Tvärsnitt. Tvärsnitt (forts) Föreläsning 19. Thin foil target
|
|
- Christian Lindgren
- för 8 år sedan
- Visningar:
Transkript
1 Föreläsning 19 Tvärsnitt Thin foil target Betrakta ett antal mindre cirklar ritade på en krittavla. Sannolikheten att föreläsaren träffar cirklarna med en pingisboll beror av cirklarnas och bollens gemensamma tvärsnittyta σ i förhållande till tavelytan A. Tänk oss på samma sätt för neutronstråle mot en folie. Med n = antal kärnor per volymsenhet (kärnor/m 3 ) x = foliens tjocklek (så tunn att kärnorna inte skymmer varandra) och σ = tvärsnittet för neutronens växelverkan med kärnan En sträcka dx innehåller na dx kärnor med total tvärsnittsyta σna dx jämför med totalytan A. Antal neutroner som reagerar dn jämfört med antalet inkommande neutroner N blir: dn σnadx nσ dx N A Integreras från N 0 vid x =0: N dn x nσ N dx 0 N 0 N N ln nσx N 0 nσx Linjära absorptionskoeffcienten N 0 e μ = nσ (jmfr lab AM36) A σ Tvärsnitt σ mäts i enheten 1 b = m 2 (Barn) Jmfr (kärnradie) 2 typiskt m 2 Tvärsnitt (forts) Med R 0 inkommande partiklar per tidsenhet får vi antal reaktioner per tidsenhet: nσax R A R 0 0 R nσx Notera att R 0 /A är antal partiklar per yt- och tidsenhet (flux) och nax är antal kärnor i strålmålet. Exempel 1: Inelastisk spridning av neutron mot xenon * n Xe Xe n σ 4 b Exempel 2: Uran 235 tar upp en neutron och fissionerar (sönderdelas) * 92U X Y neutroner Ur figur ser vi att tvärsnittet är ca 10 3 b vid låga energier men minskar kraftigt med ökande energi. De låga energierna motsvarar energin för termisk rörelse för neutronerna vid rumstemperatur 3 Ekin kbt 0, 04eV 2 Generellt gäller att i de material där neutroninfångning sker är tvärsnittet högst vid låga (termiska) energier. I vissa material och för snabba neutroner dominerar elastiska kollisioner. Dessa material kallas moderatorer. Exempel: bor, grafit och vatten. T.ex. överförs maximal energi då neutronen frontalkolliderar med en proton i elastisk stöt. Modereringstid i vatten för 1 MeV neutron, typiskt < 1 ms..
2 Fission Tillämpningar av kärnfysik Betrakta reaktionen: a + X Y + b ( kan skrivas X(a,b)Y ) Som alltid gäller att energi, rörelsemängd, rörelsemängdsmoment och laddning bevaras. Dessutom bevaras antalet nukleoner (masstalet). Betraktar vi energin gäller då (materialet X i vila): M X c 2 + E kin_a + M a c 2 = M Y c 2 + E kin_y + M b c 2 + E kin_b Definition: Q = frigjord kinetisk energi Q M M M M 2 ( Ekin _ y Ekin _ b ) Ekin _ a X a Y b c Om Q>0 avges energi. Exotermisk. Om Q<0 krävs energi för reaktionen. Tröskelenergin E th är > Q pga att rörelsemängdens bevarande kräver att slutprodukterna får kinetisk energi. Fission Betrakta nu * 92U X Y neutroner (Observerades av Otto Hahn, Lise Meitner och Fritz Strassmann. Förklarades av Lise Meitner och Otto Frisch) Livstid för 236 U * : ca s. X och Y är fissionsfragment Exempel: 56Ba Kr 3n Xe Sr 2n Sn 42 Mo 3n I medel bildas 2,5 neutroner vid fission. Fission (forts 1) Modell för hur fissionen sker: U-kärnan fångar in en termisk neutron U* bildas. Överskotts energin ger häftiga svängningar U*-kärnans form distorderas vilket förstärks av Coulomb-repulsion mellan protoner i timglasets två delar 4. Kärnan splittras i två delar samtidigt som flera neutroner sänds ut. 94 Sr 140 Xe Fissionsfragmenten ligger över stabilitetslinjen. Därför avges lätt neutroner. Q-värde Ba Kr 3n 36 Back of the envelope ur figur 13.10: 141*8,0 + 92*8,5 236*7,2 211 MeV Bättre värde: 208 MeV för n U Med atomvikt 235 g/mol ger 1 kg 235 U: N=1 kg * (6, kärnor/mol)/(0,235 kg/mol)= 2, kärnor E = NQ = 2, * 208 MeV = 5, MeV 2, kwh
3 Fission (forts 2) I kärnkraftverk: Naturligt uran 238 U: 99.3 %, 235 U: 0,7 %. 235 U fissionerar, 238 U tar upp n och går till 239 Pu eller 239 Np. Måste därför anrikas för att öka halten 235 U till minst några %. Multiplikationskonstanten K definieras som medelantalet neutroner från varje fission som ger upphov till en ny fission. För att reaktionen skall fortgå krävs att K 1 (K = 1, reaktorn kritisk). Regleras genom konfiguration av bränsleceller, moderator och styrstavar, där de senare är gjorda i material som effektivt absorberar neutroner. Fission (forts 3) From Wikipedia: Gen IV: många olika lösningar, med Na, PB, smält salt, superkritiskt vatten, gas som kylmedel. Bl.a. Snabba bridreaktorer (snabb = snabba neutroner). Använder sig även av 239 Pu från 238 U+n - Na som kylmedel. Prototypstudie: ASTRID i Cadarache Frankrike med svensk medverkan (även KTH) - Pb som kylmedel. Grupper på fysikinst. KTH studerar PB-kylning. Finns för och nackdelar med de olika lösningarna. Transmutation: Partikelstråle orsakar kärnreaktioner ur vilken energi utvinns
4 Fusion Bindningenergin för mycket lätta kärnor är mindre än för tyngre kärnor. Fusion skulle därför kunna avge energi. I solen: proton-proton-cykeln. Totalt 4 1 H ger 4 He och Q 26,7 MeV H H H e ν e e γ γ ( Q 0,42MeV) ( Q 1,02MeV) H H H e ν e e γ γ ( Q 0,42MeV) ( Q 1,02MeV) H H He γ ( Q 5,49MeV) H H He γ ( Q 5,49MeV) He He He H H ( Q 12,86MeV) Problem: För att reaktion skall kunna ske måste protonerna (och 3 He) ha tillräcklig energi för att komma igenom Coulomb-barriären (tunnling). Energi fördelning n (K) i solen, sannolikheten att (Princip) penetrera Coulombbarriären som funktion av kinetisk energi p (K) och k B T i solen. k B T = 1,3 kev motsvarar temperaturen T = 1, K. Coulomb-barriären är ca 400 kev tunnling. Fusion (forts) Fusionsreaktor?: Kräver hög temperatur för tändning. 2 H + 2 H kräver K (35 kev) 2 H + 3 H kräver 4, K (4 kev) Dessutom hög jontäthet tid. Tokamaker: Framtida: ITER klar ca 2019?? i Frankrike.
5 Partiklars växelverkan med materia Kunskap om partiklar växelverkan med materia viktig för att: kunna detektera dem avgöra skadlighet design av strålskydd Alla möjliga växelverkningar i enlighet med deras tvärsnitt skall tas hänsyn till. Tunga laddade partiklar (ej elektroner) Stopping power [MeV cm 2 /g] 100 Stopping power 10 1 Lindhard- Scharff Nuclear losses μ Anderson- Ziegler 1/β 2 Bethe-Bloch Minimum ionization μ + on Cu Radiative effects reach 1% Radiative Radiative losses Without δ βγ E μc Laddade partiklar förlorar huvudsakligen sin energi genom jonisation och excitation. Även elastiska kollisioner mot kärnor är av betydelse, speciellt vid så låga hastigheter att jonisationen minskar. de/dx beror av densiteten av elektroner i mediet, dvs materialets densitet. Partiklar med hög laddning förlorar snabbare sin energi (går som (laddning) 2 ) [MeV/c] [ GeV/c] [TeV/c] Muon momentum Minimum vid ca βγ=4 Logaritimiskt ökande
6 Växelverkan med materia (forts 1) Som en följd av energiförlusterna kommer laddade partiklar att färdas en given sträcka innan de stannas upp. Räckvidd (= range på engelska) Energideposition från 200 MeV protoner i vatten Bragg -kurva Exempel: Jämför α-partiklar och protoner. α har dubbelt så stor laddning, dessutom högre massa varför den färdas långsammare vid samma kinetiska energi. Dess räckvidd är därför bara ca 1/10 av protonens räckvidd vid samma energi. Elektroner Vid låga energier (< 1MeV) liknande förluster som för tunga laddade partiklar. Dock större statistisk variation i räckvidden ( straggling ) och sprids lättare pga dess mindre storlek och massa vid samma energi. Vid höga energier påverkas elektroner av det elektriska fältet kring atomerna och decellererar varvid den avger bromsstrålning. Vid höga energier är detta den dominerande energiförlusten för elektroner. Växelverkan med materia (forts 2) Fotoner Tvärsnitt för fotoners växelverkan med bly Liknande effekter för de flesta ämnen. Vid låga energier dominerar fotojonisation. Vid energier en bit över 2 m e c 2 1,02 MeV dominerar parbildning. Däremellan har Comptonspridning stor betydelse. En inkommande fotonstråle med intensitet I 0 har efter en sträcka x i materialet dämpats till I ( x ) I 0 e μx där den linjära absorptionskoefficienten μ fås ur nσ där n är antal atomer per volymsenhet och σ tvärsnittet per atom p.e.: fotoelektrisk effekt (fotojonisation) coherent: Rayleighspridning incoh: Comptonspridning K N : parbildning mot kärnans fält K e : parbildning mot atomära elektronernas fält nuc: fotonukleär absorption
7 Enheter för doser Absorberad dos mäts i Gy (gray) = 1 J/kg Olika slags strålning har olika biologisk skadeeffekt för samma stråldos. Skadligheten anges i Relativ Biologisk effekt (RBE). Vi definierar: dosekvivalenten = absorberad dos x RBE Mäts i Sv (sievert) = 1 J/kg Kosmisk bakgrundsstrålning: 1 msv/år Gränsvärde för person som arbetar med strålning: 50 msv/år men högst 100 msv under 5 år NMR och MRI Atomkärnan har ett inre rörelsemängdsmoment, kärnspinn, vilket vi betecknar med I. Spinnets storlek är I ( I 1). Detta kärnspinn är det totala rörelsemängdsmomentet från alla nukleoner, både från banrörelsemängdsmoment och spinn. Kopplat till kärnspinnet har kärnan ett gyromagnetiskt moment μ. Kärnmagneton: q 8 e μn 3, ev/t 2mp m p = protonmassan Partikel Massa (MeV/c 2 ) Spin Magnetiskt moment proton ½ 2,7928μ n neutron 939,57 ½ -1,9135μ n Neutronen har trots att den är neutral ett magnetiskt moment Inre laddningsstruktur
8 Den potentiella energin från en magnetisk dipol med moment μ i ett externt magnetfält B är -μ B. Skillnad i energi då μ upplinjerat med B är ΔE = 2μ B. μ kommer att precessera kring B med Larmor-frekvensen f L =ΔE/h (42,577 MHz för p i B=1T). Genom ett svagt oscillerande magnetiskt fält med Larmor-frekvensen överlagrat vinkelrätt mot ett konstant magnetfält B kan man få dipolen att byta spinn-riktning, spin-flip. Denna energiabsorption från det oscillerande fältet kan detekteras elektroniskt! NMR = Kärnspinnresonans (Nuclear Magnetic Resonance). Om man använder ett inhomogent, varierbart magnetfält B kan man åstadkomma att Larmor-frekvensen är olika på olika ställen i rummet. Larmorfrekvensen varierar dessutom med kärnan. Väte, dvs protonen, ger en distinkt NMR-signal. Detta används i MRI (Magnetic Resonance Imaging) på svenska ofta MR (magnetröntgen) för at mha dator få en bild av vävnadstäthet
Kärnfysik: kärnreaktioner och tillämpningar Inledande partikelfysik.
Kärnfysik: kärnreaktioner och tillämpningar Inledande partikelfysik. Kärnspinn, NMR och MRI Tvärsnitt Fission Fusion Partiklars växelverkan med materia Doser Inledande partikelfysik: - Kvarkar och leptoner
Läs merFöreläsning 11 Kärnfysiken: del 3
Föreläsning Kärnfysiken: del 3 Kärnreaktioner Fission Kärnreaktor Fusion U=-e /4πε 0 r Coulombpotential Energinivåer i atomer Fotonemission när en elektron/atom/molekyl undergår en övergång Kvantfysiken
Läs merFöreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
Läs merMiljöfysik. Föreläsning 5. Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion
Miljöfysik Föreläsning 5 Användningen av kärnenergi Hanteringen av avfall Radioaktivitet Dosbegrepp Strålningsmiljö Fusion Energikällor Kärnkraftverk i världen Fråga Ange tre fördelar och tre nackdelar
Läs merPreliminärt lösningsförslag till Tentamen i Modern Fysik,
Preliminärt lösningsförslag till Tentamen i Modern Fysik, SH1009, 008 05 19, kl 14:00 19:00 Tentamen har 8 problem som vardera ger 5 poäng. Poäng från inlämningsuppgifter tillkommer. För godkänt krävs
Läs merTentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Läs merKärnfysik och radioaktivitet. Kapitel 41-42
Kärnfysik och radioaktivitet Kapitel 41-42 Tentförberedelser (ANMÄL ER!) Maximipoäng i tenten är 25 p. Tenten består av 5 uppgifter, varje uppgift ger max 5 p. Uppgifterna baserar sig på bokens kapitel,
Läs merMateriens Struktur. Lösningar
Materiens Struktur Räkneövning 5 Lösningar 1. Massorna för de nedan uppräknade A = isobarerna är 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 63,935812u 63,927968u 63,929766u 63,929146u 63,936827u Tabell 1: Tabellen
Läs merFöreläsning 5 Reaktionslära, fission, fusion
Föreläsning 5 Reaktionslära, fission, fusion Reaktionslära MP 12.1 Tvärsnitt MP 12.1 Fission MP 12.2 Fusion MP 12.2 Se även: http://library.thinkquest.org/17940/texts/star/star.html 1 TID Reaktionslära
Läs merFöreläsning 3. Radioaktivitet, alfa-, beta-, gammasönderfall
Radioaktivitet, alfa-, beta-, gammasönderfall Halveringstid (MP 11-3, s. 522-525) Alfa-sönderfall (MP 11-4, s. 525-530) Beta-sönderfall (MP 11-4, s. 530-535) Gamma-sönderfall (MP 11-4, s. 535-537) Se även
Läs merTentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 2012-08-30 em Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Läs merFission och fusion - från reaktion till reaktor
Fission och fusion - från reaktion till reaktor Fission och fusion Fission, eller kärnklyvning, är en process där en tung atomkärna delas i två eller fler mindre kärnor som kallas fissionsprodukter och
Läs merStudiematerial till kärnfysik del II. Jan Pallon 2012
Frågor att diskutera Kapitel 4, The force between nucleons 1. Ange egenskaperna för den starka kraften (växelverkan) mellan nukleoner. 2. Deuterium är en mycket speciell nuklid när det gäller bindningsenergi
Läs merLösningar del II. Problem II.3 L II.3. u= u MeV = O. 2m e c2= MeV. T β +=
Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett γ
Läs merSönderfallsserier N 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134. α-sönderfall. β -sönderfall. 21o
Isotop Kemisk symbol Halveringstid Huvudsaklig strålning Uran-238 238 U 4,5 109 år α Torium-234 234 Th 24,1 d β- Protaktinium-234m 234m Pa 1,2 m β- Uran-234 234 U 2,5 105 år α Torium-230 230 Th 8,0 105
Läs merFrån atomkärnor till neutronstjärnor Christoph Bargholtz
Z N Från atomkärnor till neutronstjärnor Christoph Bargholtz 2006-06-29 1 C + O 2 CO 2 + värme? E = mc 2 (mc 2 ) före > (mc 2 ) efter m = m efter -m före Exempel: förbränning av kol m m = 10 10 (-0.0000000001
Läs merTentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012,
Tentamen: Atom och Kärnfysik (1FY801) Lördag 15 december 2012, 9.00-14.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Läs merLösningar del II. Problem II.3 L II.3. u u MeV O. 2m e c2= MeV T += MeV Rekylkärnans energi försummas 14N
Lösningar del II Problem II.3 Kärnan 14 O sönderfaller under utsändning av en positiv elektron till en exciterad nivå i 14 N, vilken i sin tur sönderfaller till grundtillståndet under emission av ett kvantum
Läs merFöreläsning 2 Modeller av atomkärnan
Föreläsning 2 Modeller av atomkärnan Atomkärnan MP 11-1 Protonens och neutronens egenskaper Atomkärnors storlek och form MP 11-2, 4-2 Kärnmodeller 11-6 Vad gör denna ovanlig? Se även http://www.lbl.gov/abc
Läs mer1. 2. a. b. c a. b. c. d a. b. c. d a. b. c.
1. Lina sitter och läser en artikel om utgrävningarna i Motala ström. I artikeln står det att arkeologerna funnit bruksföremål som är 7 år gamla. De har daterat föremålen med hjälp av kol-14-metoden. Förklara
Läs merKontrollerad termonukleär fusion
Kontrollerad termonukleär fusion Carl Hellesen Applied Nuclear Physics Department of Physics and Astronomy Uppsala Universitet Fusionsreaktioner Skillnaderna i nukleära bindningsenergier 62 Ni hårdast
Läs merAtomkärnans struktur
Föreläsning 18 tomkärnans struktur Rutherford, Geiger och Marsden påvisade ~1911 i spridningsexperiment att atomen hade sin positiva laddning och massa koncentrerad till en kärna. I vissa fall kunde α-partiklarna
Läs merRöntgenstrålning och Atomkärnans struktur
Röntgenstrålning och tomkärnans struktur Röntgenstrålning och dess spridning mot kristaller tomkärnans struktur - Egenskaper. Isotoper. - Bindningsenergi - Kärnmodeller - Radioaktivitet, radioaktiva sönderfall.
Läs merInstuderingsfrågor Atomfysik
Instuderingsfrågor Atomfysik 1. a) Skriv namn och laddning på tre elementarpartiklar. b) Vilka elementarpartiklar finns i atomkärnan? 2. a) Hur många elektroner kan en atom högst ha i skalet närmast kärnan?
Läs merFöreläsning 4 Acceleration och detektion av partiklar
Föreläsning 4 Acceleration och detektion av partiklar Enheter och stråleffekter Strålnings växelverkan med materia Acceleration av partiklar Detektion av partiklar Se även: http://physics.web.cern.ch/physics/particledetector/briefbook/
Läs merFöreläsning 4 Acceleration och detektion av partiklar
Föreläsning 4 Acceleration och detektion av partiklar Enheter och stråleffekter Reaktioner och tvärsnitt Strålnings växelverkan med materia Acceleration av partiklar Detektion av partiklar Se även: http://physics.web.cern.ch/physics/particledetector/briefbook/
Läs merJoniserande strålnings växelverkan Hur alstras röntgenstrålning och vad händer när den når och passerar människa?
Joniserande strålnings växelverkan Hur alstras röntgenstrålning och vad händer när den når och passerar människa? Eva Lund Eva.Lund@liu.se Lärandemål Kunna beskriva hur ett röntgenrör skapar röntgenstrålning
Läs merAtom- och Kärnfysik. Namn: Mentor: Datum:
Atom- och Kärnfysik Namn: Mentor: Datum: Atomkärnan Väteatomens kärna (hos den vanligaste väteisotopen) består endast av en proton. Kring kärnan kretsar en elektron som hålls kvar i sin bana p g a den
Läs merParbildning. Om fotonens energi är mer än dubbelt så stor som elektronens vileoenergi (m e. c 2 ):
Parbildning Vi ar studerat två sätt med vilket elektromagnetisk strålning kan växelverka med materia. För ögre energier ar vi även en tredje: Parbildning E mc Innebär att omvandling mellan energi oc massa
Läs merTentamen i FUF050 Subatomär Fysik, F3
Tentamen i FUF050 Subatomär Fysik, F3 Tid: 013-05-30 fm Hjälpmedel: Physics Handbook, nuklidkarta, Beta, Chalmersgodkänd räknare Poäng: Totalt 75 poäng, för betyg 3 krävs 40 poäng, för betyg 4 krävs 60
Läs merVågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 8 Vågrörelselära & Kvantfysik, FK2002 9 januari 2012 Problem 40.1 Vad är våglängden för emissionsmaximum λ max, hos en svartkropps-strålare med temperatur a) T 3 K (typ kosmiska mikrovågsbakgrunden)
Läs merFöreläsningsserien k&p
Föreläsningsserien k&p 1. "Begrepp bevarandelagar, relativistiska beräkningar" 1-3,1-4,1-5,2-2 2. "Modeller av atomkärnan" 11-1, 11-2, 11-6 3. "Radioaktivitet, alfa-, beta-, gammasönderfall" 11-3, 11-4
Läs merKärnenergi. Kärnkraft
Kärnenergi Kärnkraft Isotoper Alla grundämnen finns i olika varianter som kallas för isotoper. Ofta finns en variant som är absolut vanligast. Isotoper av ett ämne har samma antal protoner och elektroner,
Läs merMateriens Struktur. Lösningar
Materiens Struktur Räkneövning 4 Lösningar 1. Sök på internet efter information om det senast upptäckta grundämnet. Vilket masstal och ordningsnummer har det och vilka är de angivna egenskaperna? Hur har
Läs merFöreläsning 09 Kärnfysiken: del 1
Föreläsning 09 Kärnfysiken: del 1 Storleken och strukturen av kärnan Bindningsenergi Den starka kärnkraften Strukturen av en kärna Kärnan upptäcktes av Rutherford, Geiger och Marsden år 1909 (föreläsning
Läs merRepetition kärnfysik
Repetition kärnfysik Egenskaper hos kärnan Massa Radie (ev. deformationsparameter) Relativ förekomst Sönderfallssätt (,,), halveringstid t 1/2 Reaktionssätt Tvärsnitt, spinn, magnetiskt/elektriskt dipolmoment
Läs merVågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 10 Vågrörelselära & Kvantfysik, FK2002 9 januari 20 Problem 42.1 Vad är det orbitala rörelsemängdsmomentet, L, för en elektron i a) 3p-tillståndet b) 4f-tillståndet? Det orbitala rörelsemängdsmomentet
Läs merTill exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12!
1) Till exempel om vi tar den första kol atomen, så har den: 6 protoner, 12 6=6 neutroner, 6 elektroner; atommassan är också 6 men masstalet är 12! Om vi tar den tredje kol atomen, så är protonerna 6,
Läs merRelativistisk kinematik Ulf Torkelsson. 1 Relativistisk rörelsemängd, kraft och energi
Föreläsning 13/5 Relativistisk kinematik Ulf Torkelsson 1 Relativistisk rörelsemängd, kraft och energi Antag att en observatör O följer med en kropp i rörelse. Enligt observatören O så har O hastigheten
Läs merTheory Swedish (Sweden)
Q3-1 Large Hadron Collider (10 poäng) Läs anvisningarna i det separata kuvertet innan du börjar. I denna uppgift kommer fysiken i partikelacceleratorn LHC (Large Hadron Collider) vid CERN att diskuteras.
Läs merMateriens Struktur. Lösningar
Materiens Struktur Räkneövning 3 Lösningar 1. Studera och begrunda den teoretiska förklaringen till supralednigen så, att du kan föra en diskussion om denna på övningen. Skriv även ner huvudpunkterna som
Läs merVarje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
Läs merTILLÄMPAD ATOMFYSIK Övningstenta 2
TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Läs merAtomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)
Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att
Läs merLösningar till tentamen i kärnkemi ak
Lösningar till tentamen i kärnkemi ak 1999.117 Del A 1. Det finns radioaktiva sönderfall som leder till utsändning av monoenergetisk joniserande strålning? Vad är detta för strålslag? (2p) Svar: Alfastrålning
Läs mer8.4 De i kärnan ingående partiklarnas massa är
LÖSIGSFÖRSLAG Fysik: Fysik och Kapiel 8 8 Kärnfysik Aomkärnans sabilie 8. Läa kärnor är sabila om de har samma anal prooner som neuroner. Sörre kärnor kräver fler neuroner än prooner för a sark växelverkan
Läs merAtomens uppbyggnad. Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral)
Atom- och kärnfysik Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (+) Elektroner (-) Neutroner (neutral) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att
Läs merIntro till Framtida Nukleära Energisystem. Carl Hellesen
Intro till Framtida Nukleära Energisystem Carl Hellesen Problem med dagens kärnkraft Avfall (idag)! Fissionsprodukter kortlivade (några hundra år)! Aktinider (, Am, Cm ) långlivade (100 000 års lagringstid)!
Läs merRörelsemängd och energi
Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )
Läs merBFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 12. Kärnfysik 1 2014. Kärnfysik 1
Kärnfysik 1 Atomens och atomkärnans uppbyggnad Tidigare har atomen beskrivits som bestående av en positiv kärna kring vilken det i den neutrala atomen befinner sig lika många elektroner som det finns positiva
Läs merWALLENBERGS FYSIKPRIS
WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 6 januari 017 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG KVALTÄVLINGEN 017 1. Enligt diagrammet är accelerationen 9,8 m/s när hissen står still eller rör sig med
Läs merFysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 26.
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 26 Delkurs 4 KÄRNSTRUKTUR I detta häfte ingår
Läs mer3.7 γ strålning. Absorptionslagen
3.7 γ strålning γ strålningen är elektromagnetisk strålning. Liksom α partiklarnas energier är strålningen kvantiserad; strålningen kan ha endast bestämda energier. Detta beror på att γ strålningen utsänds
Läs merKEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från
KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet
Läs merATOM OCH KÄRNFYSIK. Masstal - anger antal protoner och neutroner i atomkärnan. Atomnummer - anger hur många protoner det är i atomkärnan.
Atomens uppbyggnad Atomen består av tre elementarpartiklar: Protoner (p + ) Elektroner (e - ) Neutroner (n) Elektronerna rör sig runt kärnan i bestämda banor med så stor hastighet att de bildar ett skal.
Läs merExperimentell fysik. Janne Wallenius. Reaktorfysik KTH
Experimentell fysik Janne Wallenius Reaktorfysik KTH Återkoppling från förra mötet: Många tyckte att det var spännade att lära sig något om 1. Osäkerhetsrelationen 2. Att antipartiklar finns och kan färdas
Läs merTILLÄMPAD ATOMFYSIK Övningstenta 3
TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Läs merLösningar till tentamen i kärnkemi ak
Lösningar till tentamen i kärnkemi ak 1999.118 Del A 1. Det finns radioaktiva sönderfall som leder till utsändning av monoenergetisk joniserande strålning? Vad är detta för strålslag? (2p) Svar: Alfastrålning
Läs merLösningar till problem del I och repetitionsuppgifter R = r 0 A 13
Lösningar till problem del I och repetitionsuppgifter 0 Problem I. 6 0 08 Beräkna kärnradien hos 8 O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R = r 0 A 3 får vi R =. 6 3 = 3. 0 fm, R
Läs merTentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt
Läs merRelativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu.
Föreläsning 3: Relativistisk energi Om vi betraktar tillskott till kinetisk energi som utfört arbete för att aelerera från till u kan dp vi integrera F dx, dvs dx från x 1 där u = till x där u = u, mha
Läs mer16. Spridning av elektromagnetisk strålning
16. Spridning av elektromagnetisk strålning [Jakson 9.6-] Med spridning avses mest allmänt proessen där strålning (antingen av partikel- eller vågnatur) växelverkar med något objekt så att dess fortskridningsriktning
Läs mer4.4. Radioaktivitet. dn dt = λn,
4.4. Radioaktivitet [Understanding Physics: 21.4-21.9] Som vi tidigare konstaterat, är de flesta nuklider radioaktiva. De sönderfaller genom att spontant sända ut en partikel och alstra en annan kärna,
Läs mer2. Hur många elektroner får det plats i K, L och M skal?
Testa dig själv 12.1 Atom och kärnfysik sidan 229 1. En atom består av tre olika partiklar. Vad heter partiklarna och vilken laddning har de? En atom kan ha tre olika elementära partiklar, neutron med
Läs merMer om E = mc 2. Version 0.4
1 (6) Mer om E = mc Version 0.4 Varifrån kommer formeln? För en partikel med massan m som rör sig med farten v har vi lärt oss att rörelseenergin är E k = mv. Denna formel är dock inte korrekt, även om
Läs merFöreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
Läs mer1.5 Våg partikeldualism
1.5 Våg partikeldualism 1.5.1 Elektromagnetisk strålning Ljus uppvisar vågegenskaper. Det är bland annat möjligt att åstadkomma interferensmönster med ljus det visades av Young redan 1803. Interferens
Läs merRelativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar
Relativitetsteorins grunder, våren 2016 Räkneövning 3 Lösningar 1. Den ryska fysikern P.A. Čerenkov upptäckte att om en partikel rör sig snabbare än ljuset i ett medium, ger den ifrån sig ljus. Denna effekt
Läs merProv 3 2014-10-13. (b) Hur stor är kraften som verkar på en elektron mellan plattorna? [1/0/0]
Namn: Område: Elektromagnetism Datum: 13 Oktober 2014 Tid: 100 minuter Hjälpmedel: Räknare och formelsamling. Betyg: E: 25. C: 35, 10 på A/C-nivå. A: 45, 14 på C-nivå, 2 på A-nivå. Tot: 60 (34/21/5). Instruktioner:
Läs merKärnkraft. http://www.fysik.org/website/fragelada/index.as p?keyword=bindningsenergi
Kärnkraft Summan av fria nukleoners energiinnehåll är större än atomkärnors energiinnehåll, ifall fria nukleoner sammanfogas till atomkärnor frigörs energi (bildningsenergi även kallad kärnenergi). Energin
Läs merTentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Onsdag 30 november 2013, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Läs merAlla svar till de extra uppgifterna
Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0
Läs mer4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella
KVANTMEKANIKFRÅGOR Griffiths, Kapitel 4-6 Tanken med dessa frågor är att de ska belysa de centrala delarna av kursen och tjäna som kunskapskontroll och repetition. Kapitelreferenserna är till Griffiths.
Läs merBFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/
Läs mer14. Elektriska fält (sähkökenttä)
14. Elektriska fält (sähkökenttä) För tillfället vet vi av bara fyra olika fundamentala krafter i universum: Gravitationskraften Elektromagnetiska kraften, detta kapitels ämne Orsaken till att elektronerna
Läs merFöreläsning 3 Reaktorfysik 1. Litteratur: Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012.pdf
Föreläsning 3 Reaktorfysik 1 Litteratur: Reaktorfysik KSU.pfd (fördjupad kurs) IntroNuclEngChalmers2012.pdf 1 Fissionsfragment (klyvningsprodukter) kärnor som bildas direkt vid fissionen Fissionsprodukter
Läs mer- kan solens energikälla bemästras på jorden?
CMS - kan solens energikälla bemästras på jorden? Kai Nordlund Acceleratorlaboratoriet Institutionen för fysikaliska vetenskaper Helsingfors Universitet Innehåll Vad är fusion? Hur kan man utvinna energi
Läs merForelasning 13, Fysik B for D2. December 8, dar R 0 = 1:2fm. ( 1 fm = m) Vi har alltsa. ar konstant (R 3 = R 3 0A). 46.
Forelasning 13, Fysik B for D2 Thomas Nilsson December 8, 1997 Subatomar fysik kallas allt som beror strukturer mindre an atomer, alltsa med en mer traditionell uppdelning, karn- och partikelfysik. 46
Läs merFysik. Laboration 4. Radioaktiv strålning
Tekniskt basår, Laboration 4: Radioaktiv strålning 2007-03-18, 7.04 em Fysik Laboration 4 Radioaktiv strålning Laborationens syfte är att ge dig grundläggande kunskap om: Radioaktiva strålningens ursprung
Läs mer2 H (deuterium), 3 H (tritium)
Var kommer alla grundämnen ifrån? I begynnelsen......var universum oerhört hett. Inom bråkdelar av en sekund uppstod de elementarpartiklar som alla grund- ämnen består av: protoner, neutroner och elektroner.
Läs merVarifrån kommer grundämnena på jorden och i universum? Tom Lönnroth Institutionen för fysik, Åbo Akademi, Finland
Varifrån kommer grundämnena på jorden och i universum? Tom Lönnroth Institutionen för fysik, Åbo Akademi, Finland Finlandssvenska fysikdagarna 2009 m/s Silja Symphony, November 13-15 Sammandrag Begynnelsen:
Läs merAtomens historia. Slutet av 1800-talet trodde man att man hade en fullständig bild av alla fysikaliska fenomen.
Atomfysik ht 2015 Atomens historia Atom = grekiskans a tomos som betyder odelbar Filosofen Demokritos, atomer. Stort motstånd, främst från Aristoteles Trodde på läran om de fyra elementen Alla ämnen bildas
Läs merMedicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2
Medicinsk Neutron Vetenskap 医疗中子科学 yi1 liao2 zhong1 zi3 ke1 xue2 Introduction Sames 14 MeV neutrongenerator Radiofysik i Lund på 1970 talet För 40 år sen Om
Läs merKurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103. Examinator: Anna-Carin Larsson Tentamens datum 060822
OMTENTAMEN DEL 2 Kurs: Kemi/Fysik 2 Fysikdelen Kurskod LUI103 Examinator: Anna-Carin Larsson Tentamens datum 060822 Jourhavande lärare: Anna-Carin Larsson 070-2699141 Skrivtid 9-14 Resultat meddelas senast:
Läs merStora namn inom kärnfysiken. Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen)
Atom- och kärnfysik Stora namn inom kärnfysiken Marie Curie radioaktivitet Lise Meitner fission Ernest Rutherford atomkärnan (Niels Bohr atommodellen) Atomens uppbyggnad Atomen består av tre elementarpartiklar:
Läs merInnehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Läs merStrålningsskador i fusionsreaktormaterial
i fusionsreaktormaterial FM Ville Jansson ville.b.c.jansson@gmail.com Helsingfors universitet 23.3.2009 Ville Jansson (Helsingfors universitet) i fusionsreaktormaterial 23.3.2009 1 / 21 Fusion Fusion Ville
Läs merAllmän rymdfysik. Plasma Magnetosfärer Solen och solväder. Karin Ågren Rymdfysik och rymdteknik
Allmän rymdfysik Plasma Magnetosfärer Solen och solväder Rymdfysik och rymdteknik Karin Ågren 090608 Plasma Vi lever i en neutral värld, där materia är i fast, flytande eller gasform...... universum i
Läs merFysikaliska modeller
Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda
Läs merAtom- och kärnfysik! Sid 223-241 i fysikboken
Atom- och kärnfysik! Sid 223-241 i fysikboken 1. Atomen Kort repetition av Elin Film: Vetenskap-Atom: Upptäckten När du har srepeterat och sett filmen om ATOMEN ska du kunna beskriva hur en atom är uppbyggd
Läs merPRODUKTION OCH SÖNDERFALL
PRODUKTION OCH SÖNDERFALL Inom arkeologin kan man bestämma fördelningen av grundämnen, t.ex. i ett mynt, genom att bestråla myntet med neutroner. Man skapar då radioisotoper som sönderfaller till andra
Läs merSolens energi alstras genom fusionsreaktioner
Solen Lektion 7 Solens energi alstras genom fusionsreaktioner i dess inre När solen skickar ut ljus förlorar den också energi. Det måste finnas en mekanism som alstrar denna energi annars skulle solen
Läs merChristian Hansen CERN BE-ABP
Christian Hansen CERN BE-ABP LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision LHC - Vart, Varför och Hur? Acceleration och Gruppering Böjning Fokusering Kollision 1952
Läs merVågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Läs merLösningar till problem del I och repetitionsuppgifter R r 0 A 13
Lösningar till problem del I och repetitionsuppgifter 03 Problem I. 6 0 08 Beräkna kärnradien hos 8O8, 50 Sn70 och 8 Pb6. Använd r 0 =, fm. L I. Enligt relation R r 0 A 3 får vi R. 6 3 3. 0 fm, R. 0 /
Läs merFöreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1
Föreläsning 6 Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan Fk3002 Kvantfysikens grunder 1 Betrakta ett experiment med opolariserade elektroner dvs 50% är spinn-upp och 50%
Läs merFysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Lördagen den 9:e juni 2007, kl. 08:00 12:00 Fysik del B2 för tekniskt
Läs merVågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 9 Vågrörelselära & Kvantfysik, FK00 9 januari 0 Problem 4.3 En elektron i vila accelereras av en potentialskillnad U = 0 V. Vad blir dess de Broglie-våglängd? Elektronen tillförs den kinetiska
Läs mer11 Kärnfysik LÖSNINGSFÖRSLAG. 11. Kärnfysik. 3, J 3, ev 1,9 ev. c 3, E hc. 5, m 0,36 pm. hc 1, m 1,43 pm
11 Kärnfysik 1101-1102. Se lärobokens facit. c 3,0 108 1103. a) f Hz 4,6 10 14 Hz 65010 9 b) E hf 6,6310 34 4,610 14 J 3,1 10 19 J 3,110 19 J 3,11019 ev 1,9 ev 1,6 1019 Svar: a) 4,6 10 14 Hz b) 3,1 10
Läs merBFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin 13. Kärnfysik Föreläsning 13. Kärnfysik 2
Föreläsning 13 Kärnfysik 2 Sönderfallslagen Låt oss börja med ett tankeexperiment (som man med visst tålamod också kan utföra rent praktiskt). Säg att man kastar en tärning en gång. Innan man kastat tärningen
Läs mer