Föreläsning 11, Matematisk statistik Π + E

Relevanta dokument
Matematisk statistik 9.5 hp, HT-16 Föreläsning 11: Konfidensintervall

Föreläsning 11, FMSF45 Konfidensintervall

Föreläsning 9, Matematisk statistik 7.5 hp för E Konfidensintervall

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister

Thomas Önskog 28/

SF1901 Sannolikhetsteori och statistik I

Matematisk statistik för B, K, N, BME och Kemister

Föreläsning 11: Mer om jämförelser och inferens

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

9. Konfidensintervall vid normalfördelning

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

F9 Konfidensintervall

Matematisk statistik för D, I, Π och Fysiker

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Föreläsning 12: Linjär regression

LÖSNINGAR TILL. Matematisk statistik, Tentamen: kl FMS 086, Matematisk statistik för K och B, 7.5 hp

en observerad punktskattning av µ, ett tal. x = µ obs = 49.5.

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Avd. Matematisk statistik

Formel- och tabellsamling i matematisk statistik

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

Matematisk statistik KTH. Formelsamling i matematisk statistik

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

MATEMATISK STATISTIK AK FÖR F, E, D, I, C, Π; FMS 012 FÖRELÄSNINGSANTECKNINGAR I

b) antalet timmar Lukas måste arbeta för att sannolikheten att han ska hinna med alla 112 datorerna ska bli minst (3 p)

Föreläsningsanteckningar till kapitel 8, del 2

Matematisk statistik för B, K, N, BME och Kemister

Föreläsning 12, FMSF45 Hypotesprövning

Del I. Uppgift 1 Låt X och Y vara stokastiska variabler med följande simultana sannolikhetsfunktion: p X,Y ( 2, 1) = 1

Mer om konfidensintervall + repetition

Avd. Matematisk statistik

TMS136. Föreläsning 10

1. För tiden mellan två besök gäller. V(X i ) = 1 λ 2 = 25. X i Exp (λ) E(X i ) = 1 λ = 5s λ = 1 5

Lufttorkat trä Ugnstorkat trä

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar

FÖRELÄSNING 7:

Föreläsning 4: Konfidensintervall (forts.)

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

Föreläsning 12: Regression

Avd. Matematisk statistik

Föreläsning 17, Matematisk statistik Π + E

f(x) = 2 x2, 1 < x < 2.

Föreläsningsanteckningar till kapitel 9, del 2

10. Konfidensintervall vid två oberoende stickprov

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för D, I, Π och Fysiker

Avd. Matematisk statistik

Avd. Matematisk statistik

FACIT för Förberedelseuppgifter: SF1911 STATISTIK FÖR BI0TEKNIK inför tentan MÅDAGEN DEN 9 DECEMBER 2016 KL Examinator: Timo Koski

F11 Två stickprov. Måns Thulin. Uppsala universitet Statistik för ingenjörer 26/ /11

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 4 oktober 2016

Avd. Matematisk statistik

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

Stickprovsvariabeln har en fördelning / sprindning

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

Avd. Matematisk statistik

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Föreläsning 8: Konfidensintervall

SF1901: SANNOLIKHETSTEORI OCH HYPOTESPRÖVNING. STATISTIK. Tatjana Pavlenko. 13 maj 2015

LÖSNINGAR TILL P(A) = P(B) = P(C) = 1 3. (a) Satsen om total sannolikhet ger P(A M) 3. (b) Bayes formel ger

a) Beräkna sannolikheten att en följd avkodas fel, det vill säga en ursprungliga 1:a tolkas som en 0:a eller omvänt, i fallet N = 3.

TMS136. Föreläsning 11

TMS136. Föreläsning 13

Avd. Matematisk statistik

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.

Avd. Matematisk statistik

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014

Inledning till statistikteorin. Skattningar och konfidensintervall för μ och σ

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 ( ) OCH INFÖR ÖVNING 7 ( )

, för 0 < x < θ; Uppgift 2

SF1911: Statistik för bioteknik

FÖRELÄSNING 8:

Tryckfel i K. Vännman, Matematisk Statistik, upplaga 2:13

SF1901: Medelfel, felfortplantning

Avd. Matematisk statistik

(b) Bestäm sannolikheten att minst tre tåg är försenade under högst tre dagar en given vecka.

cx 5 om 2 x 8 f X (x) = 0 annars Uppgift 4

F10 Problemlösning och mer om konfidensintervall

Kurssammanfattning MVE055

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Avd. Matematisk statistik

Tillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Matematisk statistik för D, I, Π och Fysiker

Extrauppgifter - Statistik

Grundläggande matematisk statistik

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Avd. Matematisk statistik

Transkript:

Repetition Konfidensintervall I Fördelningar Konfidensintervall II Föreläsning 11, Matematisk statistik Π + E Johan Lindström 27 Januari, 2015 Johan Lindström - johanl@maths.lth.se FMS012 F11 1/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall II Stickprov & Skattning Ett stickprov, x 1, x 2,..., x n, är observationer av s.v. X 1,..., X n från någon fördelning X i F(θ) där θ är en okänd parameter. En skattning av θ, θ (x 1,..., x n ) är en observation av den s.v. θ (X 1,..., X n ). Båda betecknas oftast bara med θ. θ Tal x 1 x 2 θ (x 1,..., x n) S.V. X 1 X 2 θ (X) X i F(θ) θ Funktion Johan Lindström - johanl@maths.lth.se FMS012 F11 2/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall II Minsta kvadrat-metoden, MK Om E(X i ) = μ i (θ) så fås MK-skattningen av θ genom att minimera förlustfunktionen m.a.p. θ. Q(θ) = n ( x i μ i (θ) ) 2 Maximum likelihood-metoden, ML ML-skattningen av θ fås genom att maximera likelihood-funktionen L(θ; x 1,..., x n ) m.a.p. θ. L(θ) = p X (x 1 )... p X (x n ) L(θ) = f X (x 1 )... f X (x n ) (diskr.) (kont.) Johan Lindström - johanl@maths.lth.se FMS012 F11 3/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall RepetitionII N(μ, σ) Konfidensintervall Ett konfidensintervall för en parameter θ täcker rätt värde på θ med sannolikheten 1 α. 1 α kallas konfidensgrad. Vanliga värden är 0.95, 0.99 och 0.999. Ett tvåsidigt konfidensintervall är alltså två skattningar a 1, a 2 så att ( ) P a 1(X 1,..., X n ) < θ < a 2(X 1,..., X n ) = 1 α Ett ensidigt konfidensintervall är en skattning a 1 eller a 2 ( ) P a 1(X 1,..., X n ) < θ < = 1 α ( eller ) P < θ < a 2(X 1,..., X n ) = 1 α så att Johan Lindström - johanl@maths.lth.se FMS012 F11 4/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall RepetitionII N(μ, σ) Andelen 1 α av intervallen täcker rätt värde i långa loppet 100 st 95% konfidensint. för µ i N(µ,2) 100 90 80 70 100 st 95% konfidensint. för µ i N(µ,σ) 100 90 80 70 Intervall nr 60 50 40 Intervall nr 60 50 40 30 30 20 20 10 10 0 0 0.5 1 1.5 2 0 0 0.5 1 1.5 2 Johan Lindström - johanl@maths.lth.se FMS012 F11 5/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall RepetitionII N(μ, σ) α-kvantil, x α En kvantil, x α, till en s.v. X är en gräns som överskrids med slh α. Den fås som lösning till någon av följande ekvationer. F X (x α ) = 1 α xα f X (x) dx = 1 α x α f X (x) dx = α Sats 6.1 Standardiserad normalfördelning Om X N(μ, σ), E(X) = μ, V(X) = σ 2 så är X μ σ N(0, 1) Johan Lindström - johanl@maths.lth.se FMS012 F11 6/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall RepetitionII N(μ, σ) Konfidensintervall för μ då X i N (μ, σ), σ känd 1. En skattning av μ är: μ = n 2. Med E(μ ) = μ och D(μ ) = σ n. 3. Enligt Sats 6.1 är μ μ D(μ ) X i N (0, 1). 4. Vi söker nu tal så att: ( ) P? < μ μ D(μ ) <? = 1 α 5. Konfidensintervallet för μ är: I μ = μ ± λ α/2 D(μ ). Johan Lindström - johanl@maths.lth.se FMS012 F11 7/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall RepetitionII N(μ, σ) Konfidensintervall för μ då X i N (μ, σ), σ okänd Om σ är okänd ersätts D(μ ) med medelfelet: d(μ ) = s s = 1 n (x i x) n n 1 2 Men, nu är μ μ d(μ ) inte N (0, 1). Johan Lindström - johanl@maths.lth.se FMS012 F11 8/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall χ 2 t II χ 2 -fördelning (chi-två) Y χ 2 (f). f kallas antal frihetsgrader. α-kvantil: χ 2 α(f). Tabell 4. 0.6 χ 2 fördelning med f = 1, 3, 5, 15 Om X 1,..., X n N(μ, σ) och oberoende så gäller 1 σ 2 1 σ 2 n (X i μ) 2 χ 2 (n) n (X i X) 2 χ 2 0 (n 1) 0 2 4 6 8 10 12 0.4 0.2 f = 1 f = 3 Johan Lindström - johanl@maths.lth.se FMS012 F11 9/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall χ 2 t II Student s t-fördelning X t(f). f kallas antal frihetsgrader. α-kvantil: t α (f). Tabell 3. Om X N(0, 1) och Y χ 2 (f) är oberoende gäller X Y/f t(f) 0.4 0.2 t fördelning med f = 1, 2, 4, 8, f = 1 f = och speciellt för X i N(μ, σ) där 0 4 2 0 2 4 X μ S/ n t(n 1) X = 1 n n X i och S 2 = 1 n 1 n (X i X) 2 Johan Lindström - johanl@maths.lth.se FMS012 F11 10/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall χ 2 t II Student William Sealy Gosset Johan Lindström - johanl@maths.lth.se FMS012 F11 11/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Konfidensintervall för μ i N(μ, σ) x 1,..., x n observationer av X i N(μ, σ) σ känd: I μ = x ± λ α/2 σ n = μ ± λ α/2 D(μ ) σ okänd: I μ = x ± t α/2 (n 1) s n = μ ± t α/2 (f)d(μ ) Där kvantilerna ges av: λ α/2 är N(0, 1)-fördelningens α/2-kvantil (Tabell 2) t α/2 (n 1) är t-fördelningens α/2-kvantil (Tabell 3) Johan Lindström - johanl@maths.lth.se FMS012 F11 12/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Exempel: Sockerinnehåll i betor Sockerbetor har i regel ett sockerinnehåll på 16 18% (enligt Dansukkers hemsida). Anta att sockerinnehållet i en godtycklig beta beskrivas av X i N (μ, σ) med σ okänd. I ett visst betlass undersökte man sockerhalten hos 25 slumpmässigt utvalda betor. 1 25 25 x i = 16.8 25 (x i x) 2 = 4.8 Gör ett 95%-konfidensintervall för den förväntade sockerhalten i betlasset. Johan Lindström - johanl@maths.lth.se FMS012 F11 13/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Normalfördelad skattning, θ N (θ, D(θ )) D(θ ) känd: D(θ ) okänd: I θ = θ ± λ α/2 D(θ ) I θ = θ ± t α/2 (f)d(θ ) Normalapproximation, θ N (θ, D(θ )) D(θ ) känd: D(θ ) okänd: I θ = θ ± λ α/2 D(θ ) I θ = θ ± λ α/2 d(θ ) (alltid λ-kvantil) Johan Lindström - johanl@maths.lth.se FMS012 F11 14/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Ex: Konfidensintervall för p då X Bin(n, p) Vi vill uppskatta hur vanligt det är att det snöar i april i Målilla och konstaterar att under de 300 aprildagarna under perioden 1988 1997 så snöade det under 71 dagar. Antag att olika dagar är oberoende av varandra. Beräkna ett approximativt 95% konfidensintervall för sannolikheten att det snöar en slumpmässigt vald aprildag i Målilla. Johan Lindström - johanl@maths.lth.se FMS012 F11 15/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Samanvägd variansskattning Om vi har x 1,..., x nx obs. av X i N (μ x, σ) y 1,..., y ny obs. av Y i N (μ y, σ) kan den gemensamma variansen σ 2 skattas med s 2 p = (n x 1)s 2 x + (n y 1)s 2 y n x 1 + n y 1 = Q f, ( Q σ 2 χ2 (f)) Ett konfidensintervall för μ x μ y blir t.ex. I μx μ y = x ȳ ± t α/2 (f) s p 1 n x + 1 n y eftersom μ x μ y = X Ȳ N(μ x μ y, σ 1 n x + 1 n y ) Johan Lindström - johanl@maths.lth.se FMS012 F11 16/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Stickprov i par Vid många mätsituationer är det vanligt att man mäter före och efter en behandling på n inbördes olika föremål. Modell: Före: X i N (μ i, σ 1 ) Efter: Y i N (μ i + Δ, σ 2 ) Vi vill nu skatta effekten av behandlingen (Δ). Bilda Z i = Y i X i N (Δ, σ). Skatta Δ med z gör konfidensintervall som vanligt för ett stickprov, dvs I Δ = z ± t α/2 (n 1)s/ n, där s 2 = 1 n 1 n (z i z) 2. Johan Lindström - johanl@maths.lth.se FMS012 F11 17/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Stickprov i par? Blodtrycket hos ett antal patienter mäts förre och efter behandling med blodtryckssänkande medicin; konfidensintervall för sänkningen? Luftkvaliteten mäts längs Hornsgatan i Stockholm vintern 2009 (dubbdäck fortfarande tillåtna) och 2010 (efter dubbdäcksförbud); konfidensintervall för skillnaden i luftkvalitet? ph-värdet möts varje dag i Höjeå förre och efter Lunds reningsverk; konfidensintervall för skillnaden? Johan Lindström - johanl@maths.lth.se FMS012 F11 18/19

Repetition Konfidensintervall I Fördelningar Konfidensintervall N(μ, σ) Ex II1 Sammanfattning Ex 2 Special fall Ensidiga konfidensintervall Konfidensintervall kan även vara uppåt- eller nedåt begränsade. De konstrueras allmänt genom att 1. Ta ena gränsen i ett tvåsidigt konfidensintervall 2. Byt ut α/2 α för att få rätt konfidensgrad 3. Låt den andra gränsen bli så stor/liten som möjligt Ex. Om det tvåsidiga intervallet ges av x ± λ α/2 σ n fås följande ensidiga konfidensintervall Nedåt begränsat intervall: ( x λ α σ n, ) Uppåt begränsat intervall: (, x + λ α σ n ) Ensidiga konfidensintervall är framförallt användbara vid ensidiga hypotestest. Johan Lindström - johanl@maths.lth.se FMS012 F11 19/19