Introduktion till Biomekanik, Dynamik härledda samband VT 2006

Storlek: px
Starta visningen från sidan:

Download "Introduktion till Biomekanik, Dynamik härledda samband VT 2006"

Transkript

1 Härledda samband (alternativ till kraftlagen) II. Impuls rörelsemängd Användbart där kraftpåverkan sker över en viss tid. Impuls: Får en kraft verka en viss tid sägs den ge en viss impuls. Impuls definieras som produkten av kraften och den tid som kraften verkar: I = F t Enhet för impuls: Ns. Motsvaras grafiskt av ytan på arean under kraft tid kurvan. Vid konstant kraft gäller det enkla sambandet ovan, dvs: I = F t Generellt, för icke konstanta krafter, är sambandet: t t I = F( t) dt 0 (dvs. ytan under grafen ) Rörelsemängd: En kropps rörelsemängd (momentum) definieras som massan gånger hastigheten: p = m v Enhet för rörelsemängd: kgm/s. Rörelsemängd är en vektor, riktad i hastighetens riktning. Det finns ett direkt samband mellan impuls och rörelsemängd: F t = m v eller F t = m v f m v0 Innebörd: En kraft som verkar på en kropp en viss tid (impulsen) ger en ändring i kroppens hastighet. Hastighetsändringen beror på kroppens massa (rörelsemängdsförändringen).

2 Exempel Under kraschtest av en 500 kg:s personbil kolliderar den mot en fast tegelvägg enligt figur. Strax före kollisionen är bilens hastighet -5,0 m/s åt vänster (höger räknas som positivt!) och efter kollisionen är hastigheten,6 m/s åt höger. Om kollisionen varar 0,50 s, beräkna impulsen under kollisionen och den genomsnittliga kraft som verkar på personbilen. Formel: F t = m v f m v0 (Impuls = 6, Ns, Medelkraft F = 76 kn) Vad är fördelen med att röra huvudet bakåt just innan man träffas av ett slag?

3 Mer om impuls Samma impuls kan åstadkommas på flera sätt. Exempel: Hård (a) eller mjuk nedslagsmatta (b) vid höjdhopp. Tillslag på golfboll (a) eller tennisboll (b). Impuls rörelsemängd Rörelsemängd impuls 3

4 Överföring av rörelsemängd När två kroppar i rörelse påverkar varandra med krafter kommer summan av kropparnas rörelsemängd vara lika stor före och efter kontakten. Formel: m v + m v = m v + m v Kallas för stöt i mekaniken. Följande fall är möjliga: Kropparna rör sig åt samma håll och den efterföljande har större hastighet Kropparna rör sig med vissa hastigheter mot varandra Den en kroppen träffar en stillastående kropp med viss hastighet Andra och tredje fallet är aktuellt i flera idrotter: Bollspel som tennis, fotboll Ishockey; tacklingar, skott mot sarg etc. Curling, biljard Exempel Wayne Gretzky (till vänster) tacklar försvaren med en hastighet av 3 m/s samtidigt som försvararen kommer mot Gretzky med en hastighet av 5 m/s. Gretzkys väger 77 kg medan motståndaren väger 9 kg. Om Gretzky rör sig med,5 m/s i sin ursprungliga riktning efter tacklingen, vilken hastighet har då försvararen direkt efter smällen? Bortse från friktion etc. under tacklingen. Hur stor är impulsen under tacklingen? Lämplig formel: m v + m v = m v + m v (v = 3,8 m/s, Impuls = 809 Ns) Impuls: F t = m v f m v0 Gretzky: m = 77 kg v = 3 m/s v =,5 m/s Motståndare: m = 9 kg v = -5 m/s v =? 4

5 Exempel En 45,9-g golfboll slås med en femmans järnklubba och får den hastighet som visas i figuren under ett tidsförlopp om 0,00 s. Bestäm hur stor medelkraft F medel som påverkar bollen under slaget. Hur stor medelacceleration a medel utsätts bollen för under slaget? (Ledning: lämplig riktning för ekvationerna ligger i hastighetens riktning) Svar: F medel = 0 N, a medel = m/s (4690g) 5

6 III. Arbete Energi Användbart där kraftpåverkan sker över en viss sträcka. Arbete, W Definieras som kraft gånger väg, dvs. W = F s, enhet Nm (J). Om kraft och väg bildar en viss vinkel (Θ) med varandra blir arbetet lika med W = F cos Θ s Observera att kraft och förflyttning ska vara utefter samma linje! Om man skjuter på en bil är det förstås bara kraft i förflyttningens riktning som utför ett nyttigt arbete. Samma sak gäller vid ett stavtag i längdlöpning. Totala arbetet för förflyttningen av bilen i bilden ovan blir W = F cos Θ s (som i formeln ovan) 6

7 Energi, E Kan sägas vara en kropps förmåga att uträtta arbete. Energi finns av flera slag, här behandlas mekanisk energi, dvs. potentiell energi och rörelseenergi. Potentiell energi (W P ): (Lägesenergi) När en kropp med viss tyngd (mg) förflyttas från en viss nivå till en högre belägen nivå och vertikala avståndet är h meter åtgår ett arbete som lagras som den potentiella energin W p. Formel: W p = m g h Detta gäller oberoende av den väg utefter vilken förflyttningen skett! Potentiell energi kan även sägas vara lagrat i fjädrar, stavar etc. Kinetisk energi (W k eller T): Energi pga. rörelsehastighet. Beräknas ur formeln W k = T v = m Här, liksom i fallet med den potentiella energin, kan man tolka det som att en viss mängd arbete lagras i kroppen. Kinetisk energi kan endast vara positiv! Lagen för den kinetiska energin När en kropp förflyttas från ett läge till ett annat, så är ändringen i den kinetiska energin T lika med det arbete W som har uträttats av samtliga krafter på kroppen. W = T T eller = ΔT T + W = T 7

8 Exempel Intjänad lägesenergi kan återvinnas som rörelseenergi. Skidåkaren startar från vila i en friktionslös backe, 0 m upp enligt figur. Hur stor hastighet har han vid slutet av backen? Lösning: All lägesenergi omvandlas till rörelseenergi vid backen slut. v W p = W k eller mgh = m där m är åkarens massa, h=0 m, v sökt hastighet. (v = 9,8 m/s eller 7,3 km/h) Diskussionsexempel Variationer i potentiell energi (dvs. vertikal förflyttning av tyngdpunkten) under gång respektive löpning. 8

9 Exempel Ett litet föremål har hastigheten v A = 5 m/s vid A. Om vi bortser från friktionen, bestäm hastigheten v B vid B. Behöver vi känna till banans form för uträkningen? Svar: v B = 3,05 m/s Exempel En 80 kg:s stavhoppare springer med en 4,9 m lång och 4,5 kg tung stav under ansatsen och når hastigheten v just innan han sätter i staven. Om han precis klarar höjden 5,5 m och hans hastighet är så gott som noll i översta läget, beräkna vilken minimihastighet v han måste ha för att klara hoppet. Både den horisontella staven och stavhopparens tyngdpunkt befinner sig, m över marken under ansatsen och mannens tyngdpunkt når upp till högsta höjden 5,5 m i hoppet. Svar: v = 9, m/s eller 3,8 km/h 9

10 Intjänad lägesenergi kan återvinnas som rörelseenergi. Brädåkaren, kusin Throckmorton åker i en ramp som har formen av en kvarts cirkel. Den totala massan av Throckmorton och brädan är 5 kg och rampen har en radie av R = 3,0 m. Beräkna Throckmortons hastighet vid läge om han startar från stillastående i läge och brädan har en konstant rullmotstånd av F R =0 N. (v = 7,4 m/s) Kan olika stora krafter uträtta samma arbete? Ja, men det tar längre tid för myran att utföra samma arbete i exemplet ovan. Frågeställningen för oss osökt över till begreppet effekt, dvs. arbete per tidsenhet. Effekt och verkningsgrad Effekt är arbete per tidsenhet. Effekten P (eng Power) beräknas ur W P = t Alternativa uttryck fås ur P=Fs/t eller P=Fv eftersom v=s/t. Effekten mäts i watt (W) eller J/s eller Nm/s. Verkningsgrad definieras som förhållandet mellan avgiven effekt (P a ) och tillförd effekt (P t ) och betecknas med den grekiska bokstaven η (eta). 0

11 Pa Verkningsgraden, i procent fås ur η = 00 P t Exempel En man och hans cykel väger tillsammans 95 kg. Hur stor (avgiven) effekt P utvecklar mannen om han cyklar uppför en backe med 5% lutning med en konstant hastighet av 0 km/h? Hur stor blir hans verkningsgrad om han under cyklingen utvecklar en total effekt om 000 W? (Svar: 59 W, η = 0,59) Exempel En 54 kg:s kvinna joggar uppför trappan i figuren på 5 sek. Beräkna hennes medeleffekt. (Svar: 9 W)

12 Rotationskinetik Grundläggande för kroppens rörelser: All rörelse (och alla krafter) skapas genom att muskler vrider kroppsdelar runt olika leder. Tillhör dessvärre de mest komplicerade delarna av mekaniken! Behandlas här endast översiktligt. Följande begrepp beskrivs: Kraftmoment vinkelacceleration; samband mellan alstrat (momentant) moment och rotation Vinkelimpuls rörelsemängdsmoment; samband mellan moment som verkar en viss tid och den rotationsförändring det åstadkommer I. Kraftmoment vinkelacceleration Grundläggande ekvation: M = J α där ΣM är det resulterande momentet, J är masströghetsmomentet och α är vinkelaccelerationen. Gäller runt Tp eller fix axel. (Jämför uttrycket ovan med kraftekvationen F = m a )

13 Masströghetsmomentet J J representerar kroppens motstånd mot ändringar i rotationstillståndet. Beräknas ur: J = m r Innebörd: Ju längre bort från rotationsaxeln en masspartikel är, desto större bidrag ger den till J. Masströghetsmomentet J påverkas av aktuell rotationsaxel; för samma kropp får J helt olika värden för olika rotationsaxlar! massfördelningen; kroppar med samma massa kan ha olika J för en viss rotationsaxel. Ju längre bort från rotationscentrum en del-partikel hamnar, desto större inverkan på J får den (beror på avståndet i kvadrat). 3

14 Människokroppens masströghetsmoment I figuren anges relativa värden för J för olika kroppsställningar och rotationsaxlar. Med olika kroppsställningar kan J påverkas betydligt! II. Vinkelimpuls - rörelsemängdsmoment Motsvarar sambanden mellan Impuls rörelsemängd vid linjära rörelser. Sambandet mellan vinkelimpuls och rörelsemängdsmoment anges i formeln M t = J ω (jämför med F t = m v ) Produkten Jω kallas ibland för spinn. Då inget yttre moment verkar är spinnet (rörelsemängdsmomentet) oförändrat, dvs. produkten Jω är konstant. När detta är fallet säger man att rörelsemängdsmomentet (spinnet) konserveras. 4

15 Exempel på konservering av rörelsemängdsmoment Hur bär sig en konståkerska åt för att variera rotationshastigheten under en piruett? Hur kan en simhopperska rotera snabbt under mittdelen av hoppet, medan hon nästan slutat rotera när hon slår i vattenytan? Varför roterar Zlatan överkroppen åt motsatt håll som underkroppen (vänsterbenet) under en spark med full kraft? 5

16 Exempel Simhopp Utgångsställning J = Hopkrupen st. J = 4 Tre gånger så snabb rotation i mitten av rörelsen, ty: J ω = 4 ω = J ω = = ω J J 3 Exempel En konståkare utför en piruett där han börjar sin rotation med armarna utsträckta enligt figur och har då en rotationshastighet av n = varv/s. Genom att i slutet av piruetten föra in armarna så de sträcks lodrätt, tätt utmed kroppen, minskar han sitt masströghetsmoment från J = 4,9 kgm till J =, kgm. Beräkna hur snabb rotation han har i läge när armarna är sträckta utefter kroppen. Friktion mellan skridskor och is försummas. (n = 4,5 varv/s) 6

17 Exempel med rörelsemängdsmoment Slalomsväng I olika delar av svängen har åkaren olika stora J vilket påverkar rotationshastigheten ω. I början av svängen djup ställning ( 4J), reser sig upp under svängen ( J) och fördubblar då sin inledande rotation. I slutet av svängen nedsjunkning igen, minskar därmed rotationen när han lämnar svängen och kan lättare styra in i ny åkriktning. Då yttre moment saknas: J ω + J ω = konst eller, i vissa fall, J ω + J ω 0 = Längdhopp: I början av hoppet; kroppen böjd i en båge (beroende på hoppstil). Vid landning; pendling framåt med benen, vilket kräver samtidig motrotation i överkroppen. 7

18 Flödesmekanik Handlar om motståndet från det medium man rör sig genom: Luftmotstånd Vattenmotstånd En generell (något förenklad) formel för motståndet ges av F L = AP v C D ρ där F L är luft/vattenmotstånd A P är den projicerade arean i rörelseriktningen v är hastigheten C D är en konstant som representerar strömlinjeformen ρ är mediets densitet (täthet) Vad går att läsa ut ur formeln? F L = AP v C D ρ Massan har ingen betydelse för strömningsmotståndet Fördubbling av hastigheten ger fyra gånger större strömningsmotstånd! Att till exempel minska den projicerade arean A P med 0 % under glid i en utförsbacke minskar luftmotståndet med lika mycket Samma gäller för förbättring av strömlinjeformen, lika mycket som den minskar, minskar också luftmotståndet 8

19 Vad händer egentligen när cyklister ligger på rulle enligt figuren? Eller när en skidåkare följer i rygg på en framförvarande? Formering Proj. area C D -värde 9

20 Skruvade bollar Oskruvad boll rör sig genom luften enl. figur t.h: Samma lufttryck finns på överoch undersida av bollen. För skruvade bollar etc. ändras detta förhållande enligt Bernoulli s ekvation: P + ρ v = konst. eller P + ρ v = P + ρ v Innebörd av Bernoulli s ekvation: Boll med topspin: På ovansidan bollen blir den resulterande lufthastigheten lägre än på undersidan av bollen (bollen river med sig luften i sin rotation). Detta medför att trycket P på översidan är högre än trycket P på undersidan eftersom summan av trycket P och termen ρ v hela tiden ska vara konstant. För bollen med backspin gäller förstås det omvända! 0

21 Fler exempel: Sidskruvar i fotboll och underskruvar i golf. Övningstal i kompendiet (sid ) Observera att lösningar till talen finns på sid. och framåt i kompendiet. Formelsamlingen i appendix, sid. A9 kan också vara användbar. Kommentarer till några av talen: Tal 35; Arbetet i matta = Pot. energi (håll reda på höjden!) Rekommenderade uppgifter: Tal 34, 35 (lurigt!), 36, 38, 39, 40.

Introduktion till Biomekanik, Dynamik - kinetik VT 2006

Introduktion till Biomekanik, Dynamik - kinetik VT 2006 Kinetik Kinematiken: beskrivning av translationsrörelse och rotationsrörelse Kinetik: Till rörelsen kopplas även krafter och moment liksom massor och masströghetsmoment. Kinetiken är ganska komplicerad,

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O

= v! p + r! p = r! p, ty v och p är dt parallella. Definiera som en ny storhet: Rörelsemängdsmoment: H O 1 KOMIHÅG 15: --------------------------------- Definitioner: Den potentiella energin, mekaniska energin Formulera: Energiprincipen ---------------------------------- Föreläsning 16: FLER LAGAR-härledning

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

Om den lagen (N2) är sann så är det också sant att: r " p = r " F (1)

Om den lagen (N2) är sann så är det också sant att: r  p = r  F (1) 1 KOMIHÅG 12: --------------------------------- Den mekaniska energin, arbetet ---------------------------------- Föreläsning 13: FLER LAGAR-härledning ur N2 Momentlag Hur påverkas rörelsen av ett kraftmoment??

Läs mer

Introduktion till Biomekanik, Dynamik - kinematik VT 2006

Introduktion till Biomekanik, Dynamik - kinematik VT 2006 Dynamik Handlar om kroppar med föränderlig rörelse. Dynamiken indelas traditionellt i kinematik och kinetik. Kinematik: Enbart rörelsebeskrivning, centrala begrepp är sträcka (vinkel) hastighet och acceleration.

Läs mer

En tyngdlyftare lyfter en skivstång som väger 219 kg. Skivstången lyfts 2,1 m upp från golvet på 5,0 s.

En tyngdlyftare lyfter en skivstång som väger 219 kg. Skivstången lyfts 2,1 m upp från golvet på 5,0 s. NAMN: KLASS: Del A: Endast svar krävs. Skriv dina svar direkt på provpappret. 1) En tyngdlyftare lyfter en skivstång som väger 219 kg. Skivstången lyfts 2,1 m upp från golvet på 5,0 s. a) Vilken genomsnittlig

Läs mer

LÖSNINGAR TENTAMEN MEKANIK II 1FA102

LÖSNINGAR TENTAMEN MEKANIK II 1FA102 LÖSNINGAR TENTAMEN 16-10-20 MEKANIK II 1FA102 A1 Skeppet Vidfamne 1 har en mast som är 11,5 m hög. Seglet är i överkant fäst i en rå (en stång av trä, ungefär horisontell vid segling). För att kontrollera

Läs mer

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. 60 Du vandrar omkring bland din mosters äppelträd och får ett jättestort äpple i huvudet. Av din moster (som är

Läs mer

Introduktion till Biomekanik - Statik VT 2006

Introduktion till Biomekanik - Statik VT 2006 Pass 4 Jämvikt, fortsättning Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Statisk jämvikt (vila) Dynamisk jämvikt (rörelse i konstant hastighet) (ge ex)

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

Repetition Energi & Värme Heureka Fysik 1: kap version 2013

Repetition Energi & Värme Heureka Fysik 1: kap version 2013 Repetition Energi & Värme Heureka Fysik 1: kap. 5 + 9 version 2013 Mekanisk energi Arbete Arbete är den energi som omsätts när en kropp förflyttas. Arbete ges av W = F s, där kraften F måste vara parallell

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.

Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål. 1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Tentamen i Mekanik för D, TFYA93/TFYY68

Tentamen i Mekanik för D, TFYA93/TFYY68 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen för Fysik, Kemi och Biologi Magnus Johansson Tentamen i Mekanik för D, TFYA93/TFYY68 Måndag 019-01-14 kl. 14.00-19.00 Tillåtna Hjälpmedel: Physics Handbook

Läs mer

Mekanik F, del 2 (FFM521)

Mekanik F, del 2 (FFM521) Mekanik F, del (FFM51) Ledningar utvalda rekommenderade tal Christian Forssén, christianforssen@chalmersse Uppdaterad: April 4, 014 Lösningsskissar av C Forssén och E Ryberg Med reservation för eventuella

Läs mer

5 Energi och rörelsemängd

5 Energi och rörelsemängd 5 Energi och rörelsemängd 501. a) Arbete är kraft gånger sträcka. Kraften mäts i sträckans riktning. W = F s s b) Energiändring är lika med utfört arbete. E = W c) Lägesenergi E p = mgh Svar: a) W = F

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB

Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB . Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse

Läs mer

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt Övningstenta 015 Svar och anvisningar Uppgift 1 a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt tillsammans med begynnelsevillkoret v(0) = 0. Vi får: v(t) = 0,5t dt = 1 6 t3 + C och vi bestämmer

Läs mer

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll.

Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat, samt en egenhändigt skriven A4- sida med valfritt innehåll. Tentamen i Mekanik för F, del B Tisdagen 17 augusti 2004, 8.45-12.45, V-huset Examinator: Martin Cederwall Jour: Ling Bao, tel. 7723184 Tillåtna hjälpmedel: Physics Handbook, Beta, kalkylator i fickformat,

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Arbete och effekt vid rotation

Arbete och effekt vid rotation ˆ F rˆ Arbete och effekt vid rotation = Betrakta den masslösa staven med längden r och en partikel med massan m fastsatt i änden. Arbetet som kraften ሜF uträttar vid infinitesimal rotation d blir då: ds

Läs mer

Sammanfattning Fysik A - Basåret

Sammanfattning Fysik A - Basåret Sammanfattning Fysik A - Basåret Martin Zelan, Insitutionen för fysik 6 december 2010 1 Inledning: mätningar, värdesiffror, tal, enheter mm 1.1 Värdesiffror Avrunda aldrig del uträkningar, utan vänta med

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13.

7,5 högskolepoäng. Provmoment: tentamen. Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2012-03-12 Tid: 09.00-13. Mekanik rovmoment: tentamen Ladokkod: TT8A Tentamen ges för: Högskoleingenjörer årskurs 7,5 högskolepoäng Tentamensdatum: -3- Tid: 9.-3. Hjälpmedel: Hjälpmedel vid tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11

university-logo Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 1 / 11 Mekanik Repetition CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 03 18 1 / 11 Översikt Friläggning Newtons 2:a lag i tre situationer jämvikt partiklar stela kroppars plana rörelse Energilagen Rörelsemängd

Läs mer

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse

Institutionen för Fysik och Astronomi! Mekanik HI: Rotationsrörelse Rotationsrörelse I denna laboration kommer vi att undersöka dynamik rotationsrörelse för stela kroppar. Experimentellt kommer vi att undersöka bevarandet av kinetisk rotationsenergi och rörelsemängdsmoment

Läs mer

Instuderingsfrågor Arbete och Energi

Instuderingsfrågor Arbete och Energi Instuderingsfrågor Arbete och Energi 1. Skriv ett samband (en formel) där kraft, arbete och väg ingår. 2. Vad menas med friktionskraft? 3. Hur stort arbete behövs för att lyfta en kartong som väger 5 kg

Läs mer

Stelkroppsmekanik partiklar med fixa positioner relativt varandra

Stelkroppsmekanik partiklar med fixa positioner relativt varandra Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå

Läs mer

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp)

SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Läsåret 11/12 Utförliga lärandemål SG1108 Tillämpad fysik, mekanik för ME1 (7,5 hp) Richard Hsieh Huvudsakligt innehåll: Vektoralgebra och dimensionsbetraktelser. Kraft och kraftmoment. Kraftsystem; kraftpar,

Läs mer

Kollisioner, rörelsemängd, energi

Kollisioner, rörelsemängd, energi Kollisioner, rörelsemängd, energi I denna laboration kommer ni att undersöka kollisioner, rörelsemängd och energi, samt bekanta er ytterligare med GLX Xplorer som används i mekaniklabbet för utläsning

Läs mer

Arbete Energi Effekt

Arbete Energi Effekt Arbete Energi Effekt Mekaniskt arbete Du använder en kraft som gör att föremålet förflyttas i kraftens riktning Mekaniskt arbete Friktionskraft En kraft som försöker hindra rörelsen, t.ex. när du släpar

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del FFM50 Tid och plats: Måndagen den 3 maj 011 klockan 14.00-18.00 i V. Lösningsskiss: Christian Forssén Obligatorisk del 1. a 1 och är identiska vid ekvatorn. Centripetalaccelerationen

Läs mer

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z )

Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: e y e z. e z ) 1 Föreläsning 10: Stela kroppens plana dynamik (kap 3.13, 4.1-8) Komihåg 9: H O = "I xz e x " I yz e y + I z e z H G = "I xz ( ) ( G e x " I G yz e y + I G z e z ) # (fixt origo, kroppsfix bas) # (kroppsfix

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

Upp gifter. 1. Vilken hastighet måste en boll minst ha för att kunna nå 14,5 m upp i luften?

Upp gifter. 1. Vilken hastighet måste en boll minst ha för att kunna nå 14,5 m upp i luften? 1. Vilken hastighet måste en boll minst ha för att kunna nå 14,5 m upp i luften? 2. En bil som väger 143 kg har hastigheten 9 km/h. Vilken rörelseenergi har bilen? 3. Det högsta vattenfallet i världen

Läs mer

9.2 Kinetik Allmän plan rörelse Ledningar

9.2 Kinetik Allmän plan rörelse Ledningar 9.2 Kinetik Allmän plan rörelse Ledningar 9.43 b) Villkor för att linan inte skall glida ges av ekv (4.1.6). 9.45 Ställ upp grundekvationerna, ekv (9.2.1) + (9.2.4), för trådrullen. I momentekvationen,

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs

=v sp. - accelerationssamband, Coriolis teorem. Kraftekvationen För en partikel i A som har accelerationen a abs 1 Föreläsning 7: Fiktiva (tröghets-)krafter (kap A) Komihåg 6: Absolut och relativ rörelse för en partikel - hastighetssamband: v abs = v O' + # r 1 42 4 3 rel + v rel =v sp - accelerationssamband, Coriolis

Läs mer

Mekanik FK2002m. Repetition

Mekanik FK2002m. Repetition Mekanik FK2002m Föreläsning 12 Repetition 2013-09-30 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 12 Förflyttning, hastighet, acceleration Position: r = xî+yĵ +zˆk θ = s r [s = θr] Förflyttning: r

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 170418 TFYA16 1 TFYA16: Tenta 170418 Svar och anvisningar Uppgift 1 a) Vi är intresserade av största värdet på funktionen x(t). Läget fås genom att integrera hastigheten, med bivillkoret att x(0) = 0.

Läs mer

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe

KUNGL TEKNISKA HÖGSKOLAN INSTITUTIONEN FÖR MEKANIK Richard Hsieh, Karl-Erik Thylwe Tentamen i SG1102 Mekanik, mindre kurs för Bio, Cmedt, Open Uppgifterna skall lämnas in på separata papper. Problemdelen. För varje uppgift ges högst 6 poäng. För godkänt fordras minst 8 poäng. Teoridelen.

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 8 januari 016 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 016 1. a) Den stora och lilla bollen faller båda,0 m. Energiprincipen ger hastigheten då

Läs mer

a. b a. b. 7.

a. b a. b. 7. 1. Mattias och hans vänner badar vid ett hopptorn som är 10,3 m högt. Hur lång tid tar det innan man slår i vattnet om man hoppar rakt ner från tornet? 2. En boll träffar ribban på ett handbollsmål och

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den

Läs mer

Tentamen i Mekanik - Partikeldynamik TMME08

Tentamen i Mekanik - Partikeldynamik TMME08 Tentamen i Mekanik - Partikeldynamik TMME08 Onsdagen den 13 augusti 2008, kl. 8-12 Examinator: Jonas Stålhand Jourhavande lärare: Jonas Stålhand, tel: 281712 Tillåtna hjälpmedel: Inga hjälpmedel Tentamen

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP00, Fysikprogrammet termin 2 Tid: Plats: Ansvarig: Hjälpmedel: Lödag 29 maj 200, kl 8 30 3 30 V-huset Lennart Sjögren,

Läs mer

Introduktion till Biomekanik - Statik VT 2006

Introduktion till Biomekanik - Statik VT 2006 1 Jämviktsberäkning metodik (repetition) Ex. 1. Frilägg den del du vill beräkna krafterna på. 2. Rita ut alla krafter (med lämpliga benämningar) 3. Rita ut alla avstånd du vet, gör gärna om till meter.

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012. Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur

Läs mer

Tillämpad biomekanik, 5 poäng Övningsuppgifter

Tillämpad biomekanik, 5 poäng Övningsuppgifter , plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen 2015-06-01 Tentamen i Mekanik SG1102, m. k OPEN OBS: Inga hjälpmedel förutom rit- och skrivdon får användas KTH Mekanik Problemtentamen 1. En bil med massan m kör ett varv med konstant fartökning ( v =)

Läs mer

Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse

Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

" e n och Newtons 2:a lag

 e n och Newtons 2:a lag KOMIHÅG 4: --------------------------------- 1 Energistorheter: P = F v, U "1 = t 1 # Pdt. Energilagar: Effektlagen, Arbetets lag ---------------------------------- Föreläsning 5: Tillämpning av energilagar

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen

Tentamen i SG1140 Mekanik II för M, I. Problemtentamen 2010-10-23 Tentamen i SG1140 Mekanik II för M, I. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar.

Datum: Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Mekanik KF, Moment 1 Datum: 2012-08-25 Författare: Olof Karis Hjälpmedel: Physics handbook. Beta Mathematics handbook. Pennor, linjal, miniräknare. Skrivtid: 5 timmar. Del 1 (Lämna in denna del med dina

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Biomekanik, 5 poäng Kinetik

Biomekanik, 5 poäng Kinetik Teori: F = ma Dessutom gäller, som i statien, Newtons 3: lag! Newtons lagar 1. Tröghetslagen: En ropp utan yttre raftpåveran förblir i sitt tillstånd av vila eller liformig, rätlinjig rörelse.. Accelerationslagen:

Läs mer

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi

KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag Föreläsning 11: Arbete och lagrad (potentiell) energi KOMIHÅG 10: Effekt och arbete Effekt- och arbetslag ----------------------------------------- Föreläsning 11: Arbete och lagrad (potentiell) energi Definition av arbete: U 0"1 = t 1 t 1 # Pdt = # F v dt,

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge

Läs mer

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen

Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. Problemtentamen 2015-06-12 Omtentamen i Mekanik I SG1130, grundkurs för CMATD och CL. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. Med hjälp av en tråd kan ett homogent block

Läs mer

Tentamen i Mekanik II

Tentamen i Mekanik II Institutionen för fysik och astronomi F1Q1W2 Tentamen i Mekanik II 30 maj 2016 Hjälpmedel: Mathematics Handbook, Physics Handbook och miniräknare. Maximalt 5 poäng per uppgift. För betyg 3 krävs godkänd

Läs mer

Tentamen för TFYA87 Fysik och Mekanik

Tentamen för TFYA87 Fysik och Mekanik Linköpings Universitet IFM Mats Fahlman Tentamen för TFYA87 Fysik och Mekanik Tisdagen 19/4 017, kl 08:00-1:00 Hjälpmedel: Avprogrammerad miniräknare, formelsamling (bifogad) Råd och regler Lösningsblad:

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen

Läs mer

ID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan.

ID-Kod: Program: Svarsformulär för A-delen. [ ] Markera om du lämnat kommentarer på baksidan. Svarsformulär för A-delen ID-Kod: Program: [ ] Markera om du lämnat kommentarer på baksidan. A.1a [ ] 0.75 kg [ ] 1.25 kg [ ] 1 kg [ ] 2 kg A.1b [ ] 8rπ [ ] 4rπ [ ] 2rπ [ ] rπ A.1c [ ] ökar [ ] minskar

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

Repetition Mekanik, grundkurs

Repetition Mekanik, grundkurs Repetition Mekanik, grundkurs Kraft är en vektor och beskrivs med storlek riktning och angreppspunkt F= Fe + F e + Fe x x y y z z Kraften kan flytta längs sin verkninglinje Addera krafter Moment i planet

Läs mer

Andra EP-laborationen

Andra EP-laborationen Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med

Läs mer

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2)

Lösning. (1b) θ 2 = L R. Utgå nu från. α= d2 θ. dt 2 (2) Lösningar till dugga för kursen Mekanik II, FA02, GyLärFys, KandFys, F, Q, W, ES Tekn-Nat Fak, Uppsala Universitet Tid: 7 april 2009, kl 4.00 7.00. Plats: Skrivsalen, Polacksbacken, Uppsala. Tillåtna hjälpmedel:

Läs mer

Instuderingsfrågor Krafter och Rörelser

Instuderingsfrågor Krafter och Rörelser 1. Hur stor tyngd har ett föremål med massan: a) 4 kg b) 200 g Instuderingsfrågor Krafter och Rörelser 2. Hur stor massa har ett föremål om tyngden är: a) 8 N b) 450 N 3. Hur stor är jorden dragningskraft

Läs mer

Rörelsemängd. Rörelsemängdens bevarande

Rörelsemängd. Rörelsemängdens bevarande Kapitel 6: Rörelsemängd Rörelsemängd Momentum Rörelsemängd är e8 sä8 a8 beskriva trögeten os e8 föremål. E8 föremål med ög rörelsemängd kräver mycket energi för a8 stanna - trögeten är ög! Rörelsemängden

Läs mer

Upp gifter. 1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa.

Upp gifter. 1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa. 1. På ett bord står en temugg. Rita ut de krafter som verkar på muggen och namnge dessa. 2. En såpbubbla dalar genom luften med den konstanta hastigheten 1,1 cm/s. Vilken kraft känner den av från luften

Läs mer

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan

Planering mekanikavsnitt i fysik åk 9, VT03. och. kompletterande teorimateriel. Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt i fysik åk 9, VT03 och kompletterande teorimateriel Nikodemus Karlsson, Abrahamsbergsskolan Planering mekanikavsnitt, VT 03 Antal lektioner: fem st. (9 jan, 16 jan, 3 jan, 6 feb,

Läs mer

Tentamen i SG1140 Mekanik II. Problemtentamen

Tentamen i SG1140 Mekanik II. Problemtentamen 010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Ballistisk pendel laboration Mekanik II

Ballistisk pendel laboration Mekanik II Ballistisk pendel laboration Mekanik II Utförs av: William Sjöström 19940404 6956 Philip Sandell 19950512 3456 Uppsala 2015 05 09 Sammanfattning Ett sätt att mäta en gevärkulas hastighet är att låta den

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner

Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner Lösningar Heureka Kapitel 3 Rörelse i två dimensioner Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik Heureka:Kapitel 3 3.1) Enligt figuren: nordliga förflyttningen: 100+00-100=00m Östliga förflyttningen:

Läs mer

Innan nicken. Nickteknik

Innan nicken. Nickteknik Innan nicken Titta upp före du får bollen så du ser alternativen för pass eller avslut Du ser hur och vart du ska nicka och vilken typ av nick du ska använda Vid nick mot mål ser du målvaktens position

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

Tentamen Mekanik F del 2 (FFM521 och 520)

Tentamen Mekanik F del 2 (FFM521 och 520) Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

FYSIKALISKA APTITRETARE

FYSIKALISKA APTITRETARE FYSIKALISKA APTITRETARE Ett sätt att börja en fysiklektion och genast försöka fånga elevernas intresse, är att utföra ett litet experiment eller en demonstration. Kraven som ställs på ett sådant inledande

Läs mer

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2

Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,3,4)P, r 2 2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper

Läs mer

Biomekanik, 5 poäng Jämviktslära

Biomekanik, 5 poäng Jämviktslära Jämvikt Vid jämvikt (ekvilibrium) är en kropp i vila eller i rätlinjig rörelse med konstant hastighet. Jämvikt kräver att: Alla verkande krafter tar ut varandra, Σ F = 0 (translationsjämvikt) Alla verkande

Läs mer

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 2018-01-12 Skrivtid: 15.00 20.00 Totala antalet uppgifter: 5 Jourhavande lärare: Magnus Gustafsson, 0920-491983

Läs mer

Mekanik II repkurs lektion 4. Tema energi m m

Mekanik II repkurs lektion 4. Tema energi m m Mekanik II repkurs lektion 4 Tema energi m m Rörelseenergi- effekt P v P (hastighet hos P) dt/dt= F P v P F P för stel kropp När kan rörelseenergi- effekt användas? Effektbidrag från omgivningen (exempelvis

Läs mer

Innan skottet. Riktning och höjd

Innan skottet. Riktning och höjd Innan skottet Titta upp innan du får bollen så du ser skottalternativen tidigt Se hur du snabbt och enkelt kan komma till skott Dölj skottet för motståndarna så länge som möjligt Använd skottfinten vid

Läs mer