Supplementary Data. Figure S1: EIMS spectrum for (E)-1-(3-(3,7-dimethylocta-2,6-dienyl)-2,4,6-trihydroxyphenyl)butan-1-one (3d) 6'' 7'' 3' 2' 1' 6

Relevanta dokument
Biochemistry 201 Advanced Molecular Biology (

A G M K. Supplemental Figure S1.

Elektron-absorbtionspektroskopi för biomolekyler i UV-VIS-området

Elektron-absorbtionspektroskopi för biomolekyler i UV-VIS-området

Protein en livsviktig byggsten

SUPPORTING INFORMATION

Labokha AA et al. xlnup214 FG-like-1 xlnup214 FG-like-2 xlnup214 FG FGFG FGFG FGFG FGFG xtnup153 FG FGFG xtnup153 FG xlnup62 FG xlnup54 FG FGFG

Biologisk enfald. enheten i mångfalden. Anders Liljas Biokemi och Strukturbiologi

Föreläsning 5. Stereokemi Kapitel 6

Prov Genetik. Max: 8G+7VG+2MVG G: 7G VG: 7G+4VG MVG: 8G+4VG+1MVG

P-U-Csv-Aminosyror på Biochrom 30+

P-U-Csv-Aminosyror på Biochrom 30+

VI-1. Proteiner VI. PROTEINER. Källor: - L. Stryer, Biochemistry, 3 rd Ed., Freeman, New York, 1988.

Proteinsyntesen. Anders Liljas Biokemi och strukturbiologi Lunds universitet

Släktskap mellan människa och några ryggradsdjur

VI MÅSTE PRATA MED VARANDRA CELLENS KOMMUNIKATION

Structure of urease inactivated by Ag(I): a new. paradigm for enzyme inhibition by heavy metals

Exam Molecular Bioinformatics X3 (1MB330) - 1 March, Page 1 of 6. Skriv svar på varje uppgift på separata blad. Lycka till!!

Teknik och diabetes från EASD och ADA 2016

Tentamen i Biomätteknik SVENSK VERSION. UPPGIFT 1 (10p)

Supplementary Materials: Ribosome Inactivating Proteins from Rosaceae

SUPPLEMENTARY INFORMATION

Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

TABELLSAMLING ATT ANVÄNDA I SAMBAND MED PROV I KEMI B

INTRODUKTION - TYP 1 DIABETES

TENTAMEN I STRUKTURBIOLOGI

Centrala Dogmat. DNA RNA Protein

SUPPLEMENTARY FIGURE LEGENDS

Föreläsning 17. Karbonylkolets kemi II Kapitel 17 F17

Supporting Information. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis

Uppdatering typ 2 diabetes Dr Jarl Hellman

Supporting Information

Room E3607 Protein bioinformatics Protein Bioinformatics. Computer lab Tuesday, May 17, 2005 Sean Prigge Jonathan Pevsner Ingo Ruczinski

INTRODUKTION - TYP 1 DIABETES

A Framework for Understanding Rosetta. Xavier Ambroggio

Poäng: Godkänt 35 p. Max 70 p.

SUPPLEMENTARY DATA Data in the Relational Database

in the inward-facing conformation revealed by single particle electron Supplementary information

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Tentamen Molekylärbiologi X3 (1MB608) 10 March, 2008 Page 1 of 5. Skriv svaren på varje fråga på SEPARATA blad.

Tentamen Biokemi 2 KEM090

SWETHRO. Gunilla Pihl Karlsson, Per Erik Karlsson, Sofie Hellsten & Cecilia Akselsson* IVL Svenska Miljöinstitutet *Lunds Universitet

Handels- och industriministeriets förordning

Structural basis for the membrane association of ankyring via palmitoylation

Hydroxyquinone O-Methylation in Mitomycin. Biosynthesis

Supplementary information for. MATE-Seq: Microfluidic Antigen-TCR Engagement Sequencing

Material lektion 1. HT2 7,5 p halvfart Janne Carlsson

SUPPLEMENTARY INFORMATION

Supplementary Figure 1.

MOLECULAR SHAPES MOLECULAR SHAPES

Aminosyrorper100g.xls. 6 K ursiv\aminosyror i livsmedel

The Arctic boundary layer

Suppl. Figure 1(a) Jur wt DMSO

Ni bereds härmed tillfälle till yttrande över bifogat förslag.

************************************************************** *********************************************************************

COMPARATIVE STUDY OF HYDROLYSIS PERFORMED WITH MODERN MICROWAVE TECHNIQUE AND THE TRADITIONAL METHOD

Supporting Information

Moult migration of Latvian Whooper Swans Cygnus cygnus

Läkemedelsverkets författningssamling

J. Japan Association on Odor Environment Vol. -1 No. 0,**0 431

) / (c l) -A R ) = (A L. -ε R. Δε = (ε L. Tentamen i Biomätteknik (TFKE37), 9 januari Uppgift 1 (10p)

Semantic and Physical Modeling and Simulation of Multi-Domain Energy Systems: Gas Turbines and Electrical Power Networks

TN LR TT mg/l N b) 2,6-Dimethylphenole

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

On the possible biological relevance of HSNO isomers: A computational investigation. Supplementary Information

Figure S1. The molecular weight of proteins encoded by genes in each sub-region of Chr.20

In Bloom CAL # 3. Nu ska du göra 8 separata blomblad. Ett mitt på varje sida och ett i varje hörn. Använd nål 3.5 mm.

Day 1: European Cooperation Day 2017

Adding active and blended learning to an introductory mechanics course

Diagnoskriterier - Diabetes

Personnummer. DUGGA Molekylärbiologi T3 / HT p (G = 24 p)

NMR Nuclear Magnetic Resonance = Kärnmagnetisk resonans

In Bloom CAL # 5. Virka inte v för hårt / don t crochet r to tight. V 35 / r 35 (5) Upprepa v 18. [38 1-lm-bågar / sida och 2 lm / hörn]

Könsfördelningen inom kataraktkirurgin. Mats Lundström

Domain structure of mitochondrial and chloroplast targeting peptides

Statistical modelling and alignment of protein sequences

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

Projektmodell med kunskapshantering anpassad för Svenska Mässan Koncernen

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

ASES. Active Solar Energy Storage. Thule Brahed ERRIN EUSEW Brussels

Skill-mix innovation in the Netherlands. dr. Marieke Kroezen Erasmus University Medical Centre, the Netherlands

Utfärdad av Compiled by Tjst Dept. Telefon Telephone Datum Date Utg nr Edition No. Dokumentnummer Document No.

Supplementary Information

Nationellt stöd för finansiering av mjukvaruberoende innovation ANDREAS ALLSTRÖM

Mapping sequence reads & Calling variants

Table S1: Oligonucleotides and PCR primers used in this study.

Klimat och miljö vad är aktuellt inom forskningen. Greppa Näringen 5 okt 2011 Christel Cederberg SIK och Chalmers

Conformational Transition of Glycoprotein Iba Mutants in Flow Molecular Dynamics Simulation

Modeling of pore pressure in a railway embankment

BASÅRET KEMI B BIOKEMI VT 2012

E4 Sundsvall Sundsvallsbron

Osteoporos & Fragilitetsfrakturer Epidemiologi, utredning och behandling

Tentamen TMS145 Grundkurs i matematisk statistik och bioinformatik, 7,5 hp, kl

Jonbyteskromatografi

NMR en mångsidig biomätteknik

Läkemedelsverkets författningssamling

The Effect of Using DMSO as a Cosolvent for Ligand Binding Studies Simon Birgersson

Beräkningsverktyg för arkitekten

Utmaningar för bioinformatiken inom industri och akademi

Transkript:

Supplementary Data H 9'' ' 1' 1 ' ' '' 7'' 8'' 10'' H H Figure S1: EIMS spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)-,,-trihydroxyphenyl)butan-1-one (d)

H 9'' ' 1' 1 ' ' '' 7'' 8'' 10'' H H Figure S: 1 H NMR spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)-,,-trihydroxyphenyl)butan-1-one (d)

H 9'' ' 1' 1 ' ' '' 7'' 8'' 10'' H H Figure S: 1 C NMR spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)-,,-trihydroxyphenyl)butan-1-one (d)

H 1' 1 ' ' H H Figure S: EIMS spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)ethanone (a)

H 1' 1 ' ' H H Figure S: 1 H NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)ethanone (a)

H 1' 1 ' ' H H Figure S: 1 C NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)ethanone (a)

H 1' 1 ' ' ' H H Figure S7: EIMS spectrum for -methyl-1-(,,-trihydroxy--(-methylbut--enyl)phenyl)propan-1-one (b)

H 1' 1 ' ' ' H H Figure S8: 1 H NMR spectrum for -methyl-1-(,,-trihydroxy--(-methylbut--enyl)phenyl)propan-1-one (b)

H 1' 1 ' ' ' H H Figure S9: 1 C NMR spectrum for -methyl-1-(,,-trihydroxy--(-methylbut--enyl)phenyl)propan-1-one (b)

H 1' 1 ' ' H H Figure S10: EIMS spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)propan-1-one (c)

H 1' 1 ' ' H H Figure S11: 1 H NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)propan-1-one (c)

H 1' 1 ' ' H H Figure S1: 1 C NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)propan-1-one (c)

H ' 1' 1 ' ' H H Figure S1: EIMS spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)butan-1-one (d)

H ' 1' 1 ' ' H H Figure S1: 1 H NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)butan -1-one (d)

H ' 1' 1 ' ' H H Figure S1: 1 C NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)butan -1-one (d)

H ' ' 1' 1 ' ' H H Figure S1: EIMS spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)pentan-1-one (e)

H ' ' 1' 1 ' ' H H Figure S17: 1 H NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)pentan-1-one (e)

H ' ' 1' 1 ' ' H H Figure S18: 1 C NMR spectrum for 1-(,,-trihydroxy--(-methylbut--enyl)phenyl)pentan-1-one (e)

H ' 1' 1 ' ' ' ' 7' H H Figure S19: EIMS spectrum for Cyclohexyl-(,,-trihydroxy--(-methylbut--enyl)phenyl)methanone (f)

H ' 1' 1 ' ' ' ' 7' H H Figure S0: 1 H NMR spectrum for Cyclohexyl-(,,-trihydroxy--(-methylbut--enyl)phenyl)methanone (f)

H ' 1' 1 ' ' ' ' 7' H H Figure S1: 1 C NMR spectrum for Cyclohexyl-(,,-trihydroxy--(-methylbut--enyl)phenyl)methanone (f)

H ' ' ' 1' 1 ' ' 7' 8' 9' H H Figure S: EIMS spectrum for (E)--phenyl-1-(,,-trihydroxy--(-methylbut--enyl)phenyl)prop--en-1-one (g)

H ' ' ' 1' 1 ' ' 7' 8' 9' H H Figure S: 1 H NMR spectrum for (E)--phenyl-1-(,,-trihydroxy--(-methylbut--enyl)phenyl)prop--en-1-one (g)

H ' ' ' 1' 1 ' ' 7' 8' 9' H H Figure S: 1 C NMR spectrum for (E)--phenyl-1-(,,-trihydroxy--(-methylbut--enyl)phenyl)prop--en-1-one (g)

H 9'' 1' 1 ' '' 8'' ' 7'' 10'' HC '' CH ' Figure S8: EIMS spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)--hydroxy-,-dimethoxyphenyl)ethanone (a)

H 9'' 1' 1 ' '' 8'' ' 7'' 10'' HC '' CH ' Figure S9: 1 H NMR spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)--hydroxy-,-dimethoxyphenyl)ethanone (a)

H 9'' 1' 1 ' '' 8'' ' 7'' 10'' HC '' CH ' Figure S0: 1 C NMR spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)--hydroxy-,-dimethoxyphenyl)ethanone (a)

H 9'' ' 1' 1 ' '' 8'' ' ' 7'' 10'' HC '' CH ' Figure S: EIMS spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)--hydroxy-,-dimethoxyphenyl)pentan-1-one (e)

H 9'' ' 1' 1 ' '' 8'' ' ' 7'' 10'' HC '' CH ' Figure S: 1 H NMR spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)--hydroxy-,-dimethoxyphenyl)pentan-1-one (e)

H 9'' ' 1' 1 ' '' 8'' ' ' 7'' 10'' HC '' CH ' Figure S7: 1 C NMR spectrum for (E)-1-(-(,7-dimethylocta-,-dienyl)--hydroxy-,-dimethoxyphenyl)pentan-1-one (e)

H 1' 1 ' ' HC '' CH ' Figure S: EIMS spectrum for 1-(-hydroxy-,-dimethoxy--(-methylbut--enyl)phenyl)ethanone (a)

H 1' 1 ' ' HC '' CH ' Figure S: 1 H NMR spectrum for 1-(-hydroxy-,-dimethoxy--(-methylbut--enyl)phenyl)ethanone (a)

H 1' 1 ' ' HC '' CH ' Figure S: 1 C NMR spectrum for 1-(-hydroxy-,-dimethoxy--(-methylbut--enyl)phenyl)ethanone (a)

H ' 1' 1 ' ' ' HC '' CH ' Figure S1: EIMS spectrum for 1-(-hydroxy-,-dimethoxy--(-methylbut--enyl)phenyl)pentan-1-one (e)

H ' 1' 1 ' ' ' HC '' CH ' Figure S: 1 H NMR spectrum for 1-(-hydroxy-,-dimethoxy--(-methylbut--enyl)phenyl)pentan-1-one (e)

H ' 1' 1 ' ' ' HC '' CH ' Figure S: 1 C NMR spectrum for 1-(-hydroxy-,-dimethoxy--(-methylbut--enyl)phenyl)pentan-1-one (e)

LX-1 1 MFSAGHKIKGTVVLMPKNELEVNPDGS-AVDNLNAFLGRSVSLQLISATKADAHG 1IK ----GHKIKGTVVLMRKNVLDVNSVTSVTLDTLTAFLGRSVSLQLISATKADANG LX-1 KGKVGKDTFLEGINTSLPTLGAGESAFNIHFEW-DGSMGIPGAFYIKNYMQVEFF 108 1IK KGKLGKATFLEGIITSLPTLGAGQSAFKINFEWDDGS-GIPGAFYIKNFMQTEFF 10 LX-1 109 LKSLTLEAISNQGTIRFVCNSWVYNTKLYKSVRIFFANHTYVPSETPAPLVSYRE 1 1IK 10 LVSLTLEDIPNHGSIHFVCNSWIYNAKLFKSDRIFFANQTYLPSETPAPLVKYRE 10 LX-1 1 EELKSLRGNGTGERKEYDRIYDYDVYNDLGNPDKSEKLARPVLGGSSTFPYPRRG 18 1IK 11 EELHNLRGDGTGERKEWERIYDYDVYNDLGDPDKGENHARPVLGGNDTFPYPRRG 1 LX-1 19 RTGRGPTVTDPNTE-KQGEVFYVPRDENLGHLKSKDALEIGTKSLSQIVQPAFES 7 1IK 1 RTGRKPTRKDPNSESRSNDV-YLPRDEAFGHLKSSDFLTYGLKSVSQNVLPLLQS 9 LX-1 7 AFDLKSTPIEFHSFQDVHDLYEGGIKLPRDVISTIIPLPVIKELYRTDGQHILKF 7 1IK 70 AFDLNFTPREFDSFDEVHGLYSGGIKLPTDIISKISPLPVLKEIFRTDGEQALKF LX-1 8 PQPHVVQVSQSAWMTDEEFAREMIAGVNPCVIRGLEEFPPKSNLDPAIYGDQSSK 8 1IK 80 PPPKVIQVSKSAWMTDEEFAREMLAGVNPNLIRCLKDFPPRSKLDSQVYGDHTSQ 79 LX-1 8 ITADSLD--LDGYTMDEALGSRRLFMLDYHDIFMPYVRQINQLNSAKTYATRTIL 1IK 80 ITKEHLEPNLEGLTVDEAIQNKRLFLLDHHDPIMPYLRRIN-ATSTKAYATRTIL LX-1 FLREDGTLKPVAIELSLPHSAGDLSAAVSQVVLPAKEGVESTIWLLAKAYVIVND 90 1IK FLKNDGTLRPLAIELSLPHPQGDQSGAFSQVFLPADEGVESSIWLLAKAYVVVND 88 LX-1 91 SCYHQLMSHWLNTHAAMEPFVIATHRHLSVLHPIYKLLTPHYRNNMNINALARQS 1IK 89 SCYHQLVSHWLNTHAVVEPFIIATNRHLSVVHPIYKLLHPHYRDTMNINGLARLS * * LX-1 LINANGIIETTFLPSKYSVEMSSAVYKNWVFTDQALPADLIKRGVAIKDPSTPHG 00 1IK LVNDGGVIEQTFLWGRYSVEMSAVVYKDWVFTDQALPADLIKRGMAIEDPSCPHG 98 LX-1 01 VRLLIEDYPYAADGLEIWAAIKTWVQEYVPLYYARDDDVKNDSELQHWWKEAVEK 1IK 99 IRLVIEDYPYTVDGLEIWDAIKTWVHEYVFLYYKSDDTLREDPELQACWKELVEV LX-1 GHGDLKDKPWWPKLQTLEDLVEVCLIIIWIASALHAAVNFGQYPYGGLIMNRPTA 710 1IK GHGDKKNEPWWPKMQTREELVEACAIIIWTASALHAAVNFGQYPYGGLILNRPTL 708 * * LX-1 711 SRRLLPEKGTPEYEEMINNHEKAYLRTITSKLPTLISLSVIEILSTHASDEVYLG 7 1IK 709 SRRFMPEKGSAEYEELRKNPQKAYLKTITPKFQTLIDLSVIEILSRHASDEVYLG 7 LX-1 7 QRDNPHWTSDSKALQAFQKFGNKLKEIEEKLVRRNNDPSLQGNRLGPVQLPYTLL 80 1IK 7 ERDNPNWTSDTRALEAFKRFGNKLAQIENKLSERNNDEKLR-NRCGPVQMPYTLL 817 LX-1 81 YPSSEEGLTFRGIPNSISI 89 1IK 818 LPSSKEGLTFRGIPNSIS- 8 Figure S7: Alignment of soybean LX- (1IK) and soybean LX-1 sequences showing 7.1 % identities. Essential sites for iron binding are denoted by asterisk (*) and amino acids at the binding site are shown in red colour.

Figure S8: Ramachandran Plot of LX-1 model produced by PRCHECK after homology modeling. [A, B,L] most favoured region; [a,b,l,p] additional allowed regions; [~a,~b,~l,~p] generously allowed regions; milky coloured areas are disallowed regions. Figure S9: Total RMSD evolution along the simulation time of a protein-ligand complex of compound e.

Figure S0: Total RMSD evolution along the simulation time of a protein-ligand complex of compound e

Figure S1: Total RMSD evolution along the simulation time of a protein-ligand complex of thga (a).

ns ns 7 ns 8 ns 9 ns 10 ns Figure S: The D representation of the MD simulation result of compound e (snapshots taken during -10ns)

ns ns 7 ns 8 ns 9 ns 10 ns Figure S: The D representation of the MD simulation result of compound e (snapshots taken during -10ns)

ns ns 7 ns 8 ns 9 ns 10 ns Figure S: The D representation of the MD simulation result of compound e (snapshots taken during -10ns)

ns ns 7 ns 8 ns 9 ns 10 ns Figure S: The D representation of the MD simulation result of compound e (snapshots taken during -10ns)

ns ns 7 ns 8 ns 9 ns 10 ns Figure S: The D representation of the MD simulation result of thga (a) (snapshots taken during -10ns)

ns ns 7 ns 8 ns 9 ns 10 ns Figure S7: The D representation of the MD simulation result of thga (a) (snapshots taken during -10ns)

Table 1 Residue-based decomposition of the interaction energies (kcal/mol) for molecular mechanic ( E MM ), polar solvation ( G PB ), non-polar solvation ( G SA ) and free binding energy ( G bind ) between the most active compound e and the residues in the binding pocket of soybean LX-1 model. Residue Number E MM G PB G SA G bind Ser91 -. (0.1). (0.17) -0.1 (0.0) -1. (0.1) His9 -.7 (0.19).78 (0.) -0.1 (0.0) -0.9 (0.) Gln9-1.8 (0.) 1.89 (0.9) -0.70 (0.0) -0.9 (0.8) His99 -.1 (0.1) 8.08 (0.) -0. (0.0).9 (0.9) Trp00 -.89 (0.11) 0.8 (0.0) -0.1 (0.01) -. (0.11) His0-1.70 (0.09) 1.79 (0.10) -0.09 (0.01) 0.00 (0.1) Ile8-0.9 (0.0) -0.7 (0.0) -0.0 (0.01) -1.0 (0.0) Leu1-0. (0.01) -0.0 (0.01) 0.00 (0.00) -0.1 (0.0) Leu -.9 (0.1) 1.1 (0.08) -0.9 (0.0) -.0 (0.1) Ile7 -.9 (0.1) 1.01 (0.08) -0. (0.0) -.7 (0.1) Ile -.0 (0.07) 0.7 (0.0) -0.1 (0.01) -1.9 (0.09) Phe7-8.18 (0.17) 1.9 (0.07) -0.90 (0.0) -7.1 (0.18) Gln97-11.77 (0.) 1.7 (0.) -1.0 (0.0) 1.7 (0.1) Tyr700 -.00 (0.07) 1. (0.11) -0.0 (0.01) -0.8 (0.07) Arg707 0.8 (0.08) 9.91 (0.8) -0.9 (0.01) 10.10 (0.7) Ser77 -. (0.19).1 (0.1) -0.7 (0.0) 0.0 (0.19) Ile71 -.9 (0.1) 0. (0.07) -0. (0.0) -.1 (0.1) Leu7 -.8 (0.11) 0.9 (0.0) -0.7 (0.0) -.8 (0.1) Ile89 0. (0.01) -1. (0.0) 0.00 (0.00) -1.07 (0.0)

Table Residue-based decomposition of the interaction energies (kcal/mol) for molecular mechanic ( E MM ), polar solvation ( G PB ), non-polar solvation ( G SA ) and free binding energy ( G bind ) between compound e and the residues in the binding pocket of soybean LX-1 model. Residue Number E MM G PB G SA G bind Glu9-9.0 (0.1) 0.18 (0.) -1.11 (0.0) 9. (0.0) His99 -.0 (0.11) 10.9 (0.7) -0. (0.01). (0.) Trp00 -.11 (0.08) 1. (0.08) -0.0 (0.01) -1.98 (0.07) His0-1.78 (0.0).0 (0.1) -0.0 (0.0) 1.70 (0.10) Ile8-1.70 (0.0) -0. (0.0) -0.1 (0.01) -.09 (0.07) Ala -1.88 (0.07) -0.0 (0.0) -0.1 (0.0) -.11 (0.09) Leu -7. (0.1).0 (0.10) -0.7 (0.0) -.1 (0.17) Ile7 -. (0.1) 0.80 (0.0) -0. (0.0) -.18 (0.11) Ile -. (0.11) 0.0 (0.0) -0. (0.01) -.9 (0.11) Phe7 -. (0.1).89 (0.08) -0. (0.0) -.0 (0.1) Gln97 -.97 (0.1) 9.00 (0.7) -0. (0.0).1 (0.) Ile70-0.1 (0.01) 0.01 (0.01) 0.00 (0.00) -0.1 (0.01) Arg707-0.9 (0.08).9 (0.7) -0.0 (0.0). (0.) Ser77 -.0 (0.1). (0.0) -0.0 (0.0) -0.07 (0.1) Leu78-0.1 (0.0) -0.0 (0.0) -0.01 (0.00) -0.7 (0.0)

Table Residue-based decomposition of the interaction energies (kcal/mol) for molecular Mechanic ( E MM ), polar solvation ( G PB ), non-polar solvation ( G SA ) and free binding energy ( G bind ) between thga (a) and the residues in the binding pocket of soybean LX-1 model. Residue Number E MM G PB G SA G bind Glu -1.8 (0.1) -.90 (0.1) -0.1 (0.01) -.90 (0.1) Thr9 -.9 (0.19) 7.7 (0.11) -0.1 (0.01) 0.1 (0.1) His99 -.1 (0.10) 7.8 (0.1) -0.8 (0.01) -.9 (0.18) Trp00 -.9 (0.10) 0.9 (0.0) -0.0 (0.01) -. (0.11) His0 -.7 (0.1).8 (0.1) -0.0 (0.01) -0.19 (0.1) Ile8 -.97 (0.19) -0. (0.07) -0. (0.01) -. (0.19) Ala -1.7 (0.1) 0.8 (0.09) -0. (0.01) -1.70 (0.1) Leu -8.1 (0.17) 1. (0.0) -0.87 (0.0) -7. (0.1) Ile7 -. (0.08) 1. (0.0) -0. (0.01) -1.1 (0.09) Ile -.99 (0.09) 0. (0.0) -0.0 (0.01) -.0 (0.09) Phe7 -.0 (0.07) 0.0 (0.0) -0.1 (0.01) -1.7 (0.07) Val70 -.09 (0.0) -0.11 (0.0) -0.10 (0.01) -.1 (0.07) Ile71-1.7 (0.0) -0.8 (0.0) -0. (0.01) -. (0.08) Leu7-8.8 (0.17) 0.90 (0.07) -1. (0.0) -8.71 (0.1)