LABORATION 6 Astigmatism och Distorsion
|
|
- Ida Lundgren
- för 6 år sedan
- Visningar:
Transkript
1 LABORATION 6 Astigmatism och Distorsion Personnummer Namn Laborationen godkänd Datum Assistent 1 (5)
2 LABORATION 6: Astigmatism och Distorsion Att läsa i kursboken: sid , , Förberedelseuppgifter Vad labben går ut på: Utrustning: 3 st, se nedan. Skall vara gjorda före labtillfället. Uppmätning av axiell astigmatism samt cylinderaxel i torisk lins. Undersökning av sned astigmatism och distorsion i enkel sfärisk lins. Mätning av fokallängd samt karaktärisering av distorsion och astigmatism i progressiv lins. Halogenlampskälla. Planokonvexa linser +5 D, +10 D Toriskt glasögonblank Progressiv lins Apertur (platta med ett hål) Retikel med fingraderad skala Aluminiumplatta med hålmönster Skärm med millimeterskala, skena, ryttare, hållare etc. Tumstock, papper, diffusor tejp, dubbelhäftande tejp, sax Teori I de flesta linser uppträder linsfelen astigmatism och distorsion. I den här laborationen skall du få mäta dessa aberrationer i både en enkel sfärisk lins och i en progressiv lins. Dessutom ska du karaktärisera den axiella astigmatismen i en torisk lins. I det inledande teoriavsnittet nedan beskriver vi först axiell astigmatism och de två aberrationerna. Sedan behandlas progressiva linser och svårigheterna med att få dessa aberrationsfria. Axiell astigmatism Axiell astigmatism uppkommer när linsytan inte är cirkulärsymmetrisk. Denna typ av ytor kallas för toriska och är tillverkade med olika krökningsradie, och därigenom olika brytkraft, i de två huvudsnitten. Ett strålknippe som faller in mot en torisk lins bryts inte ihop i en enda punkt utan i två olika linjer som ligger på olika ställen, enligt Fig. 1. Fig. 1. Avbildning i torisk lins. 2 (5)
3 FÖRBEREDELSEUPPGIFT 1: Hur ser bilderna ut och var hamnar de om ett avlägset punktobjekt avbildas genom en torisk lins med receptet +3 D sfär, 2D cylinder, axel 180? Aberrationerna astigmatism och distorsion Bilden av ett punktformigt objekt i ett linssystem blir aldrig helt punktformig. Avbildningsfel, s.k. aberrationer, förorsakar en utsmetning av bilden. Det förekommer en rad olika aberrationer, och en del av dem har redan behandlats i laboration 5. Vi skall här koncentrera oss på fältaberrationerna astigmatism och distorsion. Astigmatism i en vanlig sfärisk lins beror på asymmetrin i uppställningen då strålar faller in i vinkel mot optiska axeln (s.k. sned/radiell astigmatism). Antag att ett objekt vid sidan av optiska axeln skall avbildas. Infallsplanet, det vill säga det plan som innehåller bildpunkten för centrala strålar och den optiska axeln, kallas för meridionalplanet eller tangentialplanet. Linsens s.k. sagittalplan innehåller huvudstrålen och ligger vinkelrätt mot tangentialplanet. Strålar som utgår från objektet och som ligger i tangentialplanet ser en annan krökning än motsvarande strålar som ligger i linsens sagittalplan, och får därför en något annan fokallängd. Vid fokusering av strålar utgående från ett punktformigt objekt får man två foki i form av linjer. I det sagittala fokus har de tangentiala strålarna inte fokuseras, och man får därför en linje utdragen i tangentialplanet riktning istället för en punkt. På motsvarande sätt utgörs det tangentiala fokus av en linje i sagittalplanet. FÖRBEREDELSEUPPGIFT 2: Hur kommer bilden av en punkt från en sfärisk lins med radiell astigmatism förändras när bildplanet förskjuts mellan det sagittala och det tangentiala fokus? Fig i läroboken kan vara till hjälp. Distorsion yttrar sig i att bilden av ett kvadratiskt objekt blir deformerat. Kantlinjerna i bilden buktar antingen lite inåt eller lite utåt. I tunna linser förekommer ingen distorsion, men om en bländare placeras i ett annat plan än linsen själv uppträder effekten. Fig. 2 visar strålgången för en tunn lins med bländare. Vid avbildning utan bländare går den centrala strålen genom linsens mitt och träffar bildplanet i P. Bildplanet är det plan som innehåller bildpunkten vid paraxial avbildning av axiala punktformiga objekt. På grund av sfärisk aberration ligger den egentliga konvergenspunkten för ett strålknippe från ett utomaxialt objekt en bit framför bildplanet. Den centrala strålen genom bländaren går inte längre genom linsens mitt och träffar därför bildplanet i punkten P' d istället för P. Den något breddade bildpunkten kommer därför få sitt centrum lite förskjutet, och förstoringen ändras därmed för utomaxiala objekt. Om förstoringen ökar med avståndet från linsens mitt får man utdragna hörn och inåtbuktande kantlinjer på bilden av ett kvadratiskt objekt, s.k. kuddformig distorsion (eng. pincushion distortion), om förstoringen minskar får man utåtbuktande kantlinjer, s. k. tunnformig distorsion (eng. barrel distortion). 3 (5)
4 P AS h' h' d P' P' d Fig. 2. Distorsion i tunn lins med bländare. FÖRBEREDELSEUPPGIFT 3: Distorsionen kan definieras som h' h', där h ' är det förväntade avståndet från optiska axeln för en punkt och ' d d h det verkliga avståndet. Storheten brukar anges för den maximalt tillåtna infallsvinkeln. Föreslå hur man skall mäta h ' och h. ' d Progressiva linser Progressiva linser är linser med en successiv förändring av brytkraften över linsens yta. Dessa linser har kommit till användning i glasögon för att kompensera för ögats oförmåga att adaptera ögonlinsen till nära objekt (ackommodation). Problemet kallas presbyopi och uppträder hos alla människor vid hög ålder. Normalt görs progressiva linser så att övre delen avpassas för fjärrseende, och man har sedan en mjuk övergång till den mer positiva nedre delen som utnyttjas för närseendet (vid negativ avståndskorrektion görs nederdelen med svagare negativ brytkraft), se Fig i läroboken. Ett problem med progressiva linser är att linsytan inte är sfärisk, och man kan därför aldrig göra linserna helt fria från astigmatism och distorsion. INSTRUKTIONER 1. Gör en förstorande avbildning (ca 2 ggr) av aluminiumplattan med hålmönster med hjälp av den sfäriska +5 D linsen (vänd linsen rätt). Objektet (hålmönstret) belyses lämpligen diffust med lampan genom att sätta tejp på objektet. Se till att den mittersta punkten i mönstret verkligen ligger på optiska axeln i systemet. Placera den toriska glasögonlinsen direkt bakom den sfäriska +5 D linsen och hitta de två bildplanen. Mät upp bildplanens lägen och räkna ut cylinderstyrkan för den toriska linsen. Rotera den toriska linsen så att dess cylinderaxel ligger horisontellt (180). Tips: Titta på hur de linjeformade bilderna vrider sig när du roterar linsen eller titta på kanten på den toriska linsen för att hitta cylinderaxeln. 2. Ta bort den toriska linsen och hitta den skarpa bilden för den sfäriska +5 D linsen. Vrid linsen ca 30 grader och studera aberrationen sned astigmatism som då uppkommer. Mät upp sagittal och tangential styrka. Jämför med teoretiskt beräknade värden. 3. Sätt nu ett litet hål med diffusor (tejp) framför lampan. Använd den sfäriska +10 D linsen felvänd för att göra en avbildning av retikelskalan (rutnät) med ca. fem ggr. förstoring. Rita en figur motsvarande Fig. 2 ovan och förklara varför och vilken typ 4 (5)
5 av distorsion man får. Mät upp distorsionen och ange i mm och för maximalt bildfält. Hur förändras distorsionen om du vänder linsen? Varför? 4. Gör en förstorande avbildning (ca 2 ggr) av aluminiumplattan med hålmönster med hjälp av den progressiva linsen. Mät upp linsens addition (d.v.s. skillnaden i brytkraft mellan fjärr och närdel) genom att sätta ett hål framför den del av linsen som ska mätas. Undersök även den axiella astigmatismen och distorsionen i de olika delarna av linsen (delen för fjärrseende, närdelen, samt vid sidan av närdelen i linsen). 5 (5)
LABORATION 5 Aberrationer
LABORATION 5 Aberrationer Personnuer Nan Laborationen godkänd Datu Assistent Kungliga Tekniska högskolan BIOX 1 (5) LABORATION 5: ABERRATIONER Att läsa i kursboken: sid. 233-248, 257-261, 470-472, 480-485,
LABORATION 1 AVBILDNING OCH FÖRSTORING
LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se
LABORATION 2 MIKROSKOPET
LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX (5) Att läsa före lab: LABORATION 2 MIKROSKOPET Synvinkel, vinkelförstoring, luppen och
LABORATION 5 Aberrationer
LABORATION 5 Aberrationer Personnuer Nan Laborationen godkänd Datu Assistent Kungliga Tekniska högskolan BIOX 1 (5) LABORATION 5: ABERRATIONER Att läsa i kursboken: sid. 233-248, 257-261, 470-472, 480-485,
LABORATION 2 MIKROSKOPET
LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX 1 (6) LABORATION 2 MIKROSKOPET Att läsa i kursboken: sid. 189-194 Förberedelseuppgifter:
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1 2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från vänster, sträcka i ljusets riktning = positiv
Avbildningskvalitet Föreläsning 1-2: Sfärisk aberration och koma Repetition: brytning och avbildning i sfärisk yta och tunn lins Figur 1: Figur 3.12 och 3.18 i Optics. Teckenkonventionen: ljus in från
Hittills har vi bara använt sfäriska ytor, dvs delar av en sfär. Plana ytor är specialfall av sfär (oändlig krökningsradie, r= ).
Föreläsning 5 Astigmatism Hittills har vi bara använt sfäriska ytor, dvs delar av en sfär. Plana ytor är specialfall av sfär (oändlig krökningsradie, r= ). Men det finns andra ytor än sfäriska, t.ex. Toriska
Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv
1 Avbildningskvalitet Föreläsning 1-2 Brytning i sfärisk yta Teckenkonventionen: ljus in från vänster, ljusets riktning = positiv Brytningslagen (Snells lag): n sin i = n sin i Paraxial approximation (vid
Föreläsning 8: Linsdesign
1 Föreläsning 8: Linsdesign Linsdesign Att välja linser med rätt krökningsradier på ytorna och av rätt material. Förutom paraxiala egenskaper såsom objekt- och bildavstånd och förstoring, så ställs andra
Föreläsning 11 (kap i Optics)
45 Föreläsning 11 (kap 5.7-5.8 i Optics) Hittills har vi behandlat avbildningen i sig, dvs. var bilden av ett objekt hamnar och vilken förstoring det blir. Det finns också andra krav man kan ställa på
Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser.
Föreläsning 7 Kromatisk aberration Eftersom brytningsindex n ändras med våglängden (färgen) kommer olika färger hos ljuset att brytas olika genom prismor och linser. Dispersion: n ändras med våglängden
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen
Figur 6.1 ur Freeman & Hull, Optics
1 Föreläsning 12 Kameran Figur 6.1 ur Freeman & Hull, Optics Kameran är ett instrument som till vissa delar fungerar mycket likt ett öga. Kamerans optik, det så kallade kameraobjektivet, motsvarar ögats
Robert Rosén Recept för beräkning av huvudplan Frågeställning: Hur hittar man främre och bakre fokalpunkt, samt huvudplan (både för tjocka linser och system av tunna linser)? Varför skall huvudplan räknas?
Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!
Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien
Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!
Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien
Föreläsning 9 10: Bildkvalitet (PSF och MTF)
1 Föreläsning 9 10: Bildkvalitet (PSF och MTF) Att mäta bildkvalitet Bildkvaliteten påverkas av både aberrationer och diffraktion, men hur ska vi mäta den? Enklast är att avbilda ett objekt beskriva hur
Mätning av fokallängd hos okänd lins
Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och
Att räkna med mellanbilder genom ett system med många linser och gränsytor blir krångligt. Vi vill kunna avbilda genom alla ytor direkt.
Föreläsning 9 0 Huvudplan Önskan: Tänk om alla optiska system vore tunna linser så att alltid gällde! Att räkna med mellanbilder genom ett system med många linser och gränsytor blir krångligt. Vi vill
3) Sag formeln ger r=y 2 /(2s). y=a/2=15 mm, s=b c=4,5 mm ger r=25 mm. Då blir F=(n 1)/r=(1,5 1)/0,025=20 D
Facit: en avbildning Sfärisk gränsyta 1) l= 2,0 mm, n=4/3 och n =1. m=l/l =nl /(n l)=1,25 ger l = 1,875 mm. Avbildningsformeln för sfärisk gränsyta L =L+(n n)/r ger r= 2,5 mm. 2) Bilden måste hamna på
Lösningarna inlämnas renskrivna vid laborationens början till handledaren
Geometrisk optik Förberedelser Läs i vågläraboken om avbildning med linser (sid 227 241), ögat (sid 278 281), färg och färgseende (sid 281 285), glasögon (sid 287 290), kameran (sid 291 299), vinkelförstoring
Instrumentoptik, anteckningar för föreläsning 4 och 5 (CVO kap. 17 sid , ) Retinoskopet
Instrumentoptik, anteckningar för föreläsning 4 och 5 (CVO kap. 17 sid 345-353, 358-362) Retinoskopet Utvecklat från oftalmoskopi under slutet av 1800-talet. Objektiv metod för att bestämma patientens
Föreläsning 9-10 (kap i Optics)
38 Föreläsning 9-0 (kap 5.-5.6 i Optics) Huvudplan Önskan: Tänk om alla optiska system vore tunna linser så att L = L + F alltid gällde! Att räkna med mellanbilder genom ett system med många linser och
Föreläsning 9-10: Bildkvalitet (PSF och MTF)
1 Föreläsning 9-10: Bildkvalitet (PSF och MTF) Att mäta bildkvalitet Bildkvaliteten påverkas av både aberrationer och diffraktion, men hur ska vi mäta den? Två vanliga mått är PSF (punktspridningsfunktionen)
Förberedelseuppgift inför datorlaborationen
Förberedelseuppgift inför datorlaborationen Det finns datorprogram som följer strålar genom linssystem. Rätt använda kan de vara extremt kraftfulla verktyg och bespara dig många timmars beräkningar. Datorlaborationen
Projektorobjektiv, MTF, aberrationer i projektorer, skärpedjup, Keystone, Scheimpflugvinkel
Projektorobjektiv, MTF, aberrationer i projektorer, skärpedjup, Keystone, Scheimpflugvinkel Optiken till en projektor ska fylla fem funktioner i. Den ska hand om så stor del av ljuset från lampan (eller
λ = T 2 g/(2π) 250/6 40 m
Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten
Datorlaboration Avbildningskvalitet
Datorlaboration Avbildningskvalitet Datorlaborationenen äger rum i datorsal RB33, Roslagstullsbacken 33 (gula huset närmast busshållplatsen utanför Albanova). Den börjar kl 13.00 (utan kvart). Om möjligt
Geometrisk optik. Laboration
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Geometrisk optik Linser och optiska instrument Avsikten med laborationen är att du ska få träning i att bygga upp avbildande optiska
About the optics of the eye
About the optics of the eye Peter Unsbo Kungliga Tekniska Högskolan Biomedical and x-ray physics Visual Optics Innehåll Optiska begränsningar i ögat Hur mäter man ögats aberrationer? Hur skriver man vågfrontsrecept?
Optik. Inledning. Fig. 1. Hålkameran
Optik Inledning En stor del av den information som vi får från vår omgivning kommer till oss i form av ljus. I ögat omformas denna information till bilder som i hjärnan bearbetas och analyseras. Det sätt
Studieanvisning i Optik, Fysik A enligt boken Quanta A
Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande
Optisk bänk En Virtuell Applet Laboration
Optisk bänk En Virtuell Applet Laboration Bildkonstruktion med linser. Generell Applet Information: 1. Öppna en internet läsare och öppna Optisk Bänk -sidan (adress). 2. Använd FULL SCREEN. 3. När applet:en
Tentamen i Fotonik , kl
FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Geometrisk optik. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Geometrisk optik
Geometrisk optik Innehåll Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande 1. Undersökning av tunna positiva linser... 3 2. Undersökning av tunna negativa linser... 3 3. Galileikikaren...
Datorlaboration Avbildningskvalitet
Datorlaboration Avbildningskvalitet Datorlaborationenen äger rum i datorsal RB33, Roslagstullsbacken 33 (gula huset närmast busshållplatsen utanför Albanova). Den börjar kl 13.00 (utan kvart). Om möjligt
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Exempelsamling i Ögats optik
Exempelsamling i Ögats optik 1. Ett reducerat öga har n =1.336, F=62 och längden 26,2 mm. Vilken av följande linser fungerar bäst för a) avståndsseende och b) närarbete (0,5 m)? (i) +2 D (ii) -9 D (iii)
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2014 Kontakt: olga. b ylund@ysik.su.se Instruktioner ör redogörelse ör laboration 1: Laboration 1 innehåller em experiment. Varje experiment bör presenteras
Optik 1 Geometrisk och fysikalisk optik fo r optiker HT 2019
Optik 1 Geometrisk och fysikalisk optik fo r optiker HT 2019 Optik 1 Innehållsförteckning Föreläsning 1 Vågfronter, strålar och bilder... 1 Föreläsning 2 Reflektion och brytning... 5 Föreläsning 3 Avbildning
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare
v F - v c kallas dispersion
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du:
Om du tittar på dig själv i en badrumsspegel som hänger på väggen och backar ser du: A.Mer av dig själv. B.Mindre av dig själv. C.Lika mycket av dig själv. ⱱ Hur hög måste en spegel vara för att du ska
1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 34 - Optik 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel
Övningstal i Avbildningskvalitet för optikerstuderande. Rita figurer och motivera ordentligt!
Övningstal i Avbildningskvalitet för optikerstuderande Rita figurer och motivera ordentligt! Repetition av geometrisk optik 1. Ett objekt i luft ligger 400 mm innan en sfärisk gränsyta med krökningsradien
Instuderingsfrågor extra allt
Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken
Föreläsning 2 (kap , 2.6 i Optics)
5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen
Geometrisk optik. Laboration FAFF25/FAFA60 Fotonik 2017
Avsikten med denna laboration är att du ska få träning i att bygga upp avbildande optiska system, såsom enkla kikare och mikroskop, och på så vis få en god förståelse för dessas funktion. Redogörelsen
Tentamen i Avbildningskvalitet (SK1302)
Tentamen i Avbildningskvalitet (SK1302) Fredag 8 maj 2015 kl 9-15 Alla hjälpmedel utom sådana som innebär kontakt med andra personer är tillåtna. Svar utan motivering ger inga poäng. I den mån nödvändiga
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2011 Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och relektionslagen 2 4 Linser 2 4.1 Att rita strålgångar........................
Våglära och optik FAFF30 JOHAN MAURITSSON
Våglära och optik FAFF30 JOHAN MAURITSSON Prismor A θ 1 n=1 n n=1 2 Prismor A δ 1 θ 1 θ 1 n=1 n n=1 3 Prismor A θ 2 θ 2 n=1 n n=1 4 Prismor A δ θ 1 θ 1 δ 1 δ 2 B θ 2 θ 2 n=1 n n=1 5 Prismor, dispersion
Optik. Läran om ljuset
Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker
Vad skall vi gå igenom under denna period?
Ljus/optik Vad skall vi gå igenom under denna period? Vad är ljus? Ljuskälla? Reflektionsvinklar/brytningsvinklar? Färger? Hur fungerar en kikare? Hur fungerar en kamera/ ögat? Var använder vi ljus i vardagen
Tentamen Optik, FYSA11, 2012-05-25
Tentamen Otik, FYSA, 0-05-5 Hjälmedel: TEFYMA, ormelsamling, linjal, ickräknare och biogat ormelblad. Glöm inte att beskriva hur du kommer ram till dina svar. Även delvis lösta ugiter kan ge oäng.. Den
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus är elektromagnetiska vågor som rör sig framåt. När vi ritar strålar så
Övning 1 Dispersion och prismaeffekt
Övning 1 Dispersion och prismaeffekt Färg För att beteckna färger används dessa spektrallinjer: Blått (F): λ F = 486.1 nm Gult (d): λ d = 587.6 nm Rött (C): λ c = 656.3 nm (Väte) (Helium) (Väte) Brytningsindex
Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?
1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat
Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion
Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt
Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi
1 Föreläsning 14 och 15: Diffraktion och interferens i gitter, vanliga linser, diffraktiv optik och holografi Ljusets vågnatur Ljus kan ses so elektroagnetiska vågor so rör sig fraåt. När vi ritar strålar
Optik, F2 FFY091 TENTAKIT
Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31
Observera också att det inte går att både se kanten på fönstret och det där ute tydligt samtidigt.
Om förstoringsglaset Du kan göra mycket med bara ett förstoringsglas! I många sammanhang i det dagliga livet förekommer linser. Den vanligast förekommande typen är den konvexa linsen, den kallas också
AstroSwedens mikroskopskola - nybörjarmikroskopi. AstroSwedens mikroskopiskola att använda mikroskop
AstroSwedens mikroskopiskola att använda mikroskop Fenomenet aberration. Varför mikroskop? En ensam lins kan förstora maximalt c:a 5-0 gånger. Ofta slipas dessa linser så enkelt som möjligt vilket gör
Ögonlaboration 1(1) ÖGONLABORATION
Ögonlaboration 1(1) Uppsala Universitet Institutionen för Neurovetenskap, Fysiologi VT 08 GS, LJ För Neural reglering och rörelse ÖGONLABORATION Avsikten med laborationen är att illustrera teoretisk bakgrund
Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00
Tentamen i Fotonik - 2015-08-21, kl. 08.00-13.00 Tentamen i Fotonik 2011 08 25, kl. 08.00 13.00 FAFF25-2015-08-21 FAFF25 2011 08 25 FAFF25 2011 08 25 FAFF25 FAFF25 - Tentamen Fysik för Fysik C och i för
Övning 9 Tenta
Övning 9 Tenta 014-11-8 1. När ljus faller in från luft mot ett genomskinligt material, med olika infallsvinkel, blir reflektansen den som visas i grafen nedan. Ungefär vilket brytningsindex har materialet?
Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00
FAFF25-2013-04-03 Tentamen i Fotonik - 2013-04-03, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och relektionslagen 2 4 Linser 2 4.1 Att rita strålgångar........................
3/19/13. Refraktionslära. Refraktionering. Kontrollera visus. Uppskatta felsynthet. Mätning av sfärisk felsynthet
Refraktionslära Refraktionering Maja Östlund 2013-03-20 Donders metod - Sfär Stråltavla - Korscylinder - Franciscus Cornelis Donders 1818-1889 Kontrollera visus Monokulärt och binokulärt Uppskatta felsynthet
Vågfysik. Geometrisk optik. Knight Kap 23. Ljus. Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion)
Vågfysik Geometrisk optik Knight Kap 23 Historiskt Ljus Newton (~1660): ljus är partiklar ( corpuscles ) ljus (skugga) vs. vattenvågor (diffraktion) Hooke, Huyghens (~1660): ljus är ett slags vågor Young
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var
Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.
CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics
Ljusets polarisation
Ljusets polarisation Viktor Jonsson och Alexander Forsman 1 Sammanfattning Denna labb går ut på att lära sig om, och använda, ljusets polarisation. Efter utförd labb ska studenten kunna sätta upp en enkel
Tentamen i Fotonik , kl
FAFF25-2013-08-26 Tentamen i Fotonik - 2013-08-26, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla
Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva
Polarisation. Abbas Jafari Q2-A. Personnummer: april Laborationsrapport
Polarisation Laborationsrapport Abbas Jafari Q2-A Personnummer: 950102-9392 22 april 2017 1 Innehåll 1 Introduktion 2 2 Teori 2 2.1 Malus lag............................. 3 2.2 Brewstervinklen..........................
MLBINO MLBINO BIFO. Binokulär läsning på kort avstånd. Bifocal ML Bino. Vår instegsmodell
MLBINO Binokulär läsning på kort avstånd ADDItionsomfång: +4 till +20 dioptrier Synfält: 70º total Vikt: 26 34 gram läsavstånd: 25 8 cm Genom att titta på något på kortare avstånd kommer bilden på näthinnan
SK1140, Fotografi för medieteknik, HT14
SK1140, Fotografi för medieteknik, HT14 9 föreläsn. & 3 labbar Kjell Carlsson, föreläsn./kursansvarig kjellc@kth.se Anders Liljeborg, labhandledn. Simon Winter, labhandledn. Vi kommer från Tillämpad fysik,
LABORATION 4 DISPERSION
LABORATION 4 DISPERSION Personnummer Namn Laborationen gokän Datum Assistent Kungliga Tekniska högskolan BIOX (8) LABORATION 4 DISPERSION Att läsa i kursboken: si. 374-383, 4-45 Förbereelseuppgifter: Va
OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten.
Speed of light OBS: Alla mätningar och beräknade värden ska anges i SI-enheter med korrekt antal värdesiffror. Felanalys behövs endast om det anges i texten. 1.0 Inledning Experiment med en laseravståndsmätare
Aquafloat 7x50 WP Compass
Vattentät 7x50 kikare med kompass Artikel 102849 Aquafloat 7x50 WP Compass Instruktion för användning och underhåll Manual Artikel 102849 Uppdaterad Focus Nordic AB Box 55026 400 52 GÖTEBORG INNEHÅLL Allmän
E-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?
Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar
Datorseende. Niels Chr Overgaard Januari 2010
Datorseende Niels Chr Overgaard Januari 2010 Allmänt Föreläsningar: 14x2h, ti 15-17 + to 13-15 Övningar: 7x2h, fr 8-10 Labbar: 4x2h (obligatoriska) Inlämningsuppgifter: 5 stycken (obligatoriska) Projekt:
Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40
Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40 Åsa Bengtsson: asa.bengtsson@fysik.lth.se Emma Persson: tfy15epe@student.lu.se Lärandemål I den här laborationen får Du experimentera med
Anders Giörloff Leg. Optiker
Anders Giörloff Leg. Optiker www.visuellergonomi.se www.foretagsoptikern.se Ögat Ögat Emmetropi - rättsynthet Hyperopi översynthet Myopi - närsynthet 1 Ögat Astigmatism Två fokuspunkter Enkelslipade Bifokala
Oscillerande dipol i ett inhomogent magnetfält
Ú Institutionen för fysik 2014 08 11 Kjell Rönnmark Oscillerande dipol i ett inhomogent magnetfält Syfte Magnetisk dipol och harmonisk oscillator är två mycket viktiga modeller inom fysiken. Laborationens
Polarisation laboration Vågor och optik
Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen
Vågrörelselära & Kvantfysik, FK2002 29 november 2011
Räkneövning 5 Vågrörelselära & Kvantfysik, FK00 9 november 0 Problem 35.9 En dykare som befinner sig på djupet D 3 m under vatten riktar en ljusstråle (med infallsvinkel θ i 30 ) mot vattenytan. På vilket
Läs i vågläraboken om holografi (sid ) och sid 5 17 i detta kompendium.
1 Förberedelser Läs i vågläraboken om holografi (sid 370-372) och sid 5 17 i detta kompendium. Gör följande uppgifter: Lösningarna inlämnas renskrivna vid laborationens början till handledaren för kontroll.
Tentamen TNM061, 3D-grafik och animering för MT2. Onsdag 20/ kl SP71. Inga hjälpmedel
Tentamen TNM061, 3D-grafik och animering för MT2 Onsdag 20/8 2014 kl 14-18 SP71 Inga hjälpmedel Tentamen innehåller 7 uppgifter, vilka tillsammans kan ge maximalt 50 poäng. För betyg G (registreras som
för M Skrivtid i hela (1,0 p) 3 cm man bryningsindex i glaset på ett 2. två spalter (3,0 p)
Tentamen i tillämpad Våglära FAF260, 2016 06 01 för M Skrivtid 08.00 13.00 Hjälpmedel: Formelblad och miniräknare Uppgifterna är inte sorteradee i svårighetsgrad Börja varje ny uppgift på ett nytt blad
Figur 1.1 Skärpedjup i objekt- och bildplanet.
34 VETENSKAP Av Malin Hällstig Sfärisk aberration och skärpedjup Beräkningar och kliniska mätningar En persons skärpedjup beror av en mängd faktorer såsom pupillstorlek, synskärpa och storleken på objektet.
Fysik. Laboration 3. Ljusets vågnatur
Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall
Vi är beroende av ljuset för att kunna leva. Allt liv på jorden skulle ta slut och jordytan skulle bli öde och tyst om vi inte hade haft ljus.
Källa: Fysik - Kunskapsträdet Vi är beroende av ljuset för att kunna leva. Allt liv på jorden skulle ta slut och jordytan skulle bli öde och tyst om vi inte hade haft ljus. Ljusets natur Ljusets inverkan
Ljusets böjning & interferens
... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska
Föreläsning 3: Radiometri och fotometri
Föreläsning 3: Radiometri och fotometri Radiometri att mäta strålning Fotometri att mäta synintrycket av strålning (att mäta ljus) Radiometri används t.ex. för: Effekt på lasrar Gränsvärden för UV Gränsvärden