Kängurutävlingen Matematikens hopp
|
|
- Ann-Charlotte Hermansson
- för 6 år sedan
- Visningar:
Transkript
1 Kängrtävlingen Matematikens hopp Cadet 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förtom svar ger vi också några olika lösningsförslag. Under vecka 12 pbliceras också förslag till hr ni kan arbeta vidare med problemen i klassen pls ytterligare kommentarer kring lösningarna. Ett nderlag till hjälp för bokföring av klassens resltat finns att hämta på ncm.g.se/kangr. Vi är medvetna om att redovisningen tar tid, men vi ber er ändå att redovisa resltaten. De är värdeflla för oss och förhoppningsvis ger en sammanställning av klassens resltat även er ett bra nderlag för vidare arbete. Vi har valt att inte ta några deltagaravgifter, vilket man gör i flera andra länder. Att låta er sköta rättning och redovisning av resltat är ett sätt att hålla kostnaderna nere. Uppmärksamma gärna goda prestationer i klassen och i skolan. Vi delar inte t några priser, men namnen på de elever som fått bäst resltat i varje årskrs kommer att pbliceras på webben. Där pbliceras också lösningsfrekvenser på alla ppgifter liksom en sammanställning av hr elevernas resltat fördelar sig på olika poängintervall. Där kan d sedan jämföra dina elevers resltat med övriga elever och d kan se om de problem som dina elever hade svårt för också var svåra för andra. Många efterfrågar också en sammanställning med lösningsfrekvenser och denna blir förstås bättre j fler som redovisar. Rätta elevernas lösningar och redovisa resltaten på webbadressen: ncm.g.se/kangr Om d får problem med att redovisa via nätet, hör av dig till oss på kangr@ncm.g.se eller på telefon Vi ber er redovisa era resltat senast 29 april. Nominera till Mikael Passares stipendim Mikael Passare ( ) var professor i matematik vid Stockholms niversitet. Han hade ett stort intresse för matematikndervisning på alla nivåer och var den som tog initiativ till Kängrtävlingen i Sverige. Mikael Passares minnesfond har instiftat ett stipendim för att ppmärksamma elevers matematikprestationer. I samband med Kängrtävlingen kommer därför en elev från vardera tävlingsklass Ecolier, Benjamin och Cadet och en gymnasieelev att belönas med 500 kr. För att knna nomineras måste eleven ha genomfört tävlingen på korrekt sätt och klassens resltat måste vara inrapporterade (åtminstone redovisning A). Nomineringen ska innehålla elevens namn, skola och årskrs, tävlingsklass, resltat på årets tävling samt ppgift om vilken dag tävlingen genomfördes och namn och e-post till den nominerande läraren. Desstom behöver vi ett kontonmmer där vi kan sätta ett eventellt stipendim samt postadress dit vi kan skicka diplomet. Det ska finnas en motivering till varför jst denna elev är värd att speciellt ppmärksammas. Det kan t ex vara en ovanligt god prestation i tävlingen, oväntat bra resltat i relation till tidigare prestationer eller annat hos eleven som är värt att speciellt ppmärksammas i relation till arbetet med Kängrn. Förtom detta premieras att eleven är hjälpsam och visar gott kamratskap. Det är motiveringen som kommer att ligga till grnd för jryn beslt. I jryn ingår representanter från Mikael Passares minnesfond och NCM. Nomineringen skickas senast 29 april till: Kängrtävlingen NCM, Göteborgs niversitet Box GÖTEBORG NCM & Kngl Vetenskapsakademien 1
2 1. B: 10: = 34. Men eftersom ett dygn har 24 timmar så är klockan = C: 11 Antonia är den fjärde till vänster om Bianca så det står 3 flickor mellan henne och Antonia. På höger sida om Bianca står det sex flickor mellan henne och Antonia. Totalt sett är det alltså Bianca + Antonia = 11 flickor. 3. A: 1 2 Eftersom triangeln är likbent så flyttar vi de vita fälten från ena sidan till den andra sidan och får en halv triangel som är vit. 4. E: 24 m Skillnaden mellan långsidorna är 7 m (3 + 4) och skillnaden mellan kortsidorna är 5 m (2 + 3). Alltså är skillnaden i omkrets = 24 m. 5. D: Hålmarkeringarna ska ligga symmetriskt kring viklinjerna. Alternativ D är den enda vikningen som kan ge exakt två hål. 6. D: 8 7 = = = = Några andra alternativ med dessa premisser finns inte och eftersom alla tre talen ska vara olika kan vi här endast använda alternativet 1, 2, 4. Prodkten är = 8. Alternativ lösning: Låt 0 < a < b < c. a 1, b 2 men sklle b > 2 så sklle smman vara = 8. Alltså är b = 2, a = 1, c = = 4, abc = B: 10 cm 2 Arean av det yttersta skggade fältet är 16 9 = 7. Nästa skggade område får vi på liknande sätt, 4 1 = 3. Den skggade arean är: 7+ 3 = A: 2 Yvonnes 10 extra ska delas på fem systrar, 10/5 = 2. Om Yvonne ger 2 till var och en kommer de allihop ha 12 var. Alternativ lösning: Tillsammans har systrarna 60. Det betyder att de ska ha 12 var. Det får systrarna om Yvonne ger dem 2 var. NCM & Kngl Vetenskapsakademien 2
3 9. E: 5 12 Om vi tgår från vänstra änden av pinnen så befinner sig myran vid 2 och nyckelpigan 3 vid 1 4 av längden av pinnen = A: av pbliken är barn. 3 5 av barnen är flickor = 1. Hälften av barnen är flickor D: 40 Den heldragna linjen tgör smman av två sidor av alla trianglar. Heldragna sidor är lika långa som motsvarande streckade sidor eftersom trianglarna är liksidiga. Den heldragna linjen är därför dbbelt så lång som den streckade, alltså A: 14 De enda av de möjliga kombinationerna av två åldrar (3 + 8, , , , , ) där smman är delbar med 5 är och Ivas ålder är det tal som återstår, nämligen 14. Alternativ lösning: Rester vid division med 5 är: 3, 3, 2 och 4. Ema och Rita har samma rest: 3, Zina: 5 3 = 2, Iva har den återstående, E: 840 Sätt antalet löpare totalt till x st. Antalet män är då 0,65x. Detta är lika många som antalet kvinnor pls 252 män, nämligen 0,35x ,65x = 0,35x Ekvationslösningen ger x = 840. Alternativ lösning: 252 är det samma som 30 % av helheten , 3 = A: 63 Alla talen ska tillsammans bli 35. De tre första rtorna ska tillsammans bli 22, vilket innebär att den fjärde och femte rtan tillsammans blir 13 (= 35 22). I fjärde rtan står alltså talet 9 (= 13 4). Andra rtan är = 7. Prodkten av andra och fjärde rtan blir 9 7 = 63. Alternativ lösning: Benämn talen i de tomma rtorna för a, b och c. Vi får tre ttryck: 3 + a + b + c + 4 = a + b = 22 b + c + 4 = 25 Lösning av detta ekvationssystem ger att b = 12, a = 7, c = 9. NCM & Kngl Vetenskapsakademien 3
4 15. B: 4 cm 2 Det grå området består av två trianglar. Tillsammans är höjderna i trianglarna 8 cm och båda har basen 1 cm. Deras totala area blir 1 8 =4 cm 2 2. Vi kan också betrakta figren som två kongrenta trianglar (3:e kongrensfallet) med vardera arean 2 cm B: 14 Han vill inte springa två dagar i sträck. Om vi tänker att första dagen han vill springa på är: - mån, blir nästa gång en ons, tor, fre el lör men inte på söndag - tis, blir nästa gång antingen på en tor, fre, lör el sön. - ons, blir nästa gång antingen på en fre, lör el sön. - tor, blir nästa gång antingen på en lör el sön. - fre, blir nästa gång springa på en sön. Totalt kan han då få ihop = 14 olika scheman. Kortare lösning: För varje veckodag finns det fyra möjliga veckodagar att kombinera med. Alltså 7 4, eftersom till exempel tis + fre är detsamma som fre+tis. 2 Den korta lösningen är värd att förklaras så att alla förstår. 17. D: 22 I alla rtor rnt 2:or måste det stå samma tal, liksom i alla rtor kring 3:orna. Dessa måste vara 2 och 3 eftersom också smman av två rtor ska vara samma överallt Den totala smman blir = C: 18 Nmrera kängrrna från 1 till 10. Vi ser på de kängrrna som står vända med nosen åt vänster. Kängr 4 måste göra 3 hopp till vänster. Kängr 5 behöver också hoppa 3 steg åt vänster. Kängr 9 behöver göra 6 hopp till vänster och även kängr 10 måste göra 6 hopp. Totalt blev det =18 hopp. Alternativ lösning: Vi kan också räkna på de kängrr som står vända med nosen åt höger. Kängr 1 hoppar fyra hopp till höger, likaså kängr 2 och 3. Kängr nmmer 6, 7 och 8 hoppar vardera två hopp. Totalt = 18. Eftersom kängrrna byter plats ska vi bara räkna åt det ena hållet. 19. C: 91 Smman av alla tre vinklar kan man inte ändra på. Största och minsta vinkeln tillsammans ska vara så liten som möjligt vilket betyder att den mellersta vinkeln är så stor som möjligt. Den kan inte vara 90, då blir den störst av de tre. Nästa mindre heltal är 89, då blir de andra två 91 tillsammans, 1 och 90. NCM & Kngl Vetenskapsakademien 4
5 Alternativ lösning med hjälp av svarsalternativen: Kalla vinklarna för, v och w, låt < v < w. Det gäller att + v + w = 180. Vi söker minsta möjliga värde på + w. A: + w = 61 ger v = 119 som blir triangelns största vinkel B: + w = 90 ger v = 90 som blir triangelns största vinkel C: + w = 91 ger v = 89 och då kan = 1 och w = 90 D: + w = 120 är inte minsta möjliga smma E: + w = 121 är inte minsta möjliga smma 20. D: 32 % Om vi benämner diagonalen på en ljsgrå rta för a, så är yttermåtten till dken 5a 5a, d v s arean är 25a 2. Den ljsgrå inre kvadraten har då måtten, 3a 3a, arean är alltså 9a 2. Området mellan inre kvadraten och yttre kvadraten är då 25a 2 9a 2 = 16a 2. Detta område täcks av grå kvadrater som tgör hälften av området, så det svarta området har arean 8a 2. 8a 2 =0, a2 21. A: 2 Vi beräknar talen i följden för att finna ett mönster: 2, 3, 6, 8, 8, 4, 2, 8, 6, 8, 8, 4, 2, 8, 6, Förtom de två första talen ser vi att talen 6, 8, 8, 4, 2, 8 kommer att pprepas, dvs en grpp om sex tal. Vi bortser från de två första talen och söker det 2015:e talet i stället blir 335 rest 5. Alltså är det femte talet i perioden, 2, det tal som står på 2017:e 6 plats. 22. E: 320 m Vi kallar löparna för A och B. Löpare A:s hastighet: m/min Löpare B:s hastighet: m/min De möts första gången efter t min. Då har A sprngit 720 t meter medan B har sprngit t meter. Tillsammans har de sprngit 720 meter. Det ger t t = 720 t 4 + t 5 =1 t = 20 9 NCM & Kngl Vetenskapsakademien 5
6 Löpare B har då sprngit = 80 4 = 320 meter. 23. D: 10 Eftersom dda + dda = jämnt och jämnt + jämnt = jämnt gäller det att sprida t de jämna talen på ett sätt som ger flest dda. Figren visar ett exempel på hr talen kan placeras. j j j j j De två översta raderna kan som mest innehålla två dda tal. Tredje raden kan då innehålla högst två dda tal, som vi placerar t. För att få dessa dda tal måste vi i raden nder ha något jämnt tal. Om vi fortsätter resonemanget på detta vis så kommer man fram till att det som mest kan vara 10 dda tal. Det går att bevisa att fler dda tal än 10 går det inte att placera. 24. D: 1 12 S Arean av AMB = S 2 Då är Arean av ADM + Arean av MCB = S 2 Arean av AED + Arean av BFC = S vilket står i ppgiften. 3 (I) (II) Med (I) och (II) får vi: Arean av DEM + Arean av MFC = S 2 S 3 = S 6. Arean av DOC = S eftersom (AC och BD är diagonaler). 4 Den sökta arean (fyrhörningnen EOFM) = S 4 S 6 = S 12 NCM & Kngl Vetenskapsakademien 6
7 Rättningsmall Uppgift A B C D E Poäng 1 B 3 2 C 3 3 A 3 4 E 3 5 D 3 6 D 3 7 B 3 8 A 3 9 E 4 10 A 4 11 D 4 12 A 4 13 E 4 14 A 4 15 B 4 16 B 4 17 D 5 18 C 5 19 C 5 20 D 5 21 A 5 22 E 5 23 D 5 24 D 5 SUMMA 96 NCM & Kngl Vetenskapsakademien 7
8 Redovisningsblankett A Redovisning av resltat sker på ncm.g.se/kangr. Om d får problem med att redovisa, hör av dig till oss på kangr@ncm.g.se eller på telefon Redovisa senast 29 april. Antal deltagande elever Åk 8 Åk 9 Krs 1 För in namn och poäng för de 2 bästa eleverna i varje krs Namn Poäng Åk 8 Åk 9 Krs 1 Om d har fler elever med mycket bra resltat kan d redovisa deras namn i ett e-brev till kangr@ncm.g.se. Antal elever med Åk 8 Åk 9 Krs poäng poäng poäng poäng poäng 0 12 poäng NCM & Kngl Vetenskapsakademien 8
9 Redovisningsblankett B Uppgift nr Antal elever med rätt svar på ppgiften Åk 8 Åk 9 Krs 1 NCM & Kngl Vetenskapsakademien 9
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp
Kängurun Matematikens hopp
Kängurun Matematikens hopp Ecolier 017, svar och lösningar Här följer korta svar, rättningsmall och redovisningsblanketter. Ett underlag till hjälp för bokföring av klassens resultat finns att hämta på
Kängurun Matematikens hopp
Kängurun Matematikens hopp Benjamin 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också lösningsförslag. Ett underlag till hjälp för bokföring
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Student 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp
Kängurutävlingen Matematikens hopp 2017 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c.
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2017 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c. Kängurutävlingen genomförs i år den 16 mars. Om den dagen inte
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Student 016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Kängurun Matematikens hopp
Kängurun Matematikens hopp Benjamin 2009 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt och
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Cadet 2016, svar och korta lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Därefter
Kängurun Matematikens hopp
Kängurun Matematikens hopp Ecolier 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också lösningsförslag. De flesta problem kan lösas på flera sätt och med olika representationsformer.
Junior för elever på kurs Ma 2 och Ma 3
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Junior för elever på kurs Ma 2 och Ma 3 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3
Kartläggningsmaterial för nyanlända elever Geometri Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Geometri åk 3 MA 1. Rita färdigt bilden så att mönstret blir symmetriskt. 2.
Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Student för elever på kurs Ma 4 och Ma 5 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2019 Benjamin för elever i åk 5, 6 och 7 Tävlingen genomförs under perioden 21 mars 29 mars. Uppgifterna får inte användas tidigare. Sista
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Arbeta vidare med Cadet 2017 Årets Känguruproblem kan direkt kopplas till innehållet i kursplanerna för åk 9 samt för Ma1. Få av problemen är direkta rutinuppgifter utan
Kängurutävlingen Matematikens hopp 2016 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c.
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2016 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b eller 1c. Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna
Välkommen till Kängurutävlingen Matematikens hopp 2019 Cadet för elever i åk 8, 9 och för elever som läser kurs 1a, 1b, eller 1c
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 0 Cadet för elever i åk 8, och för elever som läser kurs a, b, eller c Tävlingen genomförs under perioden mars mars. Uppgifterna får inte
Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet
Svar och lösningar 1: D 200 9 Ett tal är jämnt om entalssiffran är jämn. Det enda talet som uppfyller det villkoret är 200 9 = 1800 2: C 18 cm Stjärnans yttre består av 12 lika långa sidor med sammanlagd
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2017 Benjamin för elever i åk 5, 6 och 7 Tävlingen ska genomföras under perioden 16 mars 24 mars. Uppgifterna får inte användas tidigare.
Ecolier för elever i åk 3 och 4
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Ecolier för elever i åk 3 och 4 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas tidigare.
Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,
Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 9 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11
Gymnasiets Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c:
Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9 Kängurutävlingen genomförs den 18 mars. Om den dagen inte passar kan hela veckan 19 26 mars användas, däremot
Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2016 Benjamin för elever i åk 5, 6 och 7 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas tidigare.
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Cadet 2013 Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Därefter följer förslag till hur ni
Analys av resultat på Benjamin 2010
Analys av resultat på Benjamin 2010 Analysen bygger dels på inrapporterade resultat via Kängurusidan, dels på insamlade svarsblanketter från skolor i Danderyds kommun. Det är inrapporterat uppgiftsstatistik
Svar och arbeta vidare med Cadet 2008
Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen
Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.
Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan
= A: 0 B: 1 C: 2013 D: 2014 E: 4028
Trepoängsproblem 1. 2014 2014 2014 2014 = A: 0 B: 1 C: 2013 D: 2014 E: 4028 2. Kängurutävlingen hålls den tredje torsdagen i mars varje år. Vilket datum är det senaste som tävlingen kan hållas? A: 14 mars
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart
NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR
Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
Kängurutävlingen Matematikens Hopp Cadet 2003 Lösningar, Arbeta vidare
Kängurutävlingen Matematikens Hopp Lösningar, Arbeta vidare Arrangeras av Många problem kan lösas på flera sätt. Följande förslag ger inte någon heltäckande beskrivning. Diskutera olika lösningsförslag
Svar och arbeta vidare med Benjamin 2008
Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguru och problemen kan säkert ge idéer för undervisning under många lektioner. Här ger vi några förslag att arbeta vidare med. Problemen
Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB
Gruppledtrådar Som hjälp för dina elevgrupper att utveckla sin förmåga att tala matematik, samarbeta och lära i grupp finns övningar som vi kallar Gruppledtrådar. Dessa går ut på att elever tillsammans
Känguru 2017 Student gymnasiet
sid 1 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Rätt svar ger dig 3, 4 eller 5 poäng. Varje uppgift har endast ett rätt svar. Felaktigt
Hanna Almström Pernilla Tengvall. matematik. Koll på. Läxbok
Hanna Almström Pernilla Tengvall Koll på A matematik Läxbok Koll på A matematik Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 1 Hela tusental -1 Skriv tusentalen som fattas. 1 7 9 1 Skriv talet
9 Geometriska begrepp
9 Geometriska begrepp Rita figurer som visar vad vi menar med... 261 a) 4 cm och 4 cm 2 b) 5 cm och 5 cm 2 262 Rita två olika figurer som båda har arean 8 cm 2 263 Rita tre olika figurer som alla har arean
1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E:
N G A RA Kängurutävlingen 2015 Cadet Trepoängsproblem 1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E: O O K 2. Rektangeln
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.
Kängurutävlingen 018 Cadet svar och kommentarer Facit Cadet 1: C 19 0 + 18 = 8 = 19 : E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas
Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm
Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v
Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda?
Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c: 5 d: 6 e: 11
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
Välkommen till Kängurutävlingen Matematikens hopp Ecolier för elever i åk 3 och 4
Till läraren Välkommen till Kängurutävlingen Matematikens hopp Ecolier för elever i åk 3 och 4 Tävlingen genomförs under perioden 21 mars 29 mars. Uppgifterna får inte användas tidigare. Sista dag för
Kängurun Matematikens hopp
Kängurun Matematikens hopp Cadet 2012, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också lösningsförslag. Ett underlag till hjälp för bokföring av
Arbeta vidare med Junior 2010
Arbeta vidare med Junior 010 Känguruproblemen är kanske inte av samma karaktär som de problem eleverna möter i läroboken. De är inga rutinuppgifter utan bygger på förståelse och grundläggande kunskaper.
Repetition inför kontrollskrivning 2
Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.
Kortfattade lösningar med svar till Cadet 2006
3 poäng Kängurun Matematikens hopp Cadet 2006 Kortfattade lösningar med svar till Cadet 2006 1 B 2 0 0 6 + 2006 = 0 + 2006 2 A De tal som ger rest 2 är 8 och 38, summan är 46. 3 D Första siffran längst
Ecolier för elever i åk 3 och 4
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Ecolier för elever i åk 3 och 4 Tävlingen ska genomföras under perioden 16 mars 24 mars. Uppgifterna får inte användas tidigare.
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Junior för elever på kurs Ma 2 och Ma 3
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Junior för elever på kurs Ma 2 och Ma 3 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Lathund geometri, åk 7, matte direkt (nya upplagan)
Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8
skalas bort först och sedan 4. Då har man kvar kärnan som är x.
Ge inte upp om inte ditt svar stämmer med facit. Du kan ha tänkt helt rätt, men bara räknat fel. Prova en gång till. Om ditt svar ändå inte stämmer med facit, klicka på Hjälp?, eller be din lärare om hjälp
Avdelning 1, trepoängsproblem
vdelning 1, trepoängsproblem 1. Hur många symmetrilinjer har figuren? : 0 : 1 : 2 D: 4 E: oändligt många 2. Robert arbetar på leksaksfabriken. Han ska packa kängurur som ska fraktas till affärerna. Varje
Känguru 2017 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius (Brändö gymnasium)
sivu 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett korrekt svar ger 3, 4 eller 5 poäng. Varje uppgift har endast ett korrekt svar.
Avdelning 1, trepoängsproblem
vdelning 1, trepoängsproblem 1. Hur många symmetrilinjer har figuren? : 0 : 1 : 2 : 4 E: oändligt många 2. Robert arbetar på leksaksfabriken. Han ska packa kängurur som ska fraktas till affärerna. Varje
y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32
6 Trigonometri 6. Dagens Teori Vi startar med att repetera lite av det som ingått i tidigare kurser angående trigonometri. Här följer en och samma rätvinkliga triangel tre gånger. Med en sida och en vinkel
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Känguru 2018 Student gymnasieserien i samarbete med Jan-Anders Salenius (Brändö gymnasium)
sida 0 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt ett svar korrekt. Felaktigt
Kängurutävlingen Matematikens Hopp Benjamin 2003 Uppgifter
Kängurutävlingen Matematikens Hopp Uppgifter Arrangeras av Kungl. Vetenskapsakademien & NCM/Nämnaren 3-poängsuppgifter 1. Tomas har 9 hundrakronors-sedlar, 9 tiokronor och 10 enkronor. Hur mycket pengar
Delprov A Muntligt delprov
Delprov A Muntligt delprov Äp6Ma15 Delprov A 15 Beskrivning av delprov A, muntligt delprov Det muntliga delprovet kan genomföras fr.o.m. vecka 11 och resten av vårterminen. Det muntliga delprovet handlar
Facit åk 6 Prima Formula
Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5A matematik Koll på Skriva Facit 1 Tal i decimalform,3 1 a) 0,5 b) 0,7 c) 0, a) 4, b),1 c) 9,4 3 a) 35,8 b) 41, c) 0,9 4 a) 1,1 b) 4, c) 7,3 5 a) 13,4 b) 3,5 c) 91,7 a) 40,8
4-7 Pythagoras sats. Inledning. Namn:..
Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. I ett akvarium finns det 00 fiskar varav 1 % är blå medan övriga är gula. Hur många gula fiskar måste avlägsnas från akvariet för att de blå fiskarna ska utgöra % av alla
Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13
Kurskod: 9G0 Provkod: STN Tentamen 9G0 Matematik för lärare årskurs -, del, 5 hp delmoment Geometri,5 hp, 0-0-08, kl 8- Tillåtna hjälpmedel : Passare, linjal För varje uppgift ska fullständig lösning med
Kängurun Matematikens hopp
Kängurutävlingen 2016 Ecolier, svar och lösningar Kängurun Matematikens hopp Ecolier 2016, svar och lösningar Här följer korta svar, rättningsmall och redovisningsblanketter. Efter redovisningssidorna
Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data
Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,
1 C: 2 En vågrät och en lodrät symmetrilinje genom kvadratens mittpunkt.
Svar och lösningar 1 C: 2 En vågrät och en lodrät symmetrilinje genom kvadratens mittpunkt. 2 D: 4 8 = 2 2 2, alltså finns det 2 2 = 4 boxar i bottenlagret. 3 E: 6a + 8b Sidorna är a + a + a = 3a och b
Kvalificeringstävling den 30 september 2014
SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,
Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student.
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 009 Student för elever på kurs D och E. Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 0 7 mars användas, däremot
NÄMNARENs. problemavdelning
NÄMNARENs problemavdelning För problemavdelningen svarar denna gång Bernt Leonardsson och Bo Söderberg från Örebro. Problemen är snarare kluriga än svåra så ge inte upp i tron att du inte kan matematik.
Problem 1 2 3 4 5 6 7 Svar
Känguru Cadet, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt svar
Kortfattade lösningar med svar till Gymnasiets Cadet 2006
Kängurun Matematikens hopp Gymnasiets Cadet 2006 Kortfattade lösningar med svar till Gymnasiets Cadet 2006 3 poäng 1 B 2 0 0 6 + 2006 = 0 + 2006 2 A De tal som ger rest 2 är 8 och 38, summan är 46. 3 D
MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR
MATEMATIKPROV, LÅNG LÄROKURS.0.08 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar
PROBLEMLÖSNINGSUPPGIFTER
PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget
Kängurun Matematikens Hopp
Kängurun Matematikens Hopp Student 2009 Här följer svar och lösningar, samt rättningsmall och redovisningsblanketter. Vi ger förslag till lösningsmetod. Bland eleverna i klassen finns säkert andra lösningsmetoder
Explorativ övning euklidisk geometri
Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer
Lösningsförslag Junior 2018
Lösningsförslag Junior 2018 poäng 1. (C) 5 2. (C) 5 Av triangelolikheten följer att varje sida i en triangel är längre än differensen av övriga två sidor och kortare än dess summa. Den tredje sidan måste
Trepoängsproblem. Kängurutävlingen 2012 Junior
Trepoängsproblem 1. M och N är mittpunkterna på de lika långa sidorna i en likbent triangel. Hur stor är arean av fyrhörningen markerad med X? : 3 : 4 C: 5 D: 6 E: 7 M? X 3 3 6 N 2. När lice skickar ett
Lösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson
, MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8
Kängurutävlingen Matematikens hopp 2019 Benjamin
Kängurutävlingen Matematikens hopp 2019 Benjamin Trepoängsproblem 1 Carrie har börjat att rita en katt. Hur kan hennes färdiga teckning se ut? (Norge) 2 Mayafolket skrev tal på ett annat sätt än vi gör.
Kängurun Matematikens hopp
Kängurun Matematikens hopp Student 2011 Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också lösningsförslag. Därefter följer förslag till hur ni kan arbeta vidare
Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet
Känguru 2012 Junior sivu 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt
4. A. 4, 6, 11 Viker man ihop till en kub, så kommer talet 1 mitt emot 3, 2 mitt emot 4 och 5 mitt emot 6. Det ger summorna 4, 6, 11.
N G A RA Kängurutävlingen 2015 Cadet svar och korta lösningar 1. B Betrakta de fem alternativen och jämför med paraplyet. (A) N är upp- och ner. (C) R är felvänd. (D) G är felvänd. (E) R ska inte stå mellan
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
STARTAKTIVITET 2. Bråkens storlek
STARTAKTIVITET 2 Bråkens storlek Arbeta gärna två och två. Rita en stjärna över de bråk som är mindre än 1 2. Sätt ett kryss över de bråk som är lika med 1 2. Rita en ring runt de bråk som är större än
Cadet. a: 1001 b: 11 c: 223 d: 191 e: 123 (Sverige) 2 Boris är född 1 januari 2002 och han är 1 år och 1 dag äldre än Irina. Vilken dag föddes Irina?
Cadet Avdelning. Trepoängsproblem 2007 2 + 0 + 0 + 7 = a: 00 b: c: 223 d: 9 e: 23 (Sverige) 2 Boris är född januari 2002 och han är år och dag äldre än Irina. Vilken dag föddes Irina? a: 2 januari 2003
Lösningsförslag Cadet 2014
Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
Kängurun Matematikens Hopp
Kängurun Matematikens Hopp Cadet 2011 Här följer först svar och lösningar, samt rättningsmall och redovisningsblanketter. Vi ger förslag på lösningsmetod. Därefter följer förslag till hur ni kan arbeta
Analys av resultat på Cadet 2010
Analys av resultat på Cadet 2010 Analysen bygger dels på inrapporterade resultat via Kängurusidan, dels på insamlade svarsblanketter från skolor i Danderyds kommun. Det är inrapporterat uppgiftsstatistik
Kängurun Matematikens hopp
Kängurun Matematikens hopp Ecolier 2011 Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också lösningsförslag. Därefter följer förslag till hur ni kan arbeta vidare