncentrerad i minimipunkterna till Ex).

Om Markov Chain Monte Carlo

Om Markov Chain Monte Carlo Om Markov Chain Monte Carlo Gunnar Englund Matematisk statistik KTH Ht 2001 1 Inledning Markov Chain Monte Carlo MCMC är en modern teknik att simulera komplicerade fördelningar som har fått stora tillämpningar

Läs mer

Uppgift 1. f(x) = 2x om 0 x 1

Uppgift 1. f(x) = 2x om 0 x 1 Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I 5B508 MATEMATISK STATISTIK FÖR S TISDAGEN DEN 20 DECEMBER 2005 KL 08.00 3.00. Examinator: Gunnar Englund, tel. 790 746. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

0 om x < 0, F X (x) = c x. 1 om x 2.

0 om x < 0, F X (x) = c x. 1 om x 2. Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.

Läs mer

P =

P = Avd. Matematisk statistik TENTAMEN I SF297 (f d 5B157) TILLFÖRLITLIGHETSTEORI LÖRDAGEN DEN 2 OKTOBER 21 KL 1. 18.. Examinator: Gunnar Englund, tel. 79716, e-postadress: gunnare@math.kth.se Tillåtna hjälpmedel:

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Lycka till! I(X i t) 1 om A 0 annars I(A) =

Lycka till! I(X i t) 1 om A 0 annars I(A) = Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

e x/1000 för x 0 0 annars

e x/1000 för x 0 0 annars VK Matematiska institutionen avd matematisk statistik TENTAMEN I 5B506 MATEMATISK STATISTIK GRUNDKURRS FÖR D OCH F, 5B504 MATEMATISK STATISTIK GRUNDKURS FÖR ÄLDRE OCH 5B50 MARKOVPROCESSER ONSDAGEN DEN

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

Markov Chain Monte Carlo, contingency tables and Gröbner bases

Markov Chain Monte Carlo, contingency tables and Gröbner bases Markov Chain Monte Carlo, contingency tables and Gröbner bases Diaconis, P., Sturmfels, B. (998. Algebraic algorithms for sampling from conditional distributions. Gunnar Englund Annals of Statistics Vol.

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90/SF9 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAG 5 JUNI 09 KL 4.00 9.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Faderns blodgrupp Sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I 5B1504 MATEMATISK STATISTIK GRUNDKURS FÖR E3 LÖRDAGEN DEN 30 AUGUSTI 2003 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 7416. Tillåtna hjälpmedel : Formel- och

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2

b) Teknologen Osquarulda känner inte till ML-metoden, men kom på intuitiva grunder fram till att p borde skattas med p = x 1 + 2x 2 Avd. Matematisk statistik TENTAMEN I B14 MATEMATISK STATISTIK GRUNDKURS FÖR E gamlingar TISDAGEN DEN 14 DECEMBER 4 KL 8. 13. Examinator: Gunnar Englund, 79 7416 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Lufttorkat trä Ugnstorkat trä

Lufttorkat trä Ugnstorkat trä Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p)

b) Beräkna sannolikheten att en mottagen nolla har sänts som en nolla. (7 p) Avd. Matematisk statistik TENTAMEN I SF90 OCH SF905 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 4:E MARS 204 KL 4.00 9.00. Kursledare: För D och Media: Gunnar Englund, 073 32 37 45 Kursledare: För F:

Läs mer

f(x) = 2 x2, 1 < x < 2.

f(x) = 2 x2, 1 < x < 2. Avd. Matematisk statistik TENTAMEN I SF90,SF907,SF908,SF9 SANNOLIKHETSTEORI OCH STATISTIK TORSDAGEN DEN 7:E JUNI 0 KL 4.00 9.00. Examinator: Gunnar Englund, tel. 07 7 45 Tillåtna hjälpmedel: Formel- och

Läs mer

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p)

b) Beräkna väntevärde och varians för produkten X 1 X 2 X 10 där alla X i :na är oberoende och R(0,2). (5 p) Avd. Matematisk statistik TENTAMEN I SF190 (f d 5B2501 ) SANNOLIKHETSLÄRA OCH STATISTIK FÖR - ÅRIG MEDIA MÅNDAGEN DEN 1 AUGUSTI 2012 KL 08.00 1.00. Examinator: Gunnar Englund, tel. 07 21 7 45 Tillåtna

Läs mer

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 14:E MARS 017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1913 MATEMATISK STATISTIK FÖR IT OCH ME ONSDAGEN DEN 12 JANUARI 2011 KL 14.00 19.00. Examinator: Camilla Landén, tel. 7908466. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka. Avd. Matematisk statistik TENTAMEN I SF1901, SF1905 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 11 JANUARI 2016 KL 14.00 19.00. Kursledare för CINEK2: Thomas Önskog, tel: 08 790 84 55 Kursledare för

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna

Läs mer

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p) Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 27:E OKTOBER 2014 KL 08.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn-Olof Skytt, 08-790 86 49.

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1907, SF1908 samt SF1913 SANNOLIKHETSTEORI OCH STATISTIK, ONS- DAGEN DEN 9:E JANUARI 2013 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

1 e (λx)β, för x 0, F X (x) = 0, annars.

1 e (λx)β, för x 0, F X (x) = 0, annars. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 30:E MAJ 2017 KL 08.00 13.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p)

b) Förekommer A- och B-fel oberoende av varandra? (Motivering krävs naturligtvis!) (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK FREDAGEN DEN 8 MAJ 010 KL 14.00 19.00. Eaminator: Gunnar Englund, tel. 79074 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs.

(a) sannolikheten för att läkaren ställer rätt diagnos. (b) sannolikheten för att en person med diagnosen ej sjukdom S ändå har sjukdomen, dvs. Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 31:E MAJ 2012 KL 08.00 13.00. Examinator: Tobias Rydén, tel 790 8469. Kursledare: Tatjana Pavlenko, tel 790 8466.

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF90 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 26:E OKTOBER 206 KL 8.00 3.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 1:A JUNI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel: miniräknare,

Läs mer

FACIT: Tentamen L9MA30, LGMA30

FACIT: Tentamen L9MA30, LGMA30 Göteborgs Universitetet GU Lärarprogrammet 06 FACIT: Matematik för lärare, åk 7-9, Sannolikhetslära och statistik, Matematik för gymnasielärare, Sannolikhetslära och statistik 07-0-04 kl..0-.0 Examinator

Läs mer

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 2015 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p)

b) Om vi antar att eleven är aktiv i en eller flera studentföreningar vad är sannolikheten att det är en kille? (5 p) Avd. Matematisk statistik TENTAMEN I SF1920 och SF1921 SANNOLIKHETSTEORI OCH STATISTIK, FREDAGEN DEN 8:E JUNI 2018 KL 14.00 19.00. Examinator: Björn-Olof Skytt, 08 790 86 49. Tillåtna hjälpmedel: Formel-

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p)

Uppgift 1. P (A) och P (B) samt avgör om A och B är oberoende. (5 p) Avd. Matematisk statistik TENTAMEN I SF90, SF905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E AUGSTI 204 KL 08.00 3.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK MÅNDAGEN DEN 15:E AUGUSTI 201 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 849. Tillåtna hjälpmedel:

Läs mer

b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p)

b) Beräkna sannolikheten för att en person med språkcentrum i vänster hjärnhalva är vänsterhänt. (5 p) Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 13:E AUGUSTI 2018 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlenko, 08-790 84 66 Examinator

Läs mer

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas.

Uppgift 3 Vid en simuleringsstudie drar man 1200 oberoende slumptal,x i. Varje X i är likformigt fördelat mellan 0 och 1. Dessa tal adderas. Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat.

(a) Avgör om A och B är beroende händelser. (5 p) (b) Bestäm sannolikheten att A inträffat givet att någon av händelserna A och B inträffat. Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSLÄRA OCH STATISTIK I, MÅNDAGEN DEN 15 AUGUSTI 2016 KL 08.00 13.00. Examinator: Tatjana Pavlenko, 08 790 84 66. Kursledare: Thomas Önskog, 08 790

Läs mer

Individ nr Första testet Sista testet

Individ nr Första testet Sista testet Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK ONSDAGEN DEN 7:E JUNI 2017 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel: miniräknare,

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski FACIT för Förberedelseuppgifter: SF9 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 206 KL 4.00 9.00. Examinator: Timo Koski - - - - - - - - - - - - - - - - - - - - - - - - 0. FACIT Problem

Läs mer

SF1901: Medelfel, felfortplantning

SF1901: Medelfel, felfortplantning SF1901: Medelfel, felfortplantning Jan Grandell & Timo Koski 15.09.2011 Jan Grandell & Timo Koski () Matematisk statistik 15.09.2011 1 / 14 Felfortplantning Felfortplantning kallas propagation of error

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Matematisk statistik TMS064/TMS063 Tentamen

Matematisk statistik TMS064/TMS063 Tentamen Matematisk statistik TMS64/TMS63 Tentamen 29-8-2 Tid: 4:-8: Tentamensplats: SB Hjälpmedel: Bifogad formelsamling och tabell samt Chalmersgodkänd räknare. Kursansvarig: Olof Elias Telefonvakt/jour: Olof

Läs mer

TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL

TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL Avd. Matematisk statistik TENTAMEN I SF2937 (f d 5B1537) TILLFÖRLITLIGHETSTEORI TORSDAGEN DEN 14 JANUARI 2010 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 7907416, e-postadress: gunnare@math.kth.se

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1922/SF1923/SF1924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAG 28 MAJ 2019 KL 8.00 13.00. Examinator för SF1922/SF1923: Tatjana Pavlekno, 08-790 86 44. Examinator för

Läs mer

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1

Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1 Avd. Matematisk statistik TENTAMEN I SF1920/SF1921 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 11 MARS 2019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)

k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p) Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari

Lösningar till tentamensskrivning för kursen Linjära statistiska modeller. 14 januari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Lösningar till tentamensskrivning för kursen Linjära statistiska modeller 14 januari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se

Läs mer

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018 SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 5:E APRIL 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ Inledning till statistikteorin Skattningar och konfidensintervall för μ och σ Punktskattningar Stickprov från en population - - - Vi vill undersöka bollhavet men får bara göra det genom att ta en boll

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Tentamen för kursen. Linjära statistiska modeller. 22 augusti STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp LÖSNINGAR TILL Matematisk statistik, Tentamen: 011 10 1 kl 14 00 19 00 Matematikcentrum FMS 086, Matematisk statistik för K och B, 7.5 hp Lunds tekniska högskola MASB0, Matematisk statistik kemister, 7.5

Läs mer

Thomas Önskog 28/

Thomas Önskog 28/ Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

Föreläsningsanteckningar till kapitel 8, del 2

Föreläsningsanteckningar till kapitel 8, del 2 Föreläsningsanteckningar till kapitel 8, del 2 Kasper K. S. Andersen 4 oktober 208 Jämförelse av två väntevärden Ofte vil man jämföra två eller fler) produkter, behandlingar, processer etc. med varandra.

Läs mer

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p)

b) Vad är sannolikheten att personen somnar i lägenheten? (4 p) c) Hur många gånger förväntas personen byta rum? (4 p) Avd. Matematisk statistik TENTAMEN I SF904 MARKOVPROCESSER TISDAGEN DEN 9 JUNI 05 KL 4.00 9.00. Examinator: Boualem Djehiche tel. 790 78 75. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Föreläsning 8: Konfidensintervall

Föreläsning 8: Konfidensintervall Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga

Läs mer

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5. February 6, 2018 1 Föreläsning VIII 1.1 Punktskattning Punktskattning av µ Vi låter {ξ 1, ξ 2,..., ξ n } vara oberoende likafördelade stokastiska variabler (med ett gemensamt µ). ξ =: µ är en punktskattning

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

, för 0 < x < θ; Uppgift 2

, för 0 < x < θ; Uppgift 2 TAMS17/TEN1 STATISTISK TEORI FK TENTAMEN FREDAG 1/4 2016 KL 08.00-12.00. Examinator och jourhavande lärare: Torkel Erhardsson, tel. 28 14 78. Tillåtna hjälpmedel: Formelsamling i matematisk statistik utgiven

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren.

** a) Vilka värden ska vara istället för * och **? (1 p) b) Ange för de tre tillstånden vilket som svarar mot 0,1,2 i figuren. Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 19 AUGUSTI 2016 KL 08.00 13.00. Examinator: Jimmy Olsson tel. 790 72 01. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Laboration 3: Hierarkiska binomialmodeller i R

Laboration 3: Hierarkiska binomialmodeller i R STOCKHOLMS UNIVERSITET 2 mars 2006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Laboration 3: Hierarkiska binomialmodeller i R Även i denna laboration skall ni jobba med hierarkiska

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901,SF1905,SF1907 OCH SF1908 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 12:E JANUARI 2011 KL 14.00 19.00. Kursledare: Gunnar Englund för D och I, tel. 7907416.

Läs mer

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL

TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL Avd. Matematisk statistik TENTAMEN I SF1904 MARKOVPROCESSER FREDAGEN DEN 17 AUGUSTI 2018 KL 8.00 13.00. Examinator: Björn-Olof Skytt tel. 790 86 49 Kursansvarig: Björn-Olof Skytt tel. 790 86 49 Tillåtna

Läs mer

Tentamen i Matematisk Statistik, 7.5 hp

Tentamen i Matematisk Statistik, 7.5 hp Tentamen i Matematisk Statistik, 7.5 hp Distanskurs 15 januari, 2011 kl. 9.00 13.00 Maxpoäng: 30p. Betygsgränser: 12p: betyg G, 21p: betyg VG. Hjälpmedel: Miniräknare samt formelsamling som medföljer tentamenstexten.

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 5 Johan Lindström 12 september 216 Johan Lindström - johanl@maths.lth.se FMS86/MASB2 F5 1/23 Repetition Gauss approximation Delta metoden

Läs mer

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F9: Konfidensintervall 1/19 Stickprov & Skattning Ett stickprov, x 1, x 2,...,

Läs mer

Markovkedjor. Patrik Zetterberg. 8 januari 2013

Markovkedjor. Patrik Zetterberg. 8 januari 2013 Markovkedjor Patrik Zetterberg 8 januari 2013 1 / 15 Markovkedjor En markovkedja är en stokastisk process där både processen och tiden antas diskreta. Variabeln som undersöks kan både vara numerisk (diskreta)

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2016-06-03 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Adam Jonsson Jourhavande

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall Anna Lindgren 7+8 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F11: Konfidensintervall 1/19 Stickprov & Skattning Ett

Läs mer