Problemlösning Lösningar
|
|
- Berit Rut Blomqvist
- för 6 år sedan
- Visningar:
Transkript
1 Problemlösning Lösningar Figur 1: Problemlösning 1. Vem är kär i Adam (2) Vi kan bilda följande kedjor, där står för älskar och för älskar inte (1) A?? E? (2) B?? F? (3) C? D? (4) G B (5) H? G Om ingen kärlek är ömsesidig finns två olika möjligheter, se figur 1 Antingen har vi två cirklar med 4 personer i varje eller så har vi alla 8 personerna i en enda stor cirkel. Vi antar först att det är två cirklar som gäller. Från (1) och (2) får vi då två möjligheter: eller A? E? A F E B B? F? C?? D Den första möjligheten strider mot villkor (3) och den andra mot villkor (5). Återstår då att ta reda på om vi kan lösa problemet med den stora cirkeln. Figur 2: Håkan Strömberg 1 KTH STH
2 Anta att E älskar D och vi får situationen till vänster i figur 2 enligt (1) och (3). Villkor (2) medför att F står mellan A och C och B på den mellersta av de tre övriga lediga platserna. Då, enligt (4), älskar G A och detta tillsammans strider mot (5). Därför är det omöjligt att E D. (1) och (3) ger nu endast en möjlighet, nämligen den till höger i figur 2. De övriga villkoren kompletterar lätt hela cirkeln och vi få A H B E C F D G A Problemlösning 2. Handskakningar (2) Figur 3: Här är en lösning för fyra par. Överst har vi värden och värdinnan Antag att det totalt deltog 2n personer i firandet, inklusive värd och värdinna. 1 När värden gick runt och frågade måste han ha fått 2n 1 svar. Svaret från hustrun inräknat. 2 Alla 2n 1 svaren var olika och därför måste de ha varit 0,1,2,...,2n 2 P(x) betecknar en person som hälsade på x personer. P(2n 2) måste ha skakat hand med både värden och värdinnan värden eftersom denne inte skakade hand med sig själv eller med sin äkta hälft. Den äkta hälften till P(2n 2) måste vara P(0). P(1) hälsade bara på P(2n 2). Sedan fanns det en gäst, P(2n 3), som skakade hand med alla utom P(0). Denne måste vara gift med P(1) P(2n 3) måste ha skakat hand med värden eftersom denne inte skakade Om vi fortsätter resonemanget kommer vi till sist fram till ett par där den ene skakat hand med n 2 och den andre med n gäster Detta ger att värdinnan hälsat på n 1 gäster Som i sin tur ger att även värden hälsade n 1 gånger Återstår att värden och värdinnan skakade hand med n 1 gäster var. I vårt fall hälsade de alltså på tre personer var. Håkan Strömberg 2 KTH STH
3 Problemlösning 3. Sammanhängande linje (2) Nej, här är ett exempel när det inte är möjligt. Figur 4: Problemlösning 4. Hur många städer? (2) En övre gräns = 10 för antalet städer är. Börjar vi i staden A kan vi därifrån ta oss direkt till tre städer, säg B,C och D. Från var och en av dessa tre städer kan vi flyga direkt till två nya städer (inte 3 därför att en förbindelse går ju till A). Återstår att visa att det verkligen finns en sådan konstruktion. Figur 5: Denna graf är känd och kallas Petersen-grafen Problemlösning 5. Danstillställningen (2) Summan av talen som står på herrarnas lappar måste vara lika med summan på damernas. Så en första kontroll är att summan av talen är jämn, vilken den är, nämligen 68. Vi vet nu också att det totalt utfördes 34 danser. Nästa fråga är nu: Kan vi bilda summan 34, herrarnas summa (eller damernas) med hjälp av 7 tal. I så fall blir summan 34 också på det återstående 7 lapparna och alla talen skulle kunna vara korrekta. En av de två grupperna har lappar med tal som enbart är 6 och 3, eftersom det enbart finns en 5:a. Kan vi nu ta x stycken 6:or och y stycken 3:or, så att 6x+3y = 34? Svaret är nej. Håkan Strömberg 3 KTH STH
4 Problemlösning 6. Brödrosten (2) 1 Sätt in skiva A (klart 0.03) 2 Sätt in skiva B (klart 0.06) 3 Vänd skiva A (klart 0.35) 4 Ta bort skiva B (klart 0.39) 5 Sätt in skiva C (klart 0.42) 6 Ta bort skiva A (klart 1.08) 7 Sätt in skiva B (klart 1.11) 8 Vänd skiva C (klart 1.14) 9 Ta bort skiva B (klart 1.44) 10 Ta bort skiva C (klart 1.47) Hela proceduren tar 1 min och 47 sek (eller 107 sek). Problemlösning 7. Taltrianglarna (2) Jag har hittat 6528 lösningar om man räknar även rotationer och speglingar. Här några Figur 6: lösningar: A B C E F G A C D G H I E F G H I J = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =38 Håkan Strömberg 4 KTH STH
5 Problemlösning 8. De fyra korten (2) Adam har Gult, Bertil har Gult, Curt har Blått och David har Grönt. Namn Sanning Ljuger Adam Grönt eller Blått Gult Bertil Gult Blått Curt Blått eller Gult Grönt David Gult Grönt Genom att kombinera två ljugare och två sanningssägare vill vi ha ut korten Grönt, Blått, Gult, Gult. Om Curt ljuger måste David tala sanning, för att inte få två Grönt. Vi ska ha ett Gult till, vilket vi kan få genom att Bertil talar sanning. Men då får vi ytterligare ett Gult eftersom Adam måste ljuga. Om vi låter Bertil ljuga måste Adam tala sanning och då får vi ett Gult för lite. Alltså talar Curt sanning. Låt säga att Curt har Gult. Då kan inte David också tala sanning eftersom Adam då måste ljuga och därmed ha Gult. Vi säger därför att David ljuger och har Grönt. Nu ska de två återstående tala sanning respektive ljuga. Då får vi antingen två Gult eller inget, vilket ger en motsägelse. Återstår då att Curt har Blått. Nu måste Bertil tala sanning och har då Gult. De återstående två ljuger båda, vilket ger Adam Gult och David Grönt. Problemet är löst! Problemlösning 9. Pusselgatan (2) 1260 = Det gäller nu att kombinera dessa faktorer så att vi får tre husnummer vars summa är jämn. Här är kandidaterna: nr 1 nr 2 nr 3 Adam Har vi bestämt de tre första numren, kan vi också räkna ut Bertils nummer. Eftersom Bertil inte kunde räkna fram de tre numren, måste han själv ha nummer 24, enda dubbletten. När han fick reda på att Adam har högre nummer än alla de övriga, så skulle han fortfarande inte inte kunna säga något bestämt, om Adam bor på nr 37 eller högre. Men eftersom han nu verkligen kunde bestämma numren, så måste Adam på på nr 36. Svar: 4,9,24,35,36. Det finns många problem av den här typen, där man vet mindre än de som deltar i Håkan Strömberg 5 KTH STH
6 problemet och trots det kan man finna en lösning. Här är min favorit, som ni kan börja fundera på redan nu. Vi tar upp lösningen i slutet av kursen. Problemlösning 10. Delad kvadrat (2) A = 3,B = 6,C = 12,D = 15 Problemlösning 11. Kronkastning (2) För att kronan ska hamna i vinstläge krävs att kronans medelpunkt ska hamna inom den Figur 7: lilla kvadraten, som har en sida på 12.5 cm. Dividerar vi den vinnande arean med rutans totala area får vi sannolikheten för vinst = 1 4 Problemlösning 12. Pingisturneringen (2) Vi börjar med svaret: Helen-Max spelade för Östra Siv-Lennart spelade för Västra Emma-Ted spelade för Norra Viktoria-Paul spelade för Södra Berit-Ingvar spelade för Centralskolan Torsdag: Södra vann över Centralskolan Norra vann över Östra Södra vann över Norra Fredag: Södra vann först över Centralskolan Centralskolan vann sedan returen över Södra och därmed turneringen Håkan Strömberg 6 KTH STH
7 Emma tillhör N eller S som vann första matchen [1] (från ledtråd 1) Dag 1 : 1 (dag:match) V Ö (Ö vann över V) [2] Dag 1 : 3 C V [2] Dag 1 : 2 N S [2] Dag 2 : 1 Ö S [4] och schema Dag 2 : 2 C mötte N (från schemat) Emma spelar i N V spelade Dag 2 : 3 (ej spelat tidigare Dag 2) Dag 2 : 3 Ö V [2] och schema V spelade Dag 3 : 3 och åkte då ut Helen spelar i Ö [5] S spelade Dag 3 : 1 [4] Dag 3 : 2 C Ö [10] Dag 2 : 2 C N (följd av punkten ovan) Dag 3 : 1 möttes N och S. S ute om de förlorade Siv spelar i V [8] Ingvar spelar i C Håkan Strömberg 7 KTH STH
Dagens Teori Grafer Vad är en graf? Figur 11.1: En enkel graf med fem noder och sex bågar
Dagens Teori 11.1 Grafer 11.1.1 Vad är en graf? Figur 11.1: En enkel graf med fem noder och sex bågar Definition: En graf består av två ändliga mängder V och E där V är mängden av noder (hörn, vertices)
Problemlösning Lösningar
Problemlösning Lösningar Lösning Problemlösning. Julpromenaden (2) Vi antar först att sträckan på slät mark är km och att backen är y km lång. Från det kända sambandet får vi t = s/v och kan nu teckna
Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011
Trepoängsproblem 1 Vilket av följande uttryck har störst värde? 1 A: 2011 1 B: 1 2011 C: 1 2011 D: 1 + 2011 E: 2011 2 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen
Problemlösning (3/5) Lösningar
Problemlösning (3/5) Lösningar Lösning Problemlösning 1. Ture bygger en båt (2) Antag 0 tillhör S: motsägelse för den fjärde, som i så fall talar sanning. Antag 1 tillhör S: I så fall måste det vara den
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. I ett akvarium finns det 00 fiskar varav 1 % är blå medan övriga är gula. Hur många gula fiskar måste avlägsnas från akvariet för att de blå fiskarna ska utgöra % av alla
Problem 1 2 3 4 5 6 7 Svar
Känguru Cadet, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt svar
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
UPPGIFT 1 V75 FIGUR 1.
UPPGIFT 1 V75 FIGUR 1. Varje lördag året om spelar tusentals svenskar på travspelet V75. Spelet går ut på att finna sju vinnande hästar i lika många lopp. Lopp 1: 5 7 Lopp 2: 1 3 5 7 8 11 Lopp 3: 2 9 Lopp
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. Vilket av dessa tal är delbart med 3? A: 2009 B: 2 + 0 + 0 + 9 C: (2 + 0) (0 + 9) D: 2 9 E: 200 9 2. I ett akvarium finns det 200 fiskar varav 1 % är blå medan övriga är
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:15. Onsdagen 12 mars Tentamen består av 6 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:15 Onsdagen 12 mars 2014 Tentamen består av 6 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
Känguru 2016 Student gymnasieserien
sid 1 / 10 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex. svarar
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd
I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4
Avdelning 1, trepoängsproblem
Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln
Matteklubben Vårterminen 2015, lektion 6
Matteklubben Vårterminen 2015, lektion 6 Regler till Matematisk Yatzy Matematisk Yatzy är en tävling där man tävlar i att lösa matematikproblem. Målet i tävlingen är att få så mycket poäng som möjligt
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Avdelning 1, trepoängsproblem
Avdelning, trepoängsproblem. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Stjärnan i figuren har bildats av 2 identiska, liksidiga trianglar. Stjärnans omkrets
Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Avdelning 1, trepoängsproblem
Avdelning, trepoängsproblem. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Stjärnan i figuren har bildats av 2 identiska, liksidiga trianglar. Stjärnans omkrets
Kängurun Matematikens hopp
Kängurun Matematikens hopp Benjamin 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också lösningsförslag. Ett underlag till hjälp för bokföring
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?
Trepoängsproblem 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? A: a < b < c B: a < c < b C: b < a < c D: b < c < a E: c < b < a 2 Sidolängderna i
ÖVNINGSTENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 10:15-13:15. Torsdagen 20 maj Tentamen består av 4 sidor.
ÖVNINGSTENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 10:15-13:15 Torsdagen 20 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
Känguru 2013 Junior sida 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium
Känguru 2013 Junior sida 1 / 8 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala
En inblick i svensk forskning kring elever med särskilda förmågor och fallenhet i matematik. Eva Pettersson 2008
En inblick i svensk forskning kring elever med särskilda förmågor och fallenhet i matematik Eva Pettersson 2008 Projektets mål Vårt mål med projektet är att studera hur matematisk förmåga hos skolelever
Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student.
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 009 Student för elever på kurs D och E. Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 0 7 mars användas, däremot
Finaltävling i Lund den 19 november 2016
SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka
Avdelning 1, trepoängsproblem
vdelning, trepoängsproblem. Med hjälp av bilden bredvid kan vi se att + 3 + 5 + 7 = 4 4. Vad är + 3 + 5 + 7 + 9 +... + 7 + 9 + 2? : 0 0 : C: 2 2 D: 3 3 E: 4 4 2. Summan av talen i båda raderna är den samma.
Trigonometri. Sidor i boken 26-34
Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor
Trepoängsproblem. Kängurutävlingen 2011 Junior
Trepoängsproblem 1 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen börjar och slutar med ett vitt streck. På Storgatan har ett övergångsställe totalt åtta vita
Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas
Problem Svar
Känguru Benjamin, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt
Känguru 2013 Student sida 1 / 7 (gymnasiet åk 2 och 3)
Känguru 2013 Student sida 1 / 7 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.
Problemlösning Lösningar
Problemlösning Lösningar Lösning Problemlösning 1. Dela bröd och pengar (0) Luffarna åt 8/3 bröd var. Luffare A gav bort 3 8/3 = 1/3 bröd till C och luffare B gav bort 5 8/3 = 7/3 bröd till C. Alltså ska
Känguru 2011 Cadet (Åk 8 och 9)
sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt
Matematiska uppgifter
Elementa Årgång 65, 982 Årgång 65, 982 Första häftet 3260. På var och en av rutorna på ett schackbräde (med 8 rutor) ligger en papperslapp. Kan man flytta papperslapparna så att samtliga kommer att ligga
Matematiska uppgifter
Årgång 55, 1972 Första häftet 2863. Lös ekvationssystemet { 2sin x cos x = 1 (Svar: π + 2nπ, n Z) 2864. Visa att (1,000001) 1000000 > 2. sin x 2cos x = 2 2865. Visa att ekvationen x 4 x 2 + 2x + 3 = 0
Känguru 2014 Cadet (åk 8 och 9)
sida 1 / 8 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt
Svar och korta lösningar Benjamin 2006
3 poäng Svar och korta lösningar Benjamin 2006 1. B 2006 2005 + 2007 är lika mycket som 2 2006. 2. D 2 309 415 687 Det kort man lägger först längst till vänster, måste ha så litet tal till vänster som
Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2009 Benjamin för elever i åk 5, 6 och 7 Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 20 27 mars användas,
Repetition inför kontrollskrivning 2
Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.
Känguru 2018 Benjamin (åk 6 och 7)
sida 0 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt ett svar korrekt.
4-8 Cirklar. Inledning
Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för
Känguru 2017 Student gymnasiet
sid 1 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Rätt svar ger dig 3, 4 eller 5 poäng. Varje uppgift har endast ett rätt svar. Felaktigt
mattetankar Reflektion kring de olika svaren
Reflektion kring de olika svaren Taluppfattning och tals användning 15 Skriv trehundrasju Reflektion: 31007 tyder på att eleven tolkar talet som 3, 100, 7 3007 tyder på att eleven tolkar talet som 300,
Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet
Svar och lösningar 1: D 200 9 Ett tal är jämnt om entalssiffran är jämn. Det enda talet som uppfyller det villkoret är 200 9 = 1800 2: C 18 cm Stjärnans yttre består av 12 lika långa sidor med sammanlagd
Funktioner. Räta linjen
Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter
Moment Viktiga exempel Övningsuppgifter I
Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-17:15. Måndag 19 december Tentamen består av 5 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-17:15 Måndag 19 december 2011 Tentamen består av 5 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar,
Diagnostiskt test för Lp03
Diagnostiskt test för Lp --6, kl. 9.5 Inga miniräknare/formelsamlingar. Redovisa dina resonemang/räkningar.. Skriv namn, vilket år du senast läste matematik, vilken kurs det var, vilket betyg du fick..
52 = 1041. 1040 1.00096 Vi kan nu teckna hur mycket pengar han har, just när han har satt in sina 280 kr den tredje måndagen + 280 1040
Tillämpningar på främst geometriska, men även aritmetiska summor och talföljder. Att röka är ett fördärv. Förutom att man kan förlora hälsan går en mängd pengar upp i rök. Vi träffar Cigge, som röker 20
Svar och arbeta vidare med Cadet 2008
Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen
Kängurutävlingen Matematikens hopp
Kängurutävlingen Matematikens hopp Junior 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp
TENTAMEN. HF1002, 6H3120, 6H3117 Diskret Matematik. Skrivtid 13:15-18:00. Fredag 28 maj Tentamen består av 4 sidor.
TENTAMEN HF1002, 6H3120, 6H3117 Diskret Matematik Skrivtid 13:15-18:00 Fredag 28 maj 2010 Tentamen består av 4 sidor Hjälpmedel Den kurslitteratur som använts under kursen, samt egna anteckningar, programlistningar
Kängurun Matematikens hopp
Kängurun Matematikens hopp Ecolier 017, svar och lösningar Här följer korta svar, rättningsmall och redovisningsblanketter. Ett underlag till hjälp för bokföring av klassens resultat finns att hämta på
Trepoängsproblem. Kängurutävlingen 2012 Junior
Trepoängsproblem 1. M och N är mittpunkterna på de lika långa sidorna i en likbent triangel. Hur stor är arean av fyrhörningen markerad med X? : 3 : 4 C: 5 D: 6 E: 7 M? X 3 3 6 N 2. När lice skickar ett
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag
Högstadiets matematiktävling 2018/19 Finaltävling 19 januari 2019 Lösningsförslag 1. Lösningsförslag: Vi börjar med att notera att delbarhet med 6 betyder att N är delbart med 2 och 3. Om N är delbart
Kängurun Matematikens hopp Gymnasiets Cadet 2006 A: 0 B: 2006 C: 2014 D: 2018 E: 4012
3-poängsproblem 1: Vad är 2 0 0 6 + 2006? A: 0 B: 2006 C: 2014 D: 2018 E: 4012 2: På bilden ser du en talblomma. Maria drog loss alla kronblad med tal som ger rest 2 vid division med 6, dvs där det blir
Kapitel 8 Ledtrådar. = 111 p, för något Låt det sista talet man behöver addera vara x. Det ger: positivt heltal p.
Kapitel 8 Ledtrådar 800 Testa för mindre tal där du lättare kan kontrollera resultatet, försök sedan föra över resonemanget på problem med betydligt större tal Du inser att efter det första omloppet är
Moment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Fler exempel på optimering Exempel 1. Utifrån en rektangulär pappskiva med bredden 7 dm och längden 11 dm, vill man åstadkomma en kartong utan lock,
Ekvationslösning genom substitution, rotekvationer
Sidor i boken -3, 70-73 Ekvationslösning genom substitution, rotekvationer Rotekvationer Med en rotekvation menas en ekvation, i vilken den obekanta förekommer under ett rotmärke. Observera att betecknar
Avdelning 1. A: måndag B: tisdag C: onsdag D: torsdag E: fredag. 2 Vi vill att vågen ska väga jämnt. Vilken sten ska vi lägga på den högra sidan?
Avdelning 1 1 Doris gör en skylt till djurparken. På skylten ska det stå ordet KÄNGURUR. Hon målar en bokstav varje dag. Hon målar den första på en onsdag. Vilken dag kommer hon att måla den sista bokstaven?
TENTAMEN. Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15. Tisdagen 26 april Tentamen består av 8 sidor
TENTAMEN Programmering Grundkurs (HI1900) Skrivtid 13:15-18:15 Tisdagen 26 april 2011 Tentamen består av 8 sidor Hjälpmedel Förutom dator med installerad Code::Blocks, Utforskaren, Acrobat reader och Notepad
Räknare får inte användas i den här delen. Skriv ner beräkningar eller motiveringar till varje uppgift, ifall ingenting annat uppges.
Grundskolans matematiktävling Finaltävling fredagen den 6 februari 009 DEL Tid 30 min Poängantal 0 Räknare får inte användas i den här delen. Skriv ner beräkningar eller motiveringar till varje uppgift,
Student för elever på kurs Ma 4 och Ma 5
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Student för elever på kurs Ma 4 och Ma 5 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Lösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
9 Geometriska begrepp
9 Geometriska begrepp Rita figurer som visar vad vi menar med... 261 a) 4 cm och 4 cm 2 b) 5 cm och 5 cm 2 262 Rita två olika figurer som båda har arean 8 cm 2 263 Rita tre olika figurer som alla har arean
= A: 0 B: 1 C: 2013 D: 2014 E: 4028
Trepoängsproblem 1. 2014 2014 2014 2014 = A: 0 B: 1 C: 2013 D: 2014 E: 4028 2. Kängurutävlingen hålls den tredje torsdagen i mars varje år. Vilket datum är det senaste som tävlingen kan hållas? A: 14 mars
Trepoängsproblem. Kängurutävlingen 2019 Cadet. 1 Vilket moln innehåller endast jämna tal? A B C D E
Trepoängsproblem Vilket moln innehåller endast jämna tal? 5 0 4 0 58 En kub med kantlängden är byggd av enhetskuber. Några kuber tas bort rakt igenom, från vänster till höger, uppifrån och ner samt från
UPPGIFT 1 EURO. Utdata: Två rader, som för indata ovan, ser ut som följer: Före resan: bank 1 Efter resan: bank 3
UPPGIFT 1 EURO Harry ska åka till Portugal och behöver växla till sig 500 Euro från svenska kronor. När han kommer tillbaka från Portugal kommer han att ha 200 Euro över som han vill växla tillbaka till
Junior för elever på kurs Ma 2 och Ma 3
Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Junior för elever på kurs Ma 2 och Ma 3 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.
Konsten att bestämma arean
Konsten att bestämma arean Lektion Ett (Matematiskt område - Talmängder) Vad är viktigast? Introducera tanken om att felet skulle kunna vara viktigare än svaret. Vad väger äpplet? Gissa. Jämför med mätvärdet
Elevuppgift: Bågvinkelns storlek i en halvcirkel
Elevuppgift: Bågvinkelns storlek i en halvcirkel 1. Öppna GeoGebra Classic och välj perspektivet Grafanalys. Dölj koordinataxlarna. 2. Skapa konstruktionen nedan. Det är ingen skillnad var i rutfältet
Enkla uppgifter. Uppgift 1. Uppgift 2
Enkla uppgifter Dessa 10 ganska enkla uppgifter är till för dig som känner att du ännu inte kommit igång med kursen. I samtliga uppgifter behövs en enkel loop, for eller while. Beräkningarna är i allmänhet
Känguru 2018 Student gymnasieserien i samarbete med Jan-Anders Salenius (Brändö gymnasium)
sida 0 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Ett rätt svar ger 3, 4 eller 5 poäng. I varje uppgift är exakt ett svar korrekt. Felaktigt
Lutande torn och kluriga konster!
Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den
Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)
Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.
Poolbygge. fredag 11 april 14
Poolbygge Första lektionen vart jag klar med att rita och skriva ritningen. Först skrev jag poolen i skalan 1:60 vilket vi inte fick göra så jag gjorde den till 1:30, alltså har jag minskat den 30 gånger
FEL I TEXT X Femte upplagan, Första tryckningen
FEL I TEXT X Femte upplagan, Första tryckningen Sid 99 I 169 ska det sista talet vara 38. Uppgiften ska vara: 169 Vilket tal saknas? 3 10 17 24 -?- 38 Sid 123 55 Bilden visar Cajsas rum. Mät i hela centimeter.
Känguru 2011 Student (gymnasiet åk 2 och 3)
Känguru 011 Student sida 1 / 8 NAMN KLASS / GRUPP Pängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tm m du inte vill besvara den frågan. Gissa
Sidor i boken 8-9, 90-93
Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta
f (x) = 8x 3 3x Men hur är det när exponenterna inte är heltal eller är negativ, som till exempel g(x) = x h (x) = n x n 1
Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: Derivatan blir: f(x) = x 4 x + x + 8 f (x) = 8x x + Men hur
kvoten mellan två på varandra följande tal i en talföljd är konstant alltid lika stor.
Turen har kommit till geometriska talföljder och summan av en geometrisk talföljd. Talföljden 1,, 4, 8, 16, 3,... är ett exempel på en geometrisk talföljd. Utmärkande för en geometrisk talföljd är att
Version 2018-xx-xx TANKENÖTTER FACIT
Version 2018-xx-xx 5 TANKENÖTTER FACIT 1. 5 2, 5 3, 6 2, 6 3 2. 2 0, 2 1, 3 0, 3 1, 4 0, 4 1 3. A = 1 B = 2 C = 8 Alternativt svar: A = 0 B = 2 C = 9 4. a. 7 3 = 21 b. 7 5 = 35 c. 7 3 5 = 105 5. 9 216
Känguru 2011 Benjamin (Åk 6 och 7)
sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt
A: måndag B: onsdag C: torsdag D: lördag E: söndag Grekland 2. Vilket av följande uttryck har högst värde?
Kängurutävlingen 208 Student Trepoängsproblem. Bilden visar ett månadsblad i Filips engelska almanacka. Oturligt nog välte Filip ut sitt bläckhorn över bladet och det mesta blev oläsligt. På vilken veckodag
Avdelning 1, trepoängsproblem
vdelning 1, trepoängsproblem 1. Hur många symmetrilinjer har figuren? : 0 : 1 : 2 D: 4 E: oändligt många 2. Robert arbetar på leksaksfabriken. Han ska packa kängurur som ska fraktas till affärerna. Varje
Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson
Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består
Lathund, geometri, åk 9
Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar
Resurscentrums matematikleksaker
Resurscentrums matematikleksaker Aktiviteter för barn och vuxna Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den snåle grosshandlarens våg 6 4 Tornen
Matematiskt luffarschack
Matematiskt luffarschack - idé från Valentina Chapovalova Luffarschack är en lagtävling där lagen ska lösa uppgifter på tid. På varje uppgift ska man endast lämna in svar. På en lapp skriver man uppgiftens
Känguru 2016 Cadet (åk 8 och 9)
sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex.
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda?
Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c: 5 d: 6 e: 11
PQ Riksfinal Del 1
PQ Riksfinal 2018 Del 1 Tid: 60 min 6 frågor Max poäng: 18 poäng (3p/uppgift). Hjälpmedel: Papper, penna och radergummi (ej miniräknare). Skriv varje uppgift på ett separat blad. Skriv lagets namn på alla
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag
Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag 1. Lösningsförslag: Låt oss först titta på den sista siffran i 2 0 1 7. Ett tal som är delbart med 2 och 5 är då också
Gamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Kortfattade lösningar med svar till Cadet 2006
3 poäng Kängurun Matematikens hopp Cadet 2006 Kortfattade lösningar med svar till Cadet 2006 1 B 2 0 0 6 + 2006 = 0 + 2006 2 A De tal som ger rest 2 är 8 och 38, summan är 46. 3 D Första siffran längst