Forskningsmetodik Lektion 8 Systematiska och statistiska fel

Storlek: px
Starta visningen från sidan:

Download "Forskningsmetodik Lektion 8 Systematiska och statistiska fel"

Transkript

1 1 Forskningsmetodik Lektion 8 Systematiska och statistiska fel Per Olof Hulth hulth@physto.se Föreläsning 8 Forskningsmetodik Noggrannhet och precision Föreläsning 8 Forskningsmetodik

2 2 Gravitationenskonstanten G F = G m 1 m 2 R 2 Henry Cavendish ( ) mätte gravitationskonstanten G med en torsionsbalansexperiment. Föreläsning 8 Forskningsmetodik Historiska data - bestämning av G (viktade medelvärden) NO. EXPERIMENTER DATE METHOD VALUE OF G x 10 8 dynecm Error REF 2 2 /gm 1. Cavendish 1798 static torsion , Reich #1838 static torsion , Baily #1843 static torsion , Cornu/Baille 1872 static torsion , Jolly #1873 Jolly balance , Eotvos 1886 static torsion , Richarz/K-Menzel 1888 Jolly balance , Wilsing #1889 Jolly balance , Poynting 1891 Jolly balance , Boys 1895 static torsion , Braun 1895 dynamic torsion , Richarz/K-Menzel 1896 Jolly balance , Braun 1897 dynamic torsion , Burgess #1901 dynamic torsion Heyl 1930 dynamic torsion , Zahradnicek 1933 dynamic torsion , Heyl/Chrzanowski 1942 dynamic torsion , Rose et. al rotating table , Pontikis 1972 resonance torsion , Renner 1973 dynamic torsion , Karagioz 1976 dynamic torsion , Rose et. al rotating table , Sagitov 1977 dynamic torsion , Stacey et. al geophysical , Luther/Towler 1981 dynamic torsion , Föreläsning 8 Forskningsmetodik Tabellen till höger visar resultaten från olika bestämningar av gravitationskonstanten G. Bestämningen har skett med flera olika metoder och under lång tid. Källa: org/setterfield/report.html

3 3 Viktad anpassning till G G ur föregående tabell (utom de som är markerade med #) plottade på en tidsaxel. Vi noterar mätvärden med stora fel och flera med mycket små fel. Det beräknade felet i det viktade medelvärdet är för litet med hänsyn till hur data sprids kring medelvärdet. Oviktat medelvärde med medelvärdesfel kan beräknas till 6,658 ± 0,011 med ett mer rimligt fel (vi tar då på sätt och vis då även hänsyn till (eventuella) systematiska fel i mätningarna). Föreläsning 8 Forskningsmetodik Med reducerad statistik I Här har vi tagit bort mätningar med stora fel. Det beräknade felet i det viktade medelvärdet är även här för litet med Hänsyn till hur data sprids kring medelvärdet. Oviktat medelvärde med medelvärdesfel kan beräknas till 6,6701 ± 0,0029 Föreläsning 8 Forskningsmetodik

4 4 Med reducerad statistik II Här har vi tagit bort mätningar med mycket små fel som låg långt från medelvärdet (systematiska fel?). En generell metod för detta anges lite längre fram. Det beräknade felet i det viktade medelvärdet är även här litet och synes ge ett för litet fel. Det oviktade medelvärde med medelvärdesfel kan beräknas till 6,6743 ± 0,0076 eller avrundat 6,674 ± 0,008 ett värde som ligger mycket nära det nominella. Föreläsning 8 Forskningsmetodik En mätnings tidutveckling Mätning av en naturkonstant i den bästa av alla världar: -Tidiga mätningar behäftade med stora fel -Spridning i proportion till felen -Med ny teknik minskar felen -Och konvergerar mot ett gränsvärde Föreläsning 8 Forskningsmetodik

5 5 Ny sida Hur fort går ljuset? Seriösa mätningar från början av 1700-talet! Ljushastigheten avtar till synes med tiden fram till 1940! Föreläsning 8 Forskningsmetodik Definierad C = m/s Föreläsning 8 Forskningsmetodik

6 6 Hubblekonstanten I Bestämning av Hubble konstanten hastighet = H avståndet som funktion av tiden Föreläsning 8 Forskningsmetodik Hubblekonstanten II Bestämning av Hubble konstanten i hastighet = H x avståndet som funktion av tiden WMAP 71 (km/sec)/mpc, +0.04/ Föreläsning 8 Forskningsmetodik

7 7 Pullfördelningen Mätningen av tyngdaccelerationen: Inför chi-variabel (pull): Plotta alla mätta g-värden med sina fel och pullfördelningen: χ i = x i x σ i Låt oss utesluta alla mätningar med χ > 5 χ i Föreläsning 8 Forskningsmetodik års data: pull < 5! Ett nytt medelvärde beräknas: g = 9,755 ± 0,026 m/s 2. Relativa felet = 0,27% Avvikelse från nominellt värde = -0,043 eller -1,7σ I den föregående bilden är motsvarande siffror 0,08% och -15σ, ett opålitligt resultat eftersom data innehåller inkoncistenta mätningar. Föreläsning 8 Forskningsmetodik

8 8 Analys av en mätövning Fallstudie: Pullfördelningen kan med fördel användas vid enklare felsökningar i data. 43 studenter mätte 48 resistorer med hjälp av volt-ampere metoden. Resistansen beräknades genom R=U/I och felet i R genom felpropagering. Varje student mätte flera resistorer och varje resistor mättes av flera studenter pull 6,8,9,10,35,40,43,44,45,48 ser alla skumma ut! Föreläsning 8 Forskningsmetodik Analys av pullfördelningen (resistor nummer 2) Felaktig datapunkt Vi plottar här resistor Nr 2 som funktion av Student. Vi ser att Student 41 har tydligen en avvikande mätning och vi går till databasen för att se efter vad som hänt: Vi ser att studenten har angett A i.st.f ma som var antaget (för alla sina tilldelade resistorer). Föreläsning 8 Forskningsmetodik

9 9 Analys av pullfördelningen (efter korrektion) Dessa ser nu relativt OK ut! Alla resistorer som student 2 mätt påverkas efter denna korrektion (föregående sida) och pullfördelningen för resistor 2 ser nu helt OK ut och är nära normalfördelad med medelvärde och standardavvikelse nära 0 resp. 1. Föreläsning 8 Forskningsmetodik

Forskningsmetodik 2006 lektion 2

Forskningsmetodik 2006 lektion 2 Forskningsmetodik 6 lektion Per Olof Hulth hulth@physto.se Slumpmässiga och systematiska mätfel Man skiljer på två typer av fel (osäkerheter) vid mätningar:.slumpmässiga fel Positiva fel lika vanliga som

Läs mer

Lektion 5. Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys

Lektion 5. Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys Lektion 5 Analys av en mätövning Några problem ur boken Demolabben Systematiska fel Enheter sammanfattning Dimensionsanalys 005-10-04 Fysikexperiment, 5p 1 Pullfördelningen Mätningen av tyngdaccelerationen:

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Experimentella metoder 2014, Räkneövning 1

Experimentella metoder 2014, Räkneövning 1 Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9

Läs mer

Forskningsmetodik 2006 Lektion 3

Forskningsmetodik 2006 Lektion 3 Forskningsmetodik 6 Lektion Att tänka på i en mätsituation Per Olof Hulth Längden hos studenterna på forskningsmetodik : 76 8 6 6 7 6 7 67 7 8 7 7 7 6 6 77 8 6 6 7 Det blir litet överskådligare om vi ordnar

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment

Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?

Läs mer

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6. Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.

Läs mer

Experimentella metoder 2013, Räkneövning 3

Experimentella metoder 2013, Räkneövning 3 Experimentella metoder 2013, Räkneövning 3 Problem 1: Fem studenter mätte längden av ett rum, deras resultat blev 3,30 m, 2,90 m, 3,70 m, 3,50 m, och 3,10 m. Inga uppgifter om mätnoggrannheten är kända.

Läs mer

Kundts rör - ljudhastigheten i luft

Kundts rör - ljudhastigheten i luft Kundts rör - ljudhastigheten i luft Laboration 4, FyL VT00 Sten Hellman FyL 3 00-03-1 Laborationen utförd 00-03-0 i par med Sune Svensson Assisten: Jörgen Sjölin 1. Inledning Syftet med försöket är att

Läs mer

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14.

Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Stockholms Universitet Fysikum Tentamensskrivning i Experimentell fysik för lärare 7.5 hp, för FK2004. Onsdagen den 14 december 2011 kl 9-14. Skrivningen består av tre delar: A, B och C. Del A innehåller

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen

Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen Sannolikhetslära och inferens II Kapitel 7 Samplingfördelningar och Centrala gränsvärdessatsen 1 Statistikor och samplingfördelningar I Kapitel 6 studerades metoder för att bestämma sannolikhetsfördelningen

Läs mer

Metodutvärdering I. Metodutvärdering -validering. Metodutvärdering II. Metodutvärdering III

Metodutvärdering I. Metodutvärdering -validering. Metodutvärdering II. Metodutvärdering III Metodutvärdering I Metodutvärdering -validering Nya metoder utvecklas för att Förbättra noggrannhet och precision Tillåta automation Minska kostnader Arbetsmiljö Bestämning av ny analyt Metoden måste verifieras

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Hur skriver man statistikavsnittet i en ansökan?

Hur skriver man statistikavsnittet i en ansökan? Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Lösningar 15 december 2004

Lösningar 15 december 2004 Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder

Läs mer

Ingenjörsmetodik IT & ME 2010 Föreläsning 5

Ingenjörsmetodik IT & ME 2010 Föreläsning 5 Ingenjörsmetodik IT & ME 010 Föreläsning 5 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Frågor från

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen akut och kronisk variation.

Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen akut och kronisk variation. 5. Kontrolldiagram Variation Tillverkade produkter uppvisar variation. Kvalitetsökning en minskning av dessa variationer. Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen

Läs mer

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1

Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:

Läs mer

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007

MEKANIK LABORATION 1 REVERSIONSPENDELN. FY2010 ÅK2 vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 23 april 2007 MEKANIK LABORATION 1 REVERSIONSPENDELN FY2010 ÅK2 vårterminen 2007 Mål En viktig applikation av en enkel

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

Föreläsning 4. Kapitel 5, sid Stickprovsteori

Föreläsning 4. Kapitel 5, sid Stickprovsteori Föreläsning 4 Kapitel 5, sid 127-152 Stickprovsteori 2 Agenda Stickprovsteori Väntevärdesriktiga skattningar Samplingfördelningar Stora talens lag, Centrala gränsvärdessatsen 3 Statistisk inferens Population:

Läs mer

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.

Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa. Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

LMA522: Statistisk kvalitetsstyrning

LMA522: Statistisk kvalitetsstyrning Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Fuktighet i jordmåner. Variansanalys (Anova) En statistisk fråga. Grafisk sammanfattning: boxplots

Fuktighet i jordmåner. Variansanalys (Anova) En statistisk fråga. Grafisk sammanfattning: boxplots Fuktighet i jordmåner Variansanalys (Anova) Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 A 1 A 2 A 3 12.8 8.1 9.8 13.4 10.3 10.6 11.2 4.2 9.1 11.6 7.8 4.3 9.4 5.6 11.2 10.3

Läs mer

STATISTISK POWER OCH STICKPROVSDIMENSIONERING

STATISTISK POWER OCH STICKPROVSDIMENSIONERING STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd

Läs mer

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1

Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1 Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Styrelsens för teknisk ackreditering författningssamling

Styrelsens för teknisk ackreditering författningssamling Styrelsens för teknisk ackreditering författningssamling ISSN 1101-7805 Utgivare: Erik Hansson STAFS 1993:16 Utkom från trycket 1994-01-8 Styrelsens för teknisk ackreditering särskilda föreskrifter om

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Laboration 1: Gravitation

Laboration 1: Gravitation Laboration 1: Gravitation Inledning Försöket avser att påvisa gravitationskraften och att bestämma ett ungefärligt värde på gravitationskonstanten G i Newtons gravitationslag, m1 m F = G r Lagen beskriver

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Forskningsmetodik 2006 lektion 4 Felkalkyl. Per Olof Hulth

Forskningsmetodik 2006 lektion 4 Felkalkyl. Per Olof Hulth Forskningsmetodik 006 lektion 4 Felkalkyl Per Olof Hult Hult@pysto.se Föreläsning 4 Forskningsmetodik 007 Felkalkyl Ofta mäter man inte direkt den storet som är den intressanta, utan en grundläggande variael

Läs mer

Föreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 6. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 6 Statistik; teori och tillämpning i biologi 1 Analysis of Variance (ANOVA) (GB s. 202-218, BB s. 190-206) ANOVA är en metod som används när man ska undersöka skillnader mellan flera olika

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

i medelvärdet

i medelvärdet 1. Medelvärde, standardavvikelse och felet i medelvärdet Antag att vi har N mätningar x 1,x,...,x N av en och samma storhet x. Under antagandet att alla avvikelser från medelvärdet är statistiska och små

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Repetition Vad vi gjort hitills Vi har börjat med att studera olika typer av mätningar och sedan successivt tagit fram olika beskrivande mått

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Del A Begrepp och grundläggande förståelse.

Del A Begrepp och grundläggande förståelse. STOCKHOLMS UIVERSITET FYSIKUM Tentamensskrivning i Experimentella metoder, 1 hp, för kandidatprogrammet, år 1 Fredagen den 9 maj 008 kl 9-15. S.H./K.H./K.J.-A./B.S. Införda beteckningar bör förklaras och

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

Medelvärde, median och standardavvikelse

Medelvärde, median och standardavvikelse Medelvärde, median och standardavvikelse Detta är en enkel aktivitet där vi på ett dynamiskt sätt ska titta på hur de statistiska måtten, t.ex. median och medelvärde ändras när man ändar ett värde i en

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

FYD101 Elektronik 1: Ellära

FYD101 Elektronik 1: Ellära FYD101 Elektronik 1: Ellära Laboration 1: Grundläggande instrumenthantering Förberedelse: Du måste känna till följande Ström- och spänningsriktig koppling vid resistansmätning Hur ett digitalt instruments

Läs mer

LMA521: Statistisk kvalitetsstyrning

LMA521: Statistisk kvalitetsstyrning Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens

Läs mer

Extrauppgifter - Statistik

Extrauppgifter - Statistik Extrauppgifter - Statistik Uppgifter 1. Den stokastiska variabeln Y t 10 ). Bestäm c så att P ( c < Y < c) = 2. Vid tillverkning av en viss sorts färg tillsätts färgpigmentet med hjälp av en doseringsapparat,

Läs mer

Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen

Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen Tillämpad matematisk statistik LMA522 (maskin/mekatroniks kurs) Tentamen 2019-03-18 Tid: 8.30-12.30. Tentamensplats: Lindholmen Hjälpmedel: Kursboken Matematisk Statistik av Ulla Dahlbom. Formelsamlingen

Läs mer

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13

Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13 Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare

Läs mer

Deskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Deskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Deskriptiv statistik Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Deskriptiv statistik Tabeller Figurer Sammanfattande mått Vilken

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

Finansiell statistik, vt-05. Kontinuerliga s.v. variabler. Kontinuerliga s.v. F7 Kontinuerliga variabler

Finansiell statistik, vt-05. Kontinuerliga s.v. variabler. Kontinuerliga s.v. F7 Kontinuerliga variabler 5 45 4 5 5 5 5 Öppningskurs 5 9 7 5 9 7 4 45 49 5 57 6 65 abb Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 Kontinuerliga variabler Kontinuerliga s.v.

Läs mer

Tentamen den 20 oktober TEL108 Introduktion till EDI-programmet. TEL118 Inledande elektronik och mätteknik. Del 1

Tentamen den 20 oktober TEL108 Introduktion till EDI-programmet. TEL118 Inledande elektronik och mätteknik. Del 1 Karlstads universitet / Elektroteknik / TEL108 och TEL118 / Tentamen 031020 / BHä 1 (5) Tentamen den 20 oktober 2003 TEL108 Introduktion till EDI-programmet TEL118 Inledande elektronik och mätteknik Del

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 entamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN0/MS070 isdag 007-04-0, klockan 4.00-8.00 Examinator: Holger Rootzén elefonjour: Jan Rohlén, tfn: 0708-579548 Betygsgränser G: G: -.5, VG:

Läs mer

Laboration 1 Mekanik baskurs

Laboration 1 Mekanik baskurs Laboration 1 Mekanik baskurs Utförs av: William Sjöström Oskar Keskitalo Uppsala 2014 11 27 Introduktion När man placerar ett föremål på ett lutande plan så kommer föremålet att börja glida längs med planet,

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Tentamen FYTA11 Javaprogrammering

Tentamen FYTA11 Javaprogrammering Lunds universitet FYTA11 Institutionen för Astronomi och Teoretisk fysik HT 12 Tentamen FYTA11 Javaprogrammering Onsdag 9 januari 2013, 10:15 14:15 Instruktioner Hjälpmedel: Papper och penna. Behandla

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

Vad är rätt och vad är fel?

Vad är rätt och vad är fel? Vad är rätt och vad är fel? Inledning - Mikael Lilje, Lantmäteriet I vår verksamhet ingår troligen att vi utnyttjar inmätt geografisk information. För att kunna hantera informationen på ett så korrekt

Läs mer

7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00

7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00 Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober

Läs mer

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

faderns blodgrupp sannolikheten att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 2015 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt, tel 790 8649. Tillåtna hjälpmedel:

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Statistiskt säkerställande av skillnader

Statistiskt säkerställande av skillnader Rapport Statistiskt säkerställande av skillnader Datum: Uppdragsgivare: 2012-10-16 Mindball Status: DokumentID: Slutlig Mindball 2012:2, rev 2 Sammanfattning Totalt 29 personer har tränat med koncentrationshjälpmedlet

Läs mer

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski

SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016

Läs mer

Bestämning av noggrannhet och precision på några olika kärl samt Statistiska undersökningar

Bestämning av noggrannhet och precision på några olika kärl samt Statistiska undersökningar Umeå Universitet Biomedicinsk analytikerprogrammet Bestämning av noggrannhet och precision på några olika kärl samt Statistiska undersökningar Kurs: BMA 11 Laborationsrapport i kursen: Grundläggande laboratorievetenskap

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Arbeta med normalfördelningar

Arbeta med normalfördelningar Arbeta med normalfördelningar I en större undersökning om hur kvinnors längd gjorde man undersökning hos kvinnor i ett viss åldersintervall. Man drog sedan ett slumpmässigt urval på 2000 kvinnor och resultatet

Läs mer

Uppgift 1. f(x) = 2x om 0 x 1

Uppgift 1. f(x) = 2x om 0 x 1 Avd. Matematisk statistik TENTAMEN I Matematisk statistik SF1907, SF1908 OCH SF1913 TORSDAGEN DEN 30 MAJ 2013 KL 14.00 19.00. Examinator: Gunnar Englund, 073 321 3745 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN): Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):

Läs mer

Övningsuppgifter till Originintroduktion

Övningsuppgifter till Originintroduktion UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft

Läs mer

Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval

Urval. Slumpmässiga urval (sannolikhetsurval) Fördelar med slumpmässiga urval Urval F3 Urvalsmetoder: Sannolikhetsurval resp. icke-sannolikhetsurval, OSU (kap 9.1-9.4) Ursprung: Linda Wänström Anta att vi ska göra en urvalsunderökning och samla in primärdata Totalundersökning ofta

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 17 december 2008 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

Kursnamn: Vetenskapsteori och grundläggande forskningsmetod

Kursnamn: Vetenskapsteori och grundläggande forskningsmetod KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Ansvarig lärare: Magnus Lindwall Tentamensdatum: 2014-02-18 kl. 13:30 17:30 Tillåtna hjälpmedel: Miniräknare Tentan består

Läs mer

Styr- och kontrolldiagram ( )

Styr- och kontrolldiagram ( ) Styr- och kontrolldiagram (8.3-8.5) När vi nu skall konstruera kontrolldiagram eller styrdiagram är det viktigt att vi har en process som är under kontroll! Iden med styrdiagram är att med jämna tidsmellanrum

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Statistisk försöksplanering

Statistisk försöksplanering Statistisk försöksplanering Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Skriftlig tentamen 3 hp 51SF01 Textilingenjörsutbildningen Tentamensdatum: 2 November Tid: 09:00-13 Hjälpmedel: Miniräknare

Läs mer

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E

Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare

Läs mer

Statistisk undersökning och jämförelser mellan några volumetriska kärl. XXXXXXX

Statistisk undersökning och jämförelser mellan några volumetriska kärl. XXXXXXX Statistisk undersökning och jämförelser mellan några volumetriska kärl. XXXXXXX Prov för nivå Väl Godkänd i statistik/kvalitetskontroll 1c) Gör de beräkningar som krävs för bestämning av validitet och

Läs mer

Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen

Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll

Läs mer