Semigroups of Sets Without the Baire Property In Finite Dimensional Euclidean Spaces Vénuste NYAGAHAKWA

Storlek: px
Starta visningen från sidan:

Download "Semigroups of Sets Without the Baire Property In Finite Dimensional Euclidean Spaces Vénuste NYAGAHAKWA"

Transkript

1 Linköping Studies in Science and Technology. Thesis No Semigroups of Sets Without the Baire Property In Finite Dimensional Euclidean Spaces Vénuste NYAGAHAKWA Department of Mathematics Division of Mathematics and Applied Mathematics Linköping University, SE Linköping, Sweden Linköping 2015

2 Linköping Studies in Science and Technology. Thesis No Semigroups of Sets Without the Baire Property In Finite Dimensional Euclidean Spaces Vénuste NYAGAHAKWA Mathematics and Applied Mathematics Department of Mathematics Linköping University SE Linköping Sweden ISBN ISSN Copyright 2015 Vénuste NYAGAHAKWA Printed by LiU-Tryck, Linköping, Sweden 2015

3 To Iribagiza M. Rose and Mizero B. Roberto.

4

5 Abstract A semigroup of sets is a family of sets closed under finite unions. This thesis focuses on the search of semigroups of sets in finite dimensional Euclidean spaces R n, n 1, which elements do not possess the Baire property, and on the study of their properties. Recall that the family of sets having the Baire property in the real line R, is a σ algebra of sets, which includes both meager and open subsets of R. However, there are subsets of R which do not belong to the algebra. For example, each classical Vitali set on R does not have the Baire property. It has been shown by Chatyrko that the family of all finite unions of Vitali sets on the real line, as well as its natural extensions by the collection of meager sets, are (invariant under translations of R) semigroups of sets which elements do not possess the Baire property. Using analogues of Vitali sets, when the group Q of rationals in the Vitali construction is replaced by any countable dense subgroup Q of reals, (we call the sets Vitali Q-selectors of R) and Chatyrko s method, we produce semigroups of sets on R related to Q, which consist of sets without the Baire property and which are invariant under translations of R. Furthermore, we study the relationship in the sense of inclusion between the semigroups related to different Q. From here, we define a supersemigroup of sets based on all Vitali selectors of R. The defined supersemigroup also consists of sets without the Baire property and is invariant under translations of R. Then we extend and generalize the results from the real line to the finite-dimensional Euclidean spaces R n, n 2, and indicate the difference between the cases n = 1 and n 2. Additionally, we show how the covering dimension can be used in defining diverse semigroups of sets without the Baire property. v

6

7 Populärvetenskaplig sammanfattning En semigrupp av mängder är en familj av mängder som är sluten under ändliga unioner. Denna licentiatavhandling fokuserar på sökandet efter semigrupper av mängder i de ändligdimensionella euklidiska rummen R n, n 1, vars element inte har Baire-egenskapen, och på studiet av deras egenskaper. Som bekant är familjen av delmängder av R som har Baire-egenskapen en σ- algebra av mängder som innehåller både de öppna och de magra delmängderna av R. Det finns dock delmängder av R som inte tillhör algebran. Till exempel gäller att varje klassisk Vitali-mängd på R inte har Baire-egenskapen. Chatyrko har visat att familjen av alla ändliga unioner av Vitali-mängder på reella linjen, och den utvidgning av denna familj som på ett naturligt sätt ges av familjen av magra mängder, är semigrupper av mängder på R, som består av mängder som inte har Baire-egenskapen och som är invarianta under translationer av R. Genom att använda motsvarigheten till Vitali-mängder när gruppen Q i Vitalis konstruktion ersätts med en godtycklig uppräknelig tät delgrupp Q av R (vi kallar dessa mängder Vitali-Q-selektorer på R), och Chatyrkos metoder, konstruerar vi semigrupper av mängder på R relaterade till Q, som består av mängder som inte har Baire-egenskapen och som är invarianta under translationer av R. Vidare studerar vi hur semigrupper relaterade till olika grupper Q förhåller sig med avseende på inklusion, och vi definierar en supersemigrupp baserad på alla Vitali-selektorer på R. Denna supersemigrupp består också av mängder som inte har Baire-egenskapen och är invariant under translationer av R. Vi utvidgar och generaliserar sedan dessa resultat från reella linjen till ändligdimensionella euklidiska rum R n, n 2, och visar på olikheterna i de två fallen n = 1 och n 2. Dessutom visar vi hur begreppet övertäckningsdimension kan användas för att definiera en mångfald av semigrupper av mängder som inte har Baireegenskapen. vii

8

9 Acknowledgments This Licentiate thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them. First, I would like to express my gratitude to my supervisors Vitalij A. Chatyrko and Mats Aigner for useful comments, remarks and engagement through the learning process until to this Licentiate thesis. They provided encouragement and advise necessary for me to complete this Licentiate thesis and to proceed through the Ph.D program. In a very special way, I would also like to thank Bengt Ove Turesson, Björn Textorius and all members of the Department of Mathematics for their helps whenever need arises at work. They have directed me through various situations, allowing me to reach this accomplishment. I thank Minani Froduald, Lyambabaje Alexandre and Mahara Isidore for their assistance and guidance and the helpful part they played in my mathematical developments as my teachers. I would like to thank all my fellow Ph.D students whom I shared so many excellent times at Linköping University. In particular, I would like to thank Anna Orlof for organizing team building activities. My family has supported and helped me along the learning process by giving encouragement and providing the moral and emotional support I needed to complete my thesis. To them, I am eternally grateful. I wish to acknowledge the financial support I received through Sida/Sarec funded University of Rwanda-Linköping University cooperation. All involved institutions and people are hereby acknowledged. May the Almighty God richly bless all of you. Linköping, March 24, 2015 Vénuste NYAGAHAKWA ix

10

11 Contents 1 Introduction Problem formulation Summary of main results Structure of the thesis Necessary facts Algebraic notions in set theory Some topological concepts Baire Category Theorem Baire property Lebesgue covering dimension Algebra of semigroups of sets Semigroups and ideals of sets Extension of a semigroup of sets via an ideal of sets Semigroups of sets defined by Vitali selectors on the real line Vitali selectors of the real line Countable dense subgroups of R and generated semigroups Supersemigroup based on Vitali selectors of R xi

12 xii Contents 4.4 Semigroup of non-lebesgue measurable sets Semigroups of sets without the Baire property in finite dimensional Euclidean spaces Vitali selectors of R n Supersemigroup of Vitali selectors of R n Rectangular Vitali selectors of R n Supersemigroup of rectangular Vitali selectors of R n Semigroups of sets in R n defined by dimension Bibliography 55

13 Notation The principal notation used throughout the text is listed below. N Z Q R R n Int X A Cl X A Y c I f I c I cd I n M M n N 0 The set of positive integers The set of integers The set of rational numbers The set of real numbers The n dimensional Euclidean space Interior of a set A in a topological space X Closure of a set A in a topological space X Complement of a set Y Ideal of finite sets Ideal of countable sets Ideal of closed and discrete sets Ideal of nowhere dense sets σ ideal of meager sets in R σ ideal of meager sets in R n The family of all subsets of R having Lebesgue measure zero 1

14 2 Notation N The family of all measurable subsets of R in the Lebesgue sense,,, \ Standard set operation of symmetric difference, union, intersection and set difference dim Lebesgue covering dimension P(X) The family of all subsets of X O The family of all open subsets of R O n B p B n p F The family of all open subsets of R n The family of sets with the Baire property on the real line The family of sets with the Baire property in R n The family of all countable, dense in the real line subgroups of (R, +) F n The family of all countable, dense in the Euclidean spaces R n, n 2 subgroups of (R n, +) rf n The family of all rectangular subgroups of (R n, +) S A I A V(Q) S V(Q) S V sup V n (Q) S V n Q rv n (Q) S rv n Q Semigroup of sets generated by A Ideal of sets generated by A Family of all Vitali-Q selectors of R associated to the subgroup Q of (R, +) Semigroup of sets generated by V(Q) Semigroup of sets generated by V sup The family of all Vitali-Q selectors of R n associated to the subgroup Q of (R n, +) Semigroup of sets generated by V n (Q) The family of all rectangular Vitali-Q selectors of R associated to the subgroup Q of (R n, +) Semigroup of sets generated by rv n (Q) S rv n sup Semigroups of sets generated by rv n sup

15 1 Introduction 1.1 Problem formulation Let R be the set of real numbers and P(R) the family of all subsets of R. Furthermore, let (R, τ E ) be the real line, i.e. the set R endowed with the topology τ E defined by all open intervals of R, and M the family of all meager subsets of (R, τ E ). An interesting extension of M, as well as τ E in P(R), is the family B p of all subsets of (R, τ E ) possessing the Baire property. Recall ([1]) that a set B B p if and only if there are an O τ E and an M M such that B = O M. It is well known (see [1]) that B p = P(R) (for example, each Vitali set V of R [2] is an element of the complement B c p = P(R) \ B p of B p in P(R)), and the family B p is a σ algebra of sets, in particular, B p is closed under finite unions and finite intersections of sets. Let us also note that the family B p is invariant under action of the group H((R, τ E )) of all homeomorphisms of the real line (R, τ E ) onto itself, i.e. for each B B p and each h H((R, τ E )) we have h(b) B p. It is easy to see that the family B c p is also invariant under action of the group H((R, τ E )) but, unlike the family B p, B c p is not closed under finite unions and finite intersections of sets. It is also well known (cf. [3]) that there are elements of B c p with a natural algebraic structure (for example, some subgroups of the 3

16 4 1 Introduction additive group (R, +) of all real numbers). One can pose the following problem ([4]): Do there exist subfamilies of B c p which are invariant under action of an infinite subgroup of H((R, τ E )) and on which we can define some algebraic structure? The following simple observation can give an answer to the question. Let G be a non-trivial sufficiently rich subgroup G of H((R, τ E )) and A be a subfamily of B c p such that A is invariant under action of G. If for each n 2 and each A 1, A 2,, A n A we have A 1 A 2 A n B c p then the family S A consisting of all finite unions of elements of A is a semigroup of sets with respect to the binary operation union of sets, which is invariant under action of G and which is in B c p. In [5], Chatyrko proved that any union of finitely many Vitali sets is an element of B c p. It is easy to see that the family V of all Vitali sets is invariant under action of the group τ(r) of all translations of R. Hence, by the observation above, the family S V of all finite unions of Vitali sets is a semigroup of sets with respect to the operation " ", which is invariant under action of τ(r) and which is in B c p. Furthermore, in [4] Chatyrko proved that the family S V M = {U M : U S V, M M} is also a semigroup of sets with the respect to the operation " ", which is invariant under action of τ(r) and which is in B c p. (a) The goals of this thesis are the following. In the realm of P(R) to find families of sets (different from the families S V and S V M mentioned above) which are semigroups of sets with respect to the operation, which are invariant under action of τ(r) and which are in B c p. (b) To extend the results of (a) to Euclidean spaces R n, n Summary of main results Let X be a non-empty set and let P(X) be the family of all subsets of X. For families of sets A and B in P(X), we define two operations: A B = {A B : A A, B B}, A B = {A B : A A, B B}. However, by A B we denote the family of common elements of A and B.

17 1.2 Summary of main results 5 Moreover, if D P(X) then by S D we mean the family of all finite unions of elements of D. In Chapter 3, we have obtained the following results (Proposition 3.2 and Proposition 3.4): (a) If S is a semigroup of sets with respect to the operation and I is an ideal of sets in P(X), then the families S I, S I are semigroups of sets with respect to the operation and S S I S I. (b) Let I be an ideal of sets and A, B P(X) such that A I = and for each element U S A and each non-empty element B B there is an element A A satisfying A B \ U. Then (S A I) (S B I) =. In Chapter 4, the main attention was paid to the case when X = R. Let Q be a countable, dense in the real line, subgroup of (R, +), V(Q) be the family of all Vitali Q-selectors of R associated to Q (analogues of Vitali sets, considered in [3], when the set Q of rationals is substituted by Q) and I any subideal of M. Using the Chatyrko s method, the results from the previous chapter and the observation that τ E = S τe, we have proved (Proposition 4.3) that: (c) The families S V(Q), S V(Q) I and S V(Q) I are semigroups of sets with respect to the operation and S V(Q) S V(Q) I S V(Q) I. Moreover, S V(Q), S V(Q) I and S V(Q) I are invariant under action of τ(r), and consist of sets without the Baire property. We have also observed that in the family {S V(Q) : Q R} there is no element which contains all others (Proposition 4.8). So we consider the family V sup of all Vitali Q-selectors of R, where Q is varied, and the semigroup S V sup which we call a supersemigroup of Vitali selectors. The supersemigroup S V sup contains the semigroup S V(Q) for each Q. In the same way as above we have proved (Theorem 4.1) that: (d) The families S V sup, S V sup I and S V sup I are semigroups of sets with respect to the operation and S V sup S V sup I S V sup I. Moreover, S V sup, S V sup I and S V sup I are invariant under action of τ(r), and consist of sets without the Baire property.

18 6 1 Introduction In Chapter 5, the main attention was paid to the case when X = R n, n 2. Let Q be a countable, dense in the Euclidean space R n, subgroup of (R n, +), V n (Q) be the family of all Vitali Q-selectors of R n associated to Q (analogues of Vitali Q-selectors for the real line, see also [3]) and I any subideal of the family M n of all meager sets of R n. Using the results and technique from the previous chapters we have proved statements which are similar to (c) and (d). Moreover, we have pointed out a special case of Vitali Q-selectors of R n called rectangular Vitali selectors of R n, n 2, related to groups Q which are products of n many countable dense in the real line groups. Our rectangular Vitali selectors are supposed to be products of n many Vitali selectors of the real line. We have extended our theory to the special case. Since the rectangular products are somewhat less complicated than general ones, we could obtain more information about them. A part of the mentioned results can be found in [4] and [6]. 1.3 Structure of the thesis This thesis contains five chapters which are structured as follows: The first chapter gives a brief description of the problem under investigation and a brief summary of the obtained results. The second chapter introduces basic concepts, terminology and statements which will be needed for a better understanding of the subsequent chapters. The third chapter treats the theory of semigroups of sets with respect to the operation of union of sets. Through various examples, we describe the behaviour of semigroups of sets with the respect to several binary operations. Furthermore, we present a way of searching pairs of semigroups of sets without common elements. The fourth chapter develops the theory of semigroups of sets without the Baire property on the real line. These semigroups are constructed by using Vitali Q-selectors of R and subideals of the ideal of meager subsets of R. They are invariant under translations of the real line and they consist of sets without the Baire property. The last fifth chapter generalizes and extends the results of Chapter 4 to

19 1.3 Structure of the thesis 7 the finite-dimensional Euclidean spaces R n, n 2. Besides the semigroups of sets generated by ordinary Vitali selectors, the chapter treats also semigroups of sets generated by rectangular Vitali selectors of R n, n 2. Rectangular Vitali selectors are a special case of the ordinary ones. In both cases, the generated semigroups of sets are invariant under translations of R n and they consist of sets without the Baire property. The chapter ends by pointing out the role of dimension in defining different semigroups of sets without the Baire property.

20

21 2 Necessary facts The purpose of this chapter is to recall concepts and terminology which will be used in the subsequent chapters. 2.1 Algebraic notions in set theory In this section, we shall give a short introduction to families of sets with algebraic properties. By a family of sets, we mean any set whose elements are themselves sets. Families of sets are denoted by capital script letters like S, O and so forth. For a more detailed information, we refer the reader to one of the references [7], [8] or [9]. Let X be a non-empty set and let P(X) be the family of all subsets of X. Definition 2.1. A non-empty family R P(X) of sets is called a ring of sets on X if A B R and A B R whenever A R, B R. Since A B = (A B) (A B), A \ B = A (A B), we have also A B R and A \ B R whenever A R, B R. Thus a ring is a family of sets closed under the operations of taking unions, intersections, differences and symmetric differences. A ring of sets must contain the empty set, since A \ A =. Definition 2.2. Let A P(X) be a ring of sets on X. If X A, the family A is called an algebra of sets on X. 9

22 10 2 Necessary facts From this definition, a ring of sets is an algebra if and only if it closed under taking the operation of complement. Example 2.1 (i) The family of all finite subsets of X is a ring on X but not an algebra on X unless X is finite. (ii) Let R be the set of real numbers. The family of all bounded subsets of R is a ring on R but not an algebra. Definition 2.3. (a) A ring R P(X) is called a σ-ring of sets on X if it is closed under countable unions, i.e. it contains the union S = n=1 A n whenever it contains the sets A 1, A 2,.... (b) A σ-ring A P(X) is called a σ-algebra of sets on X if X A. From the De Morgan formula n=1 A n = X \ n=1 (X \ A n ), it follows that each σ-algebra is also closed under countable intersection of sets. Note that that a σ algebra can be defined as an algebra closed under countable unions. Example 2.2 For a set X, the family of all countable subsets of X is a σ ring. It will be a σ algebra if X is countable. Definition 2.4. Let A P(X). The smallest σ algebra of sets on X containing A is called a σ algebra generated by the family A. Example 2.3 Let R be the real line, i.e. the set R endowed with the standard metric ρ defined by ρ(x, y) = x y for all x, y R and N be the family of all measurable subsets of R in the Lebesgue sense. The family N is a σ algebra of sets which is generated by N 0 O, where N 0 is the family of all subsets of R having Lebesgue measure zero and O is the family of all open subsets of R.

23 2.2 Some topological concepts 11 Definition 2.5. (a) A family I P(X) of sets is called an ideal of sets on X, if it satisfies the following two conditions: (i) If A I and B I then A B I. (ii) If A I and B A then B I. (b) If an ideal of sets I is closed under countable unions, then it is called a σ ideal of sets on X. Example 2.4 Let A X. Then (i) the family I(A) = {B : B A} is a σ ideal of sets on X, (ii) the family I c of all countable subsets of X forms a σ ideal of sets on X, (iii) the family I f of all finite subsets of X forms an ideal of sets on X, but not a σ ideal of sets, whenever X is infinite. 2.2 Some topological concepts Baire Category Theorem Let X be a topological space and let A be a subset of X. Recall that a neighborhood of a point x X is any open subset U of X containing x. The point x X is a limit point of A if (U \ {x}) A = for every neighborhood U of x. The derived set of A, denoted by A d, is the set of all limit points of A. Definition 2.6. A subset A of X is said to be closed and discrete if and only if A d =. Note that each subset of a closed and discrete subset of X (resp. each finite union of closed discrete subsets of X) is also a closed discrete subset of X. Thus the family of all closed and discrete subsets of X forms an ideal of sets, denoted by I cd.

24 12 2 Necessary facts Definition 2.7. A subset A X is called a nowhere dense set in X if Int X (Cl X (A)) =. It is easy to see that every subset of a nowhere dense set is a nowhere dense set, and the union of finitely many nowhere dense sets is again a nowhere dense set. Thus, the family of nowhere dense sets in a given topological space forms an ideal of sets, denoted by I n. Example 2.5 Every finite subset of the real line R, the set Z of all integers and the Cantor set, are nowhere dense subsets of R. Definition 2.8. A subset A X is said to be dense in X if Cl X (A) = X. Example 2.6 (1) The set Q of all rational numbers is a dense subset of R. (2) The set Z( 2) = {n + 2m : n Z, m Z} is a dense subset of R [10]. Remark 2.1. Note that a countable union of nowhere dense sets is not necessarily a nowhere dense set. For example, the set Q of rationals is a union of countably many nowhere dense sets in R, but Int R (Cl R (Q)) = R. Definition 2.9. A subset A X is meager (or of first category) if A is the union of countably many nowhere dense sets. Any set that is not meager is said to be nonmeager (or of second category). Example 2.7 The set Q of rationals numbers is a meager subset of the real line R. In a given topological space, the family of all meager sets forms a σ ideal of sets. The σ ideal of meager sets will be denoted by M in our further considerations. A fundamental theorem of Baire asserts the following [11], [12].

25 2.2 Some topological concepts 13 Theorem 2.1 (Baire Category Theorem). Let X be a complete metric space. Then X can not be covered by countably many nowhere dense subsets. Moreover, the union of countably many nowhere dense subsets of X has a dense complement. Recall that the real line R is a complete metric space. So by Baire Category Theorem, R is of the second category. Similarly, the Euclidean space R n, n 1, i.e. the set R n endowed with the metric ρ(x, y) = i=1 n (x i y i ) 2, where x = (x 1,, x n ) and y = (y 1,, y n ), is a complete metric space. So R n is of the second category. Remark 2.2. On the real line R the ideals of sets I f, I cd, I c, I n and M satisfy the inclusions I f I cd I c M and I f I cd I n M. Note that I c and I n are not comparable in the sense of inclusion on R. In fact, the Cantor set is uncountable and nowhere dense subset of R while the set Q of rationals numbers is a countable dense subset of R Baire property In this subsection, X is assumed to be a topological space. Definition A subset A X is said to have the Baire property if it can be represented in the form A = O M, where O is an open set of X and M is a meager set of X. (Recall that O M = (O \ M) (M \ O)) Note that a subset A X has the Baire property in X if and only if there is an open set O of X and two meager sets M, N of X such that A = (O \ M) N. The family of all sets with the Baire property in a topological space X will be denoted by B p in our further considerations. Recall that the family B p is a σ-algebra of sets. In particular, each open set of X and each meager set of X have the Baire property. Thus, the σ-algebra B p is the smallest σ-algebra containing all open and all meager sets in X Lebesgue covering dimension In this subsection, we present some basic properties of Lebesgue covering dimension dim. Let X be a topological space and let A = {A α } α Γ be a family of subsets of X, where Γ is an index set.

26 14 2 Necessary facts Definition (i) The order of the family A = {A α } α Γ of subsets, not all empty, of X, is the largest integer n for which there exists a subset I of Γ with n + 1 elements such that α I A α is non-empty, or if there is no such largest integer. (ii) The family A = {A α } α Γ is a cover of X if α Γ A α = X. (iii) A cover B is a refinement of another cover A of the same space X, if for every B B there exists A A such that B A. Definition Let X be a topological space. Then dim X = 1 if and only if X =. dim X n if each finite open cover of X has an open refinement of order not exceeding n. dim X = n if it is true that dim X n but it is not true that dim X n 1. dim X = if for every integer n it is false that dim X n. If dim X = n, then X is called the n dimensional topological space. Recall that a space X is said to be separable if it contains a countable dense subset. It is said to be metrizable if there exists a metric on X which induces the topology on X. For separable metrizable spaces, some basic properties about Lebesgue covering dimension are summarized in the following theorems [13]. Theorem 2.2 (Fundamental Theorem of Dimension). For every natural number n, we have dim R n = n. Theorem 2.3 (Monotonicity). If A is a subspace of a separable metrizable space X, then dim A dim X. Theorem 2.4 (Countable Sum Theorem). Let X be a separable metrizable space and X = i=1 F i where F i is closed in X for each i. If dim F i n for each i, then dim X n. Theorem 2.5 (Product Theorem). Let X and Y be non-empty separable metrizable spaces. Then dim(x Y) dim X + dim Y. Theorem 2.6 (Brouwer Dimension Theorem). Let X R n. Then dim X = n if and only if Int R n(x) =.

27 3 Algebra of semigroups of sets In this chapter we introduce the notion of a semigroup of sets. Then we look at the behaviour of semigroups of sets under some binary operations. Additionally, we present a way to extend a given semigroup of sets to another one by the use of ideals of sets. Before ending the chapter, we state and prove a proposition which will be used in searching of pairs of semigroups of sets without common elements. The results of this chapter were taken from the article [6]. Below X is assumed to be a non-empty set and P(X) is the family of all subsets of X. 3.1 Semigroups and ideals of sets Families of sets, like rings of sets or algebra of sets, are of fundamental importance in Topology and Analysis, and their properties are well known (see [9], [14]). In this section, we will consider another families of sets, namely, semigroups of sets and ideal of sets, and prove some statements about them. Definition 3.1. A non-empty set S is called a semigroup if there is a binary operation : S S S for which the associativity law is satisfied, i.e. the equality (x y) z = x (y z) holds for all x, y, z S. The semigroup S is called abelian if x y = y x for all x, y S. 15

28 16 3 Algebra of semigroups of sets Consider a family of sets S P(X) such that for each pair of elements A, B S we have A B S. Since the union of sets is both commutative and associative, such a family of sets will be an abelian semigroup with the respect to the operation of union of sets. This observation leads to the following definition. Definition 3.2. A non-empty family of sets S P(X) is called a semigroup of sets on X if it is closed under finite unions. Remark 3.1. Using the definition of a semigroup of sets, we can redefine the notion of an ideal of sets in the following way: a non-empty family I P(X) is an ideal of sets on X iff it is a semigroup of sets on X and if A I and B A then B I. Let A P(X). Put S A = { n i=1 A i : A i A, n N} and I A = {B P(X) : there is A S A such that B A}. The following proposition is evident. Proposition 3.1. The family S A is a semigroup of sets on X and the family I A is an ideal of sets on X. We will call S A the semigroup of sets generated by the family A and I A will be called the ideal of sets generated by the family A. Let us define three binary operations on subfamilies of P(X) as follows. If A, B P(X) then (1) A B = {A B : A A, B B}; (2) A B = {A B : A A, B B}; (3) A B = {(A \ B 1 ) B 2 : A A; B 1, B 2 B} where, and \ are the usual union, symmetric difference of sets and difference of sets, respectively. For the defined operations, we observe the following: (i) Since the union and the symmetric difference of sets are commutative operations, we have A B = B A and A B = B A. From the fact that A B = (A \ B) B = (B \ A) A, we have A B A B and A B B A. We note that if A and B are both semigroups of sets or ideals of sets, then the family A B is of the same type.

29 3.1 Semigroups and ideals of sets 17 (ii) As we will see in the following examples, in general for given semigroups of sets A and B, the families A B, A B, B A do not need to be semigroups of sets and none of the inclusions A B A B, A B A B, A B A B, A B A B, A B B A needs to hold. Moreover, one of the families A B, B A can be a semigroup of sets while the other is not. Example 3.1 Let X 2 and A be a non empty proper subset of X. Put B = X \ A, A = {A, X} and B = {B, X}. Note that A = S A, B = S B and the families A B = {X}, A B = {, A, B, X}, A B = {B, X}, B A = {A, X} are semigroups of sets. Moreover, none of the following inclusions A B A B, A B A B, A B B A and B A A B holds. In our further considerations, the notation Y c means the complement of a set Y in the set X. Example 3.2 Let X = {1, 2, 3, 4}, A 1 = {1, 3}, A 2 = {2, 4}, B 1 = {1, 2}, B 2 = {3, 4}, C = {1, 4}, D = {2, 3}, A = {, A 1, A 2 } and B = {, B 1, B 2 }. Note that S A = {, A 1, A 2, X} and S B = {, B 1, B 2, X}. Moreover, we have S A S B = {, A 1, A 2, B 1, B 2, {1} c, {2} c, {3} c, {4} c, X}, S A S B = {, A 1, A 2, B 1, B 2, C, D, X} and S A S B = S B S A = P(X) \ {C, D}. It is easy to see that the inclusions S A S B S A S B and S A S B S A S B do not hold. We note also that none of the families S A S B, S A S B and S B S A are semigroups of sets. In fact, A 1, D S A S B but A 1 D = {4} c / S A S B, and {1}, {4} S A S B but {1} {4} = C / S A S B. Example 3.3 Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A 1 = {1, 2, 4, 5, 7, 8}, A 2 = {2, 3, 5, 6, 8, 9}, B 1 = {1, 2, 3, 4, 5, 6}, B 2 = {4, 5, 6, 7, 8, 9}, A = {A 1, A 2 }, B = {, B 1, B 2 }. Note that S A = {A 1, A 2, X} and S B = {, B 1, B 2, X}. First we will show that the family S A S B is not a semigroup of sets. It is enough to prove that the set C = ((A 1 \ B 1 ) ) ((A 2 \ B 2 ) ) / S A S B. It is clear that the set C is given by C = (A 1 \ B 1 ) (A 2 \ B 2 ) = {2, 3, 7, 8}. Assume that C S A S B.

30 18 3 Algebra of semigroups of sets Thus C = ((S 1 \ S 2 ) S 3 ) for some S 1 S A and S 2, S 3 S B. Since C = 4, we have S 3 =. Let S 1 = A 1. Then S 1 \ S 2 is either 2 (if S 2 is B 1 or B 2 ), 0 (if S 2 = X) or 6 (if S 2 = ). We have a contradiction. If S 1 = A 2, we also have a contradiction by a similar argument as above. Assume now that S 1 = X. Then S 1 \ S 2 is either 3 (if S 2 is B 1 or B 2 ), 0 (if S 2 = X) or 9 (if S 2 = ). We have again a contradiction that proves the statement. Further note that S B S A = {A 1, A 2, {1} c, {3} c, {7} c, {9} c, X} = S A S B. Hence, the family S B S A is a semigroup of sets. Remark 3.2. The binary operation is not commutative, neither is associative, in general. This can be observed from the following example. Example 3.4 Let A and B be two non-empty subsets of X such that A B. Consider the families of sets A = {, A}, B = {B} and C = {, X}. Then we have A B = {B} while B A = {B, B \ A}. It is clear also that (A B) C = {, B, X} while A (B C) = {, A, B, X}. 3.2 Extension of a semigroup of sets via an ideal of sets In this section, we present a way of obtaining a new semigroup of sets from an old one by the use of an ideal of sets. Proposition 3.2. Let S be a semigroup of sets and I be an ideal of sets. Then the family S I is a semigroup of sets. Proof. Take two elements U 1 and U 2 of S I. Then U 1 = (S 1 \ I 1 ) I 1 and U 2 = (S 2 \ I 2 ) I 2 ) for some sets S i S and I i, I i I where i = 1, 2. We need to show that the set U = U 1 U 2 S I. In fact U = ((S 1 \ I 1 ) I 1 ) ((S 2 \ I 2 ) I 2 ) = (S 1 \ I 1 ) (S 2 \ I 2 ) (I 1 I 2 ). Since I is an ideal of sets, then the set I 2 = I 1 I 2 I. It follows that U = ((S 1 I c 1 ) (S 2 I c 2 ))cc I 2 =

31 3.2 Extension of a semigroup of sets via an ideal of sets 19 ((S 1 I c 1 )c (S 2 I c 2 )c ) c I 2 = ((S1 c I 1 ) (Sc 2 I 2 ))c I 2 = ((S1 c Sc 2 ) (Sc 1 I 2 ) (Sc 2 I 1 ) (I 1 I 2 ))c I 2. Put I 1 = (S1 c I 2 ) (Sc 2 I 1 ) (I 1 I 2 ) and note that U = ((S1 c Sc 2 )c I1 c) I 2 = ((S 1 S 2 ) I1 c) I 2 = ((S 1 S 2 ) \ I 1 ) I 2. It is easy to see that S 1 S 2 S and I 1, I 2 I. Hence, U S I. The following proposition shows the relationship in the sense of inclusion between the defined operations when they are applied on semigroups of sets and ideals of sets. Proposition 3.3. Let S be a semigroup of sets and I be an ideal of sets. Then (a) S I = S I S I = I S S; (b) (S I) I = S I, I (I S) = I S. Proof. (a) Note that for any set S S and for any set I I we have S I = (S \ I) (I \ S) S I, S I = S (I \ S) S I, S I = (I \ S) S I S and S = S S I. Thus, S I S I S I S and I S S I. Observe also that for any sets S 1, S 2 S and any sets I 1, I 2 I we have (S 1 \ I 1 ) I 2 = S 1 I S I, where I = ((I 1 S 1 ) \ I 2 ) (I 2 \ S 1 ), and (I 1 \ S 1 ) S 2 S I. There by, S I S I and I S S I. (b) Let S S and I 1, I 2, I 3, I 4 I. Observe that (((S \ I 1 ) I 2 ) \ I 3 ) I 4 = (S \ (I 1 I 3 )) ((I 2 \ I 3 ) I 4 ) S I. Hence (S I) I S I. The opposite inclusion is evident. Let I 1, I 2, I 3 I and S 1, S 2, S 3, S 4 S. Note that (I 1 \ ((I 2 \ S 1 ) S 2 )) ((I 3 \ S 3 ) S 4 ) = ((I 1 \ ((I 2 \ S 1 ) S 2 )) (I 3 \ S 3 )) S 4 = I S 4 I S, where I = (I 1 \ ((I 2 \ S 1 )) S 2 )) (I 3 \ S 3 ). Hence I (I S) I S. The opposite inclusion is evident. Corollary 3.1. Let S be a semigroup of sets and I be an ideal of sets. Then (a) The families S I, I S are semigroups of sets; (b) (I S) I = I (S I) = S I Proof. As S I = S I, by Proposition 3.2, the family S I is a semigroup of sets. From the observation (i) made above and the equality S I = I S, the family I S is also a semigroup of sets. This proves item (a). The item (b) follows by observing that S I = (S I) I (I S) I S I and S I = (S I) I I (S I) S I.

32 20 3 Algebra of semigroups of sets The following statement is evident. Corollary 3.2. Let I 1, I 2 be ideals of sets. Then the family I 1 I 2 is an ideal of sets. Moreover, I 1 I 2 = I 2 I 1 = I 1 I 2 = I 1 I 2. Example 3.5 Let X = {1, 2}, A = X, B = {1}, C = {2}, A = {A}, B = {B}. Note that S A = {A}, S B = {B}, I B = {, B}, S A I B = {A, C} and I B S A = {A}. Thus, in general, none of the following statements is valid: S I = I S, S I I, the family S I is an ideal of sets or I S is an ideal of sets, where S is a semigroup of sets and I is an ideal of sets. For two subfamilies A and B of P(X), put A B = {Y : Y A and Y B}. The next statement is useful in the search of pairs of semigroups of sets without common elements. Proposition 3.4. Let I be an ideal of sets and A, B P(X) such that: (a) A I = (i.e. A and I have no common element); (b) For each element U S A and each non-empty element B B there is an element A A such that A B \ U. Then (1) For each element I I, each element U S A and each non empty element B B we have (U I) c B = ; (2) For each elements I 1, I 2 I, each element U S A and each non-empty B B we have (U I 1 ) c (B \ I 2 ) = ; (3) For each elements I 1, I 2, I 3, I 4 I, each element U S A and each element V S B we have (U \ I 1 ) I 2 = (V \ I 3 ) I 4, i.e. (S A I) (S B I) =. Proof. (1) Assume that U I B for some non-empty element B B. By (b) there is A A such that A B \ U. Note that A (U I) \ U I. But this is a contradiction with (a). (2) Assume that U I 1 B \ I 2 for some non-empty element B B and some element I 2 I. Note that U (I 1 I 2 ) = (U I 1 ) I 2 (B \ I 2 ) I 2 B. But this is a contradiction with (1).

33 3.2 Extension of a semigroup of sets via an ideal of sets 21 (3) Assume that (U \ I 1 ) I 2 = (V \ I 3 ) I 4 for some elements U S A, V S B and I 3, I 4 I. If V =, then (U \ I 1 ) I 2 = I 4 and so U I 1 I 4. But this is a contradiction with with (a). Hence V =. Note that there is a non-empty element B B such that B V. Further observe that U I 2 (U \ I 1 ) I 2 = (V \ I 3 ) I 4 B \ I 3. But this is a contradiction with (2).

34

35 4 Semigroups of sets defined by Vitali selectors on the real line In this chapter, we present diverse semigroups of sets on the real line whose elements do not possess the Baire property. These semigroups will be constructed by the use of a concept of Vitali selectors rigorously defined in the coming section. The Vitali selectors are closely related to the classical Vitali sets on the real line (one should to replace the rationals Q by any countable dense subgroup Q of the reals R in the Vitali construction). They were considered in [3] and were called Γ-selectors of R there. It is known (cf. [3]) that each Vitali set (even each Vitali selector) of R does not possess the Baire property. This result was extended by V.A. Chatyrko [5] who showed that finite unions of Vitali sets on the real line also do not possess the Baire property. Furthermore, he observed that the family S V(Q) of all finite unions of Vitali sets, as well as the family S V(Q) M, where M is the family of all meager sets on the real line, are semigroups of sets, invariant under translations of R, and the elements of S V(Q) M also do not possess the Baire property. So in this chapter, we generalize Chatyrko s results via replacing the Vitali sets by Vitali Q-selectors, where Q is a countable dense subgroup Q of R, and the family M by any ideal of sets on R in the formulas S V(Q) and S V(Q) M. We study the relationship between the semigroups for different Q in the sense of inclusion. We observe that in the family of all semigroups of sets S V(Q), where Q is varied, there is no element which contains all others. Furthermore we 23

36 24 4 Semigroups of sets defined by Vitali selectors on the real line consider the family V sup of all Vitali selectors of R and the family S V sup which we call the supersemigroup of sets based on Vitali selectors. We will show that the supersemigroup S V sup also consists of sets without the Baire property and is invariant under translations of R. Let us note that the semigroup S V sup contains all semigroups S V(Q). The results of this chapter were mostly taken from the articles [4] and [6]. 4.1 Vitali selectors of the real line Let R be the real line and Q be a countable, dense in the real line subgroup of (R, +). For an element x R, denote by T x the translation of R by x, i.e. T x (y) = y + x for each element y R. If A is a subset of R and x R, we denote T x (A) by A x. Define the equivalence relation E on R as follows: for x, y R, let xey if and only if x y Q and let E α (Q), α I be the equivalence classes. Observe that I = c, where c is the cardinality of the continuum, and for each index α I and each x E α (Q) we have E α (Q) = Q x. So, each equivalence class E α (Q) is dense in R. Definition 4.1. A Vitali Q selector (shortly, a Vitali selector) of R is any subset V of R such that V E α (Q) = 1 for each α I. Note that a Vitali Q selector is a Vitali set [2], if Q is the set Q of rational numbers. We continue with simple facts about Vitali selectors. Proposition 4.1. Let V be a Vitali Q selector of R. (i) If q 1, q 2 Q and q 1 = q 2 then V q1 V q2 =. (ii) R = q Q V q. (iii) The set V is not meager in R. Proof. (i) Let x V q1 V q2 with q 1, q 2 Q and q 1 = q 2. Then x can be represented in two ways: x = y + q 1 = z + q 2 for some y, z V. But y z = q 2 q 1 Q implies that y and z are in the same equivalence class. Since V E α (Q) = 1 for all α I, then y = z. This implies that q 1 = q 2. We have a contradiction.

37 4.1 Vitali selectors of the real line 25 (ii) If x R, then x belongs to a unique equivalence class E α (Q). Let v α be the representatative of E α (Q) in V, i.e. V E α (Q) = {v α }. So, x v α = q for some q Q. It follows that x = v α + q V q. (iii) If V is a meager in R, then each V q, q Q, is a meager subset of R, as a translation is a homeomorphism. This implies that the real line R is covered by countably many meager sets, and hence it is meager. This is in a contradiction with the Baire Category Theorem. Lemma 4.1. For each Vitali Q selector V of R and each element x R, the set V x is also a Vitali Q selector of R. Proof. Let V be an arbitrary Vitali Q selector and let x R. Since for any different elements v 1, v 2 of V, we have (v 1 + x) (v 2 + x) = v 1 v 2 R \ Q, the elements v 1 + x and v 2 + x belong to different equivalence classes E α, α I. Consider a fixed α I and let v α be the element in V satisfying {v α } = E α (Q) V. So v α x E β (Q) for some β I. Note that there is one element v β in V such that {v β } = V E β (Q). Since v α x and v β belong to the same equivalence class E β (Q), there is a q Q such that v α x v β = q. So v β + x = v α q E α (Q). As v β + x V x, we have V x E α (Q) = 1 for all α I. The family of all Vitali Q selectors of R associated to the subgroup Q will be denoted by V(Q) and S V(Q) will denote the semigroup of sets generated by V(Q) (Chapter 3, Section 3.1). Proposition 4.2. The families V(Q) and S V(Q) are invariant under translations of R. Proof. Let V V(Q). By Lemma 4.1, it follows that for each element x R, we have V x V(Q). So, the family V(Q) is invariant under translations of R. Since the family S V(Q) consists of all finite unions of elements of V(Q), then it is also invariant under translations of R. Lemma 4.2. For each U S V(Q) and each non-empty open set O of R, there is an element V V(Q) such that V O \ U. Proof. Let U S V(Q) and O be a non-empty open set of R. So U = n i=1 V i where V i V(Q). To continue with the proof, first we show the following useful claim.

38 26 4 Semigroups of sets defined by Vitali selectors on the real line Claim For each element α I, we have E α (Q) (O \ U) =. Proof. From the density of each equivalence class E α (Q) in the real line, we have E α (Q) O = ℵ 0 for all α I. By the definition of a Vitali Q selector, we have E α (Q) U = E α (Q) ( n i=1 V i ) = n i=1 (E α (Q) V i ) n for all α I. These two facts show that E α (Q) (O \ U) =. For each equivalence class E α (Q), α I, choose one element y α in the set E α (Q) (O \ U). The set V of such elements y α is a Vitali Q selector of R. Moreover, V O and V U =. Hence V O \ U. Let O be the family of all open subsets of R. Note that O is a semigroup of sets and S O = O. Proposition 4.3. Let I be an ideal of subsets of R. Then the following statements hold. (i) The families S V(Q), I S V(Q) and S V(Q) I are semigroups of sets such that S V(Q) I S V(Q) S V(Q) I. (ii) If V(Q) I =, then (S V(Q) I) (O I) =. In particular, S V(Q) (O I) =. (iii) If I is invariant under translations of R, then the families I S V(Q) and S V(Q) I are also invariant under translations of R. Proof. (i) The family S V(Q) is a semigroup of sets by Proposition 3.1. By Proposition 3.2 and Corollary 3.1, the families S V(Q) I and I S V(Q) are also semigroups of sets. The inclusion follows from Proposition 3.3. (ii) To prove the equality (S V(Q) I) (O I) =, we apply Proposition 3.4, together with Lemma 4.2. Namely, the families A and B in Proposition 3.4 are considered as the families V(Q) and O, respectively, and Lemma 4.2 plays the same role as condition (b) in Proposition 3.4. The particular case follows from the inclusion S V(Q) S V(Q) I. (iii) The invariance of the families I S V(Q) and S V(Q) I under translations of R follows from Proposition 4.2 and the assumption made on I.

39 4.1 Vitali selectors of the real line 27 Let M be the σ ideal of meager sets in R and let B p be the family of all subsets of R having the Baire property. Observe that V(Q) M = (Proposition 4.1 (iii)), B p = O M (see Definition 2.10) and M is invariant under translations of R. Corollary 4.1. The families S V(Q), M S V(Q) and S V(Q) M are semigroups of sets such that S V(Q) M S V(Q) S V(Q) M. They are invariant under translations of R, and consist of sets without the Baire property. In particular, the family S V(Q) consists of sets without the Baire property. Proof. Note only that by Proposition 4.3 (ii), we have the equality (S V(Q) M) (O M) =. Since B p = O M, then S V(Q) M P(R) \ B p. In particular, from the inclusion S V(Q) S V(Q) M, it follows that S V(Q) P(R) \ B p. Let I f (resp. I c, I cd or I n ) be the ideal of finite (resp. countable, closed and discrete or nowhere dense) subsets of R. Recall that for these ideals of sets, we have the inclusions I f I cd I c M and I cd I n M. Note that these ideals are invariant under translations of R. Corollary 4.2. Let I be I f, I c, I cd or I n. Then the families I S V(Q) and S V(Q) I are semigroups of sets such that S V(Q) I S V(Q) S V(Q) I. They are invariant under translations of R and consist of sets without the Baire property. Proof. The results follows from Proposition 4.3 and the mentioned above inclusions. Remark 4.1. From the inclusions I f follows also that: I cd I c M and I cd I n M, it (a) S V(Q) I f S V(Q) I cd S V(Q) I c S V(Q) M and S V(Q) I cd S V(Q) I n S V(Q) M. (b) I f S V(Q) I cd S V(Q) I c S V(Q) M S V(Q) and I cd S V(Q) I n S V(Q) M S V(Q). It is interesting to know which of the semigroups are equal.

40 28 4 Semigroups of sets defined by Vitali selectors on the real line Example 4.1 Let Q = Q. Observe that for each element A S V(Q) I f, we have A Q <. In fact, if A S V(Q) I f then A = (U \ I 1 ) I 2 where U S V(Q) and I 1, I 2 I f. Recall that U = n i=1 V i, where V i V(Q). Thus, A Q = ((U \ I 1 ) I 2 ) Q (U I 2 ) Q = (U Q) (I 2 Q) U Q + I 2 Q n + I 2 <. This implies that the semigroups of sets S V(Q) I f and S V(Q) I cd are not equal. In fact, let V V(Q) and let Z be the set of all integers. Since Z is a closed and discrete subset of R, we have V Z S V(Q) I cd. But (V Z) Q = ℵ 0. So, by the above observation, V Z / S V(Q) I f. Proposition 4.4. Let I be an ideal of sets such that V(Q) I =. Then each element of the family S V(Q) I is zero-dimensional. In particular, each element of the family S V(Q) is zero-dimensional. Proof. Let A S V(Q) I. Then A = (U \ F) E for some U S V(Q) and E, F I. The equality V(Q) I = implies that A =. Since = A R then 0 dim A 1, by the monotonicity property of dimension. Assume that dim A = 1. By the Brouwer-Dimension Theorem, there must exist a non-empty open set O in R such that O A. But A = (U \ F) E U E. By Lemma 4.2, there exists V V(Q) such that V O \ U. So, V O \ U (U E) \ U E which implies that V I. This is a contradiction. So dim A = 0. The particular case follows from the inclusion S V(Q) S V(Q) I. Corollary 4.3. Each element of the family S V(Q) M is zero-dimensional. Proof. The statement follows from Proposition Countable dense subgroups of R and generated semigroups Let Q 1 and Q 2 be subgroups of (R, +). Define Q 1 + Q 2 = {q 1 + q 2 : q i Q i, i = 1, 2}. We observe that the sum Q 1 + Q 2 is a subgroup of (R, +) and both Q 1 and Q 2 are subgroups of Q 1 + Q 2. Moreover,

41 4.2 Countable dense subgroups of R and generated semigroups 29 (i) If each Q i, i = 1, 2 is countable then the subgroup Q 1 + Q 2 is countable; (ii) If one of the subgroups Q i, i = 1, 2 is dense then so is Q 1 + Q 2. Let F be the family of all countable, dense in the real line subgroups of the additive group (R, +). Proposition 4.5. For each Q 1 F, there is a Q 2 F such that Q 1 Q 2. Proof. Let Q 1 F. Since Q 1 is a countable subset of R and the set R is uncountable, we have R \ Q 1 =. Consider an element x R \ Q 1 and set Q 2 = Q 1 + xz = {q + nx : q Q 1, n Z}, where Z is the additive group of all integers. It is clear that Q 2 is a countable subgroup of (R, +) and Q 1 Q 2. The subgroup Q 2 is dense on R (it contains a dense subset Q 1 of R) and hence Q 2 F. Moreover, Q 1 Q 2, since x Q 2 \ Q 1. Proposition 4.6. Let Q 1, Q 2 be elements of F such that Q 1 Q 2. Then S V(Q1 ) V(Q 2 ) =. In particular, V(Q 1 ) V(Q 2 ) =. Proof. Assume that there exists V S V(Q1 ) V(Q 2 ). Let E α (Q 2 ) be an equivalence class with the respect to the subgroup Q 2. So, V E α (Q 2 ) = 1 (4.1) Since Q 1 Q 2, we have Q 2 /Q 1 > 1, where Q 2 /Q 1 is the factor group of Q 2 by Q 1. Note that E α (Q 2 ) = β A α E β (Q 1 ), where E β (Q 1 ) are distinct equivalence classes with the respect to the subgroup Q 1 and A α = Q 2 /Q 1 > 1. It follows that V E α (Q 2 ) = V ( β A α E β (Q 1 )) = β A α (V E β (Q 1 )) = β Aα V E β = A α > 1. This is in contradiction with the Equality 4.1. So, we must have S V(Q1 ) V(Q 2 ) =. The particular case follows the inclusion V(Q 1 ) S V(Q1 ). Remark 4.2. Let Q 1, Q 2 be elements of F such that Q 1 Q 2 and Q 2 /Q 1 be the factor group of Q 2 by Q 1. We have either 1 < Q 2 /Q 1 < or Q 2 /Q 1 = ℵ 0. Proposition 4.7. For each Q 1 F there is a Q 2 F such that Q 1 Q 2 and Q 2 /Q 1 = ℵ 0. Proof. Let Q 1 F. We can apply repeatedly the Proposition 4.5 to obtain a sequence of elements in F in the following way:

42 30 4 Semigroups of sets defined by Vitali selectors on the real line Set Q 1 = Q 1. By Proposition 4.5 we can get Q 2 F such Q 1 Q 2, where Q 2 = Q 1 + x 1 Z, x 1 R \ Q 1. In the same way we can get Q 3 F such Q 2 Q 3 where Q 3 = Q 2 + x 2 Z, x 2 R \ Q 2, and so on. By this procedure, we get a sequence {Q k } k=1 of elements in F with Q 1 Q 2 Q 3 Q k 1 Q k, where Q k at the kth step is given by Q k = Q k 1 + x k 1 Z and x k 1 R \ Q k 1. The inequality Q k = Q k+1 is clear since x k Q k+1 \ Q k. Put Q 2 = k=1 Q k. It is evident that Q 2 is a subgroup of (R, +). Besides that, Q 2 is countable (it is a countable union of countable sets) and dense on R (it contains dense subsets Q k, k = 1, 2, of R). Hence Q 2 F. To prove that Q 2 /Q 1 = ℵ 0, we will observe that for each pair of distinct elements x n and x m in the sequence {x k } k=1, we have (Q 1 + x n ) (Q 1 + x m ) =. For, let y (Q 1 + x n ) (Q 1 + x m ) for some n > m. Then y = q 1 + x n = q 2 + x m for some q 1, q 2 Q 1. So x n = (q 2 q 1 ) + x m Q 1 + x m Q 1 + x m Z Q m+1. As n > m, we must have x n Q m+1 Q n. But, by the construction x n R \ Q n. We have a contradiction. So (Q 1 + x n ) (Q 1 + x m ) =. This observation implies that Q 1 + x 1, Q 1 + x 2,..., Q 1 + x k,... are different elements of Q 2 /Q 1. Hence, Q 2 /Q 1 = ℵ 0. Proposition 4.8. Let Q 1, Q 2 be elements of F such that Q 1 Q 2 and Q 2 /Q 1 = ℵ 0. Then S V(Q1 ) S V(Q2 ) =. Proof. Assume that there exists U S V(Q1 ) S V(Q2 ). Since U S V(Q 2 ), then U can be represented as U = n i=1 V i where V i V(Q 2 ) for all i. Let E α (Q 2 ) be an equivalence class with the respect to the subgroup Q 2. So, U E α (Q 2 ) n. (4.2) Since Q 2 /Q 1 = ℵ 0, we have E α (Q 2 ) = β A α E β (Q 1 ), where E β (Q 1 ) are distinct equivalence classes with the respect to the subgroup Q 1 and A α = ℵ 0. Since U S V(Q1 ) then U can be also represented as U = m k=1 W k where W k V(Q 1 ) for all k. Let W be an arbitrary Vitali Q 1 -selector among W i s making the union U. So U E α (Q 2 ) W E α (Q 2 ) = W ( β A α E β (Q 1 )) = β A α (W E β (Q 1 )) = β Aα W E β (Q 1 ) = A α = ℵ 0. This is in contradiction with the Inequality 4.2. So S V(Q1 ) S V(Q2 ) =.

Isometries of the plane

Isometries of the plane Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för

Läs mer

12.6 Heat equation, Wave equation

12.6 Heat equation, Wave equation 12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2

Läs mer

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p) UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant

Läs mer

Preschool Kindergarten

Preschool Kindergarten Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound

Läs mer

Tentamen MMG610 Diskret Matematik, GU

Tentamen MMG610 Diskret Matematik, GU Tentamen MMG610 Diskret Matematik, GU 2017-01-04 kl. 08.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers/GU Telefonvakt: Peter Hegarty, telefon: 0766 377 873 Hjälpmedel: Inga hjälpmedel,

Läs mer

Module 6: Integrals and applications

Module 6: Integrals and applications Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important

Läs mer

Writing with context. Att skriva med sammanhang

Writing with context. Att skriva med sammanhang Writing with context Att skriva med sammanhang What makes a piece of writing easy and interesting to read? Discuss in pairs and write down one word (in English or Swedish) to express your opinion http://korta.nu/sust(answer

Läs mer

Module 1: Functions, Limits, Continuity

Module 1: Functions, Limits, Continuity Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,

Läs mer

Tentamen i Matematik 2: M0030M.

Tentamen i Matematik 2: M0030M. Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p

Läs mer

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists

Läs mer

http://marvel.com/games/play/31/create_your_own_superhero http://www.heromachine.com/

http://marvel.com/games/play/31/create_your_own_superhero http://www.heromachine.com/ Name: Year 9 w. 4-7 The leading comic book publisher, Marvel Comics, is starting a new comic, which it hopes will become as popular as its classics Spiderman, Superman and The Incredible Hulk. Your job

Läs mer

Solutions to exam in SF1811 Optimization, June 3, 2014

Solutions to exam in SF1811 Optimization, June 3, 2014 Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and

Läs mer

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik

Läs mer

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:

Läs mer

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) = Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,

Läs mer

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions: IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its

Läs mer

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions: Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively

Läs mer

6 th Grade English October 6-10, 2014

6 th Grade English October 6-10, 2014 6 th Grade English October 6-10, 2014 Understand the content and structure of a short story. Imagine an important event or challenge in the future. Plan, draft, revise and edit a short story. Writing Focus

Läs mer

Grafisk teknik. Sasan Gooran (HT 2006)

Grafisk teknik. Sasan Gooran (HT 2006) Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively

Läs mer

Chapter 2: Random Variables

Chapter 2: Random Variables Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation

Läs mer

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE

Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE SVENSK STANDARD SS-ISO/IEC 26300:2008 Fastställd/Approved: 2008-06-17 Publicerad/Published: 2008-08-04 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.30 Information technology Open Document

Läs mer

Pre-Test 1: M0030M - Linear Algebra.

Pre-Test 1: M0030M - Linear Algebra. Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra

Läs mer

Make a speech. How to make the perfect speech. söndag 6 oktober 13

Make a speech. How to make the perfect speech. söndag 6 oktober 13 Make a speech How to make the perfect speech FOPPA FOPPA Finding FOPPA Finding Organizing FOPPA Finding Organizing Phrasing FOPPA Finding Organizing Phrasing Preparing FOPPA Finding Organizing Phrasing

Läs mer

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP

FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP FORSKNINGSKOMMUNIKATION OCH PUBLICERINGS- MÖNSTER INOM UTBILDNINGSVETENSKAP En studie av svensk utbildningsvetenskaplig forskning vid tre lärosäten VETENSKAPSRÅDETS RAPPORTSERIE 10:2010 Forskningskommunikation

Läs mer

Beijer Electronics AB 2000, MA00336A, 2000-12

Beijer Electronics AB 2000, MA00336A, 2000-12 Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this

Läs mer

BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström

BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström BOENDEFORMENS BETYDELSE FÖR ASYLSÖKANDES INTEGRATION Lina Sandström Frågeställningar Kan asylprocessen förstås som en integrationsprocess? Hur fungerar i sådana fall denna process? Skiljer sig asylprocessen

Läs mer

Isolda Purchase - EDI

Isolda Purchase - EDI Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language

Läs mer

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng

Materialplanering och styrning på grundnivå. 7,5 högskolepoäng Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles

Läs mer

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang) Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg

Läs mer

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and

Läs mer

Scalable Dynamic Analysis of Binary Code

Scalable Dynamic Analysis of Binary Code Linköping Studies in Science and Technology Dissertations, No. 1993 Ulf Kargén FACULTY OF SCIENCE AND ENGINEERING Linköping Studies in Science and Technology, Dissertations, No. 1993, 2019 Department of

Läs mer

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt

Läs mer

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05

Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05 Om oss Vi på Binz är glada att du är intresserad av vårt support-system för begravningsbilar. Sedan mer än 75 år tillverkar vi specialfordon i Lorch för de flesta olika användningsändamål, och detta enligt

Läs mer

Webbregistrering pa kurs och termin

Webbregistrering pa kurs och termin Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan

Läs mer

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015

SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015 SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015 Fastställd/Approved: 2015-07-23 Publicerad/Published: 2016-05-24 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.70 Geografisk information Modell

Läs mer

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg Swedish adaptation of ISO TC 211 Quality principles The subject How to use international standards Linguistic differences Cultural differences Historical differences Conditions ISO 19100 series will become

Läs mer

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering

Läs mer

Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson

Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson Kravhantering På Riktigt, 16 maj 2018 Anna Fallqvist Eriksson Agilista, Go See Talents linkedin.com/in/anfaer/

Läs mer

Uttagning för D21E och H21E

Uttagning för D21E och H21E Uttagning för D21E och H21E Anmälan till seniorelitklasserna vid O-Ringen i Kolmården 2019 är öppen fram till och med fredag 19 juli klockan 12.00. 80 deltagare per klass tas ut. En rangordningslista med

Läs mer

EXPERT SURVEY OF THE NEWS MEDIA

EXPERT SURVEY OF THE NEWS MEDIA EXPERT SURVEY OF THE NEWS MEDIA THE SHORENSTEIN CENTER ON THE PRESS, POLITICS & PUBLIC POLICY JOHN F. KENNEDY SCHOOL OF GOVERNMENT, HARVARD UNIVERSITY, CAMBRIDGE, MA 0238 PIPPA_NORRIS@HARVARD.EDU. FAX:

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel

Läs mer

Algoritmer och Komplexitet ht 08. Övning 6. NP-problem

Algoritmer och Komplexitet ht 08. Övning 6. NP-problem Algoritmer och Komplexitet ht 08. Övning 6 NP-problem Frekvensallokering Inom mobiltelefonin behöver man lösa frekvensallokeringsproblemet som lyder på följande sätt. Det finns ett antal sändare utplacerade.

Läs mer

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås Schenker Privpak AB Interface documentation for web service packageservices.asmx 2012-09-01 Version: 1.0.0 Doc. no.: I04304b Sida 2 av 7 Revision history Datum Version Sign. Kommentar 2012-09-01 1.0.0

Läs mer

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 Engelsk version 2 Innehåll Inledning... 5 Written methods... 7 Mental arithmetic, multiplication and division... 9

Läs mer

William J. Clinton Foundation Insamlingsstiftelse REDOGÖRELSE FÖR EFTERLEVNAD STATEMENT OF COMPLIANCE

William J. Clinton Foundation Insamlingsstiftelse REDOGÖRELSE FÖR EFTERLEVNAD STATEMENT OF COMPLIANCE N.B. The English text is an in-house translation. William J. Clinton Foundation Insamlingsstiftelse (organisationsnummer 802426-5756) (Registration Number 802426-5756) lämnar härmed följande hereby submits

Läs mer

Webbreg öppen: 26/ /

Webbreg öppen: 26/ / Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en

Läs mer

Styrteknik: Binära tal, talsystem och koder D3:1

Styrteknik: Binära tal, talsystem och koder D3:1 Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder

Läs mer

Gradientbaserad Optimering,

Gradientbaserad Optimering, Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos

Läs mer

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty 79% of the division trade is generated by Harrods Rewards customers 30% of our Beauty clients are millennials 42% of our trade comes from tax-free customers 73% of the department base is female Source:

Läs mer

Workplan Food. Spring term 2016 Year 7. Name:

Workplan Food. Spring term 2016 Year 7. Name: Workplan Food Spring term 2016 Year 7 Name: During the time we work with this workplan you will also be getting some tests in English. You cannot practice for these tests. Compulsory o Read My Canadian

Läs mer

RUP är en omfattande process, ett processramverk. RUP bör införas stegvis. RUP måste anpassas. till organisationen till projektet

RUP är en omfattande process, ett processramverk. RUP bör införas stegvis. RUP måste anpassas. till organisationen till projektet RUP är en omfattande process, ett processramverk RUP bör införas stegvis RUP måste anpassas till organisationen till projektet Volvo Information Technology 1 Även RUP har sina brister... Dåligt stöd för

Läs mer

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families Health café Resources Meeting places Live library Storytellers Self help groups Heart s house Volunteers Health coaches Learning café Recovery Health café project Focus on support to people with chronic

Läs mer

Sveriges internationella överenskommelser

Sveriges internationella överenskommelser Sveriges internationella överenskommelser ISSN 1102-3716 Utgiven av utrikesdepartementet Nr18 Överenskommelse med Japan om utbyte av finansiell information som hänför sig till penningtvätt och finansiering

Läs mer

Flervariabel Analys för Civilingenjörsutbildning i datateknik

Flervariabel Analys för Civilingenjörsutbildning i datateknik Flervariabel Analys för Civilingenjörsutbildning i datateknik Henrik Shahgholian KTH Royal Inst. of Tech. 2 / 9 Utbildningens mål Gällande matematik: Visa grundliga kunskaper i matematik. Härmed förstås

Läs mer

PORTSECURITY IN SÖLVESBORG

PORTSECURITY IN SÖLVESBORG PORTSECURITY IN SÖLVESBORG Kontaktlista i skyddsfrågor / List of contacts in security matters Skyddschef/PFSO Tord Berg Phone: +46 456 422 44. Mobile: +46 705 82 32 11 Fax: +46 456 104 37. E-mail: tord.berg@sbgport.com

Läs mer

#minlandsbygd. Landsbygden lever på Instagram. Kul bild! I keep chickens too. They re brilliant.

#minlandsbygd. Landsbygden lever på Instagram. Kul bild! I keep chickens too. They re brilliant. #minlandsbygd Kul bild! I keep chickens too. They re brilliant. Så vacka bilder. Ha det bra idag. @psutherland6 Thanks Pat! Yes the sun was going down... Hahahaha. Gilla Kommentera Landsbygden lever på

Läs mer

Collaborative Product Development:

Collaborative Product Development: Collaborative Product Development: a Purchasing Strategy for Small Industrialized House-building Companies Opponent: Erik Sandberg, LiU Institutionen för ekonomisk och industriell utveckling Vad är egentligen

Läs mer

Boiler with heatpump / Värmepumpsberedare

Boiler with heatpump / Värmepumpsberedare Boiler with heatpump / Värmepumpsberedare QUICK START GUIDE / SNABBSTART GUIDE More information and instruction videos on our homepage www.indol.se Mer information och instruktionsvideos på vår hemsida

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

Support Manual HoistLocatel Electronic Locks

Support Manual HoistLocatel Electronic Locks Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing

Läs mer

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017 Methods to increase work-related activities within the curricula S Nyberg and Pr U Edlund KTH SoTL 2017 Aim of the project Increase Work-related Learning Inspire theachers Motivate students Understanding

Läs mer

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl

Läs mer

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

- den bredaste guiden om Mallorca på svenska! -

- den bredaste guiden om Mallorca på svenska! - - den bredaste guiden om Mallorca på svenska! - Driver du företag, har en affärsrörelse på Mallorca eller relaterad till Mallorca och vill nå ut till våra läsare? Då har du möjlighet att annonsera på Mallorcaguide.se

Läs mer

Problem som kan uppkomma vid registrering av ansökan

Problem som kan uppkomma vid registrering av ansökan Problem som kan uppkomma vid registrering av ansökan Om du har problem med din ansökan och inte kommer vidare kan det bero på det som anges nedan - kolla gärna igenom detta i första hand. Problem vid registrering

Läs mer

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna

Läs mer

Förtroende ANNA BRATTSTRÖM

Förtroende ANNA BRATTSTRÖM Förtroende ANNA BRATTSTRÖM The importance of this treaty transcends numbers. We have been listening to an old Russian maxim dovaray ne proveray Trust, but Verify Vad innebär förtroende? Förtroende är ett

Läs mer

District Application for Partnership

District Application for Partnership ESC Region Texas Regional Collaboratives in Math and Science District Application for Partnership 2013-2014 Applying for (check all that apply) Math Science District Name: District Contacts Name E-mail

Läs mer

Det här med levels.?

Det här med levels.? Det här med levels.? Eller: När ska det vara praktik i Modulen? 1 Appendix I Basic knowledge requirements 1. KNOWLEDGE LEVELS CATEGORY A, B1, B2 AND C AIRCRAFT MAINTENANCE LICENCE Basic knowledge for categories

Läs mer

1. Find for each real value of a, the dimension of and a basis for the subspace

1. Find for each real value of a, the dimension of and a basis for the subspace MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA53 Linear Algebra Date: 208-0-09 Write

Läs mer

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers 12-24. Misi.se 2011 1

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers 12-24. Misi.se 2011 1 Discovering!!!!! ÅÄÖ EPISODE 6 Norrlänningar and numbers 12-24 Misi.se 2011 1 Dialogue SJs X2000* från Stockholm är försenat. Beräknad ankoms?d är nu 16:00. Försenat! Igen? Vad är klockan? Jag vet inte.

Läs mer

Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II

Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II Evaluation Ny Nordisk Mat II Appendix 1. Questionnaire evaluation Ny Nordisk Mat II English version A. About the Program in General We will now ask some questions about your relationship to the program

Läs mer

Second handbook of research on mathematics teaching and learning (NCTM)

Second handbook of research on mathematics teaching and learning (NCTM) Second handbook of research on mathematics teaching and learning (NCTM) The effects of classroom mathematics teaching on students learning. (Hiebert & Grouws, 2007) Inledande observationer Undervisningens

Läs mer

Att använda data och digitala kanaler för att fatta smarta beslut och nå nya kunder.

Att använda data och digitala kanaler för att fatta smarta beslut och nå nya kunder. Att använda data och digitala kanaler för att fatta smarta beslut och nå nya kunder https://www.linkedin.com/in/johanjohansson1 https://www.linkedin.com/in/johanjohansson1 7500 timmar digital analys de

Läs mer

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3 MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:

Läs mer

E: 9p D: 10p C: 14p B: 18p A: 22p

E: 9p D: 10p C: 14p B: 18p A: 22p MID SWEDEN UNIVERSITY NAT Examination 20 MA098G Discrete Mathematics (English) Time: 5 hours Date: 3 May 20 Pia Heidtmann The compulsory part of this examination consists of 8 questions. The maximum number

Läs mer

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen

Läs mer

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET

Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET National Swedish parental studies using the same methodology have been performed in 1980, 2000, 2006 and 2011 (current study). In 1980 and 2000 the studies

Läs mer

The Algerian Law of Association. Hotel Rivoli Casablanca October 22-23, 2009

The Algerian Law of Association. Hotel Rivoli Casablanca October 22-23, 2009 The Algerian Law of Association Hotel Rivoli Casablanca October 22-23, 2009 Introduction WHY the Associations? NGO s are indispensable to the very survival of societal progress Local, National or International

Läs mer

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1 MÄLARDALEN UNIVERSIY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINAION IN MAHEMAICS MAA15 Linear Algebra Date: 017-06-09 Write time:

Läs mer

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH 2016 Anne Håkansson All rights reserved. Svårt Harmonisera -> Introduktion, delar: Fråga/

Läs mer

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017

Stad + Data = Makt. Kart/GIS-dag SamGIS Skåne 6 december 2017 Smart@Helsingborg Stadsledningsförvaltningen Digitaliseringsavdelningen the World s most engaged citizens Stad + Data = Makt Kart/GIS-dag SamGIS Skåne 6 december 2017 Photo: Andreas Fernbrant Urbanisering

Läs mer

- den bredaste guiden om Mallorca på svenska!

- den bredaste guiden om Mallorca på svenska! - den bredaste guiden om Mallorca på svenska! Driver du företag, har en affärsrörelse på Mallorca eller relaterad till Mallorca och vill nå ut till våra läsare? Då har du möjlighet att annonsera på Mallorcaguide.se

Läs mer

The reception Unit Adjunkten - for newly arrived pupils

The reception Unit Adjunkten - for newly arrived pupils The reception Unit Adjunkten - for newly arrived pupils Shortly on our work Number of received pupils: - 300 for school year 2014-2015 - 600 for school year 2015-2016 - 220 pupils aug-dec 2016 - ca. 45

Läs mer

Användning av Erasmus+ deltagarrapporter för uppföljning

Användning av Erasmus+ deltagarrapporter för uppföljning Användning av Erasmus+ deltagarrapporter för uppföljning Internationaliseringsdagarna 2016 2016-11-02 Anders Clarhäll Participant Report Form Identification of the Participant and General Information (Motivation)

Läs mer

Recitation 4. 2-D arrays. Exceptions

Recitation 4. 2-D arrays. Exceptions Recitation 4. 2-D arrays. Exceptions Animal[] v= new Animal[3]; 2 declaration of array v Create array of 3 elements v null a6 Assign value of new-exp to v Assign and refer to elements as usual: v[0]= new

Läs mer

Resultat av den utökade första planeringsövningen inför RRC september 2005

Resultat av den utökade första planeringsövningen inför RRC september 2005 Resultat av den utökade första planeringsövningen inför RRC-06 23 september 2005 Resultat av utökad första planeringsövning - Tillägg av ytterligare administrativa deklarationer - Variant (av case 4) med

Läs mer

ISO general purpose screw threads Basic profile Part 1: Metric screw threads

ISO general purpose screw threads Basic profile Part 1: Metric screw threads SVENSK STANDARD SS-ISO 68-1 Fastställd 2003-08-01 Utgåva 1 ISO-gängor för allmän användning Basprofil Del 1: Metriska ISO-gängor ISO general purpose screw threads Basic profile Part 1: Metric screw threads

Läs mer

NP-fullständighetsbevis

NP-fullständighetsbevis Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 9 NP-fullständighetsbevis På denna övning är det också inlämning av skriftliga lösningar av teoriuppgifterna till labb 4 och

Läs mer

Service och bemötande. Torbjörn Johansson, GAF Pär Magnusson, Öjestrand GC

Service och bemötande. Torbjörn Johansson, GAF Pär Magnusson, Öjestrand GC Service och bemötande Torbjörn Johansson, GAF Pär Magnusson, Öjestrand GC Vad är service? Åsikter? Service är något vi upplever i vårt möte med butikssäljaren, med kundserviceavdelningen, med företagets

Läs mer

The Municipality of Ystad

The Municipality of Ystad The Municipality of Ystad Coastal management in a local perspective TLC The Living Coast - Project seminar 26-28 nov Mona Ohlsson Project manager Climate and Environment The Municipality of Ystad Area:

Läs mer

Love og regler i Sverige Richard Harlid Narkos- och Intensivvårdsläkare Aleris FysiologLab Stockholm

Love og regler i Sverige Richard Harlid Narkos- och Intensivvårdsläkare Aleris FysiologLab Stockholm Love og regler i Sverige Richard Harlid Narkos- och Intensivvårdsläkare Aleris FysiologLab Stockholm Driving in the USA Driving is the lifeblood of the United States. It fosters commerce, recreation and

Läs mer

Datasäkerhet och integritet

Datasäkerhet och integritet Chapter 4 module A Networking Concepts OSI-modellen TCP/IP This module is a refresher on networking concepts, which are important in information security A Simple Home Network 2 Unshielded Twisted Pair

Läs mer

Hur fattar samhället beslut när forskarna är oeniga?

Hur fattar samhället beslut när forskarna är oeniga? Hur fattar samhället beslut när forskarna är oeniga? Martin Peterson m.peterson@tue.nl www.martinpeterson.org Oenighet om vad? 1.Hårda vetenskapliga fakta? ( X observerades vid tid t ) 1.Den vetenskapliga

Läs mer

E: 9p D: 10p C: 14p B: 18p A: 22p

E: 9p D: 10p C: 14p B: 18p A: 22p MID SWEDEN UNIVERSITY DMA Examination 2017 MA095G & MA098G Discrete Mathematics (English) Time: 5 hours Date: 16 March 2017 Pia Heidtmann The compulsory part of this examination consists of 8 questions.

Läs mer

Annonsformat desktop. Startsida / områdesstartsidor. Artikel/nyhets-sidor. 1. Toppbanner, format 1050x180 pxl. Format 1060x180 px + 250x240 pxl.

Annonsformat desktop. Startsida / områdesstartsidor. Artikel/nyhets-sidor. 1. Toppbanner, format 1050x180 pxl. Format 1060x180 px + 250x240 pxl. Annonsformat desktop Startsida / områdesstartsidor 1. Toppbanner, format 1050x180 pxl. Bigbang (toppbanner + bannerplats 2) Format 1060x180 px + 250x240 pxl. 2. DW, format 250x240 pxl. 3. TW, format 250x360

Läs mer

Ren Katt. Författare Deepa Balsavar Illustratör Kanchan Bannerjee. Översatt av Bokkok.se

Ren Katt. Författare Deepa Balsavar Illustratör Kanchan Bannerjee. Översatt av Bokkok.se Ren Katt Författare Deepa Balsavar Illustratör Kanchan Bannerjee Översatt av Bokkok.se Det här är mitt hus. Mamma, pappa och Cheena bor också här. 2 Den bästa stolen i huset är till för mig. Men att sitta

Läs mer

Kristina Säfsten. Kristina Säfsten JTH

Kristina Säfsten. Kristina Säfsten JTH Att välja metod några riktlinjer Kristina Säfsten TD, Universitetslektor i produktionssystem Avdelningen för industriell organisation och produktion Tekniska högskolan i Jönköping (JTH) Det finns inte

Läs mer

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson

Kvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson Kvalitetsarbete I Landstinget i Kalmar län 24 oktober 2007 Eva Arvidsson Bakgrund Sammanhållen primärvård 2005 Nytt ekonomiskt system Olika tradition och förutsättningar Olika pågående projekt Get the

Läs mer

Master Thesis. Study on a second-order bandpass Σ -modulator for flexible AD-conversion Hanna Svensson. LiTH - ISY - EX -- 08/4064 -- SE

Master Thesis. Study on a second-order bandpass Σ -modulator for flexible AD-conversion Hanna Svensson. LiTH - ISY - EX -- 08/4064 -- SE Master Thesis Study on a second-order bandpass Σ -modulator for flexible AD-conversion Hanna Svensson LiTH - ISY - EX -- 08/4064 -- SE Study on a second-order bandpass Σ -modulator for flexible AD-conversion

Läs mer